干气密封的原理及使用分析
干气密封的原理及使用分析

干气密封的原理及使用分析一、引言干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。
与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。
因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。
干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。
目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。
干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。
本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。
二、干气密封工作原理分析干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。
端面材料可采用碳化硅、氮化硅、硬质合金或石墨。
干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。
气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。
气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。
动环密封面分为两个功能区(外区域和内区域)。
气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。
为了获得必要的泵效应,动压槽必须被开在高压侧。
密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。
干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。
干气密封原理

干气密封原理干气密封是一种常用的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机、齿轮箱等。
干气密封的主要作用是防止介质(气体或液体)泄漏,同时减少摩擦损失,提高设备的运行效率。
下面将详细介绍干气密封的原理及其工作过程。
首先,干气密封的原理是利用气体的高速旋转产生的离心力和惯性力,将气体挤压到密封面上,形成一层气体膜,阻止介质泄漏。
同时,密封面上的气体膜也能减少密封面的摩擦,降低能量损失。
因此,干气密封的密封效果和摩擦损失都比较理想。
其次,干气密封的工作过程可以分为两个阶段,压缩气体和扩张气体。
在压缩气体阶段,气体被挤压到密封面上,形成高压区;在扩张气体阶段,气体从高压区向低压区扩张,形成气体膜。
通过这样的循环过程,干气密封能够持续地保持压力差,实现有效的密封效果。
此外,干气密封的工作性能还受到密封面材料、密封面形状、气体种类等因素的影响。
选择合适的密封面材料能够提高密封效果,减少摩擦损失;而优化密封面形状能够改善气体流动状态,增强密封性能。
同时,不同种类的气体对密封性能也有影响,需要根据实际工况选择合适的气体种类。
总的来说,干气密封原理是基于气体的高速旋转产生的离心力和惯性力,形成气体膜,实现有效的密封效果和减少摩擦损失。
在实际应用中,需要综合考虑密封面材料、密封面形状、气体种类等因素,进行合理的设计和选择,以达到最佳的密封性能和运行效率。
通过以上介绍,相信大家对干气密封的原理和工作过程有了更深入的了解。
在实际工程中,我们需要根据具体的设备和工况,合理选择干气密封,并进行优化设计,以确保设备的安全稳定运行。
希望本文能为大家提供一些参考,谢谢阅读!。
干气密封基本原理及投用步骤

干气密封基本原理及投用步骤1、干气密封基本原理干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。
密封坝对气体流动产生阻力作用,增加气体膜压力。
该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。
反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。
配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。
当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。
2、干气密封投用步骤注意事项:a、不得在不投入使用干气密封的情况下,关上压缩机的出入口阀。
b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。
c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。
d、必须确保排放火炬和放空的背压小于进入干气密封的密封气压力。
e、在开机后应当尽量避免在干气密封在高于3000转回以下长时间运转。
f、严禁在增压泵活塞杆漏气大于50kpa的情况下启动增压泵。
步骤:干活气密封系统加装后,在一级,二级,后置隔绝气入口法兰端口处接通洁净的仪表风或扰动氮气已连续吹起洗4~6小时以上,直至用细纱漂白布切合六个出口吹起洗5分钟以上,用眼仔细观察杜预灰尘、油污、水分等杂质为合格。
吹起洗整洁后停用所有阀门,处在待命状态。
打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。
关上扰动n气回去干气密封系统阀门,充份脱液后展开氮气转让,时间为四小时,并通过一级密封气和均衡管差压控制阀调节一级密封高低压端流量不低于117nm3/h(柴油不低于250nm3/h)二级密封高低压端的流量不高于2.9nm3/h(柴油不高于6.5nm3/h)排放量火炬流量7-11nm3/h,(柴油5-8nm3/h),并通过自力调节阀使阀后压力不高于0.185mp a(柴油0.1mpa)后置隔离气高低压端,流量不低于42.81nm3/h,(柴油15nm3/h),并通过自力调节阀使阀后压力不低于0.068mpa(柴油不低于0.01mpa)。
干气密封原理

干气密封原理干气密封是一种常见的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机等。
干气密封的主要作用是防止介质泄漏和外部空气进入设备内部,从而保证设备的正常运行和安全性。
下面我们将详细介绍干气密封的原理及其工作过程。
干气密封的原理主要包括惯性气体密封和辅助密封两种。
惯性气体密封是利用气体的惯性和离心力将气体挤压在密封面上,形成气体屏障,阻止介质泄漏。
而辅助密封则是通过外部供气系统,向密封面提供压力,增加密封面上气体的密度和压力,从而提高密封效果。
这两种原理的结合使用,能够有效地实现干气密封的功能。
干气密封的工作过程可以简单描述为,当设备开始运转时,密封面上的气体受到离心力的作用,形成高速旋转的气体屏障。
同时,辅助密封系统向密封面提供压力,使气体屏障更加稳定和密实。
当设备停止运转时,辅助密封系统也会停止供气,气体屏障逐渐消失。
这样,就能够有效地实现密封面的密封和解除密封。
干气密封的优点主要包括以下几点,首先,它能够有效地防止介质泄漏,保护设备和环境的安全;其次,干气密封不需要润滑剂,能够避免润滑剂对介质的污染;最后,干气密封具有较长的使用寿命和较低的维护成本,能够降低设备的运行成本。
然而,干气密封也存在一些缺点,例如对设备的加工精度要求较高,安装和维护较为复杂,需要专业技术人员进行操作和管理。
因此,在选择干气密封时,需要根据设备的具体情况和工作环境进行综合考虑。
总的来说,干气密封作为一种重要的密封方式,具有广泛的应用前景和发展空间。
随着科技的不断进步和创新,相信干气密封技术将会得到进一步的完善和提升,为各行各业的设备运行和安全提供更加可靠的保障。
干气密封的原理及应用场合

干气密封的原理及应用场合1. 干气密封的定义和基本原理干气密封是一种利用清洁干燥的气体(通常是氮气)在机械轴和密封部件之间形成一个气体屏障,以防止液体或气体泄漏的密封方法。
它主要利用气体压力高于液体或气体的压力,将气体或液体压缩在轴封附近的密封腔内,从而有效地防止泄漏。
干气密封的基本原理是通过气膜将两侧介质隔离开来,从而实现密封效果。
当轴旋转时,密封腔内的气体被强制流动,形成一个气膜屏障,防止液体或气体渗入密封腔。
2. 干气密封的优点•高效性能:干气密封具有较高的密封效果,有效防止液体或气体泄漏,提高设备的工作效率。
•可靠性:由于密封性能稳定可靠,干气密封可保持长时间的使用寿命而不需要频繁维护。
•适应性强:干气密封适用于各种介质,包括化工、石油、医药等不同行业。
•安全性高:由于采用气体作为密封介质,避免了液体泄漏导致的安全隐患。
•环保性好:干气密封无需使用润滑油,减少了对环境的污染。
3. 干气密封的应用场合3.1 化工工业在化工工业中,往往需要处理一些有害、腐蚀性或粘稠的介质。
传统的液体密封在这种条件下容易受到损坏或泄漏,而干气密封可以有效地解决这些问题。
比如,干气密封常被用于泵、压缩机、反应釜等设备的密封,确保介质不泄漏,从而保护操作人员的安全和设备的正常运行。
3.2 石油行业在石油行业中,由于介质种类多样,常常需要在恶劣的工作环境中进行密封。
干气密封可以适应高温、高压、腐蚀等艰苦环境,确保设备的正常运行。
比如,干气密封常用于石油泵、油井采气设备、管线等油气密封系统中。
3.3 医药行业在医药行业中,要求设备的密封性能高、可靠性强,并且要求设备无泄漏和无污染。
干气密封具有符合医药行业要求的特点,被广泛应用于制药设备、灭菌系统、制冷设备等。
3.4 其他行业除了化工、石油和医药行业外,干气密封还广泛应用于其他领域。
例如,干气密封可用于食品加工设备、纸浆设备、电力行业的泄漏控制等。
4. 干气密封的发展趋势随着技术的不断发展,干气密封正朝着更高效、更可靠和更环保的方向发展。
压缩机干气密封

压缩机干气密封一、压缩机干气密封的定义和作用压缩机干气密封是指在压缩机轴承处,使用气体代替传统的润滑油,实现轴承的润滑和密封。
其作用是防止润滑油泄漏,减少环境污染,提高设备可靠性和安全性。
二、压缩机干气密封的优点1.减少环境污染:压缩机干气密封不需要使用润滑油,可以有效降低环境污染。
2.提高设备可靠性:由于无需使用润滑油,可以避免因为润滑油泄漏引起的故障。
同时,压缩机干气密封具有较长的使用寿命和较小的维护量。
3.提高设备安全性:由于无需使用润滑油,可以避免因为润滑油泄漏引起的火灾等危险。
4.节约能源:由于无需使用润滑油,可以减少能源消耗。
三、压缩机干气密封的分类1.动态密封:动态密封是指在旋转轴上使用气体密封,通常采用活塞式密封或者旋转式密封。
2.静态密封:静态密封是指在不旋转的部件上使用气体密封,通常采用环形密封或者膜片式密封。
四、压缩机干气密封的工作原理压缩机干气密封的工作原理是利用气体的高速流动产生的离心力和摩擦力,将气体挤入轴承处形成一个气膜,从而实现润滑和密封。
五、压缩机干气密封的优化设计1.合理选择材料:选择高温耐磨材料可以提高干气密封的使用寿命和稳定性。
2.优化结构设计:通过优化结构设计,可以减少泄漏量和摩擦损失,提高干气密封的效率。
3.加强检测监控:通过加强检测监控,可以及时发现故障并进行维修保养,保证设备正常运行。
六、压缩机干气密封在工业生产中的应用压缩机干气密封广泛应用于石油化工、电力、钢铁、航空航天等行业,可以提高设备的可靠性和安全性,降低环境污染,节约能源。
七、压缩机干气密封的发展趋势随着环保意识的不断提高和技术的不断进步,压缩机干气密封将越来越广泛地应用于各个领域。
同时,未来的发展方向是进一步提高干气密封的效率和使用寿命,降低成本,实现智能化监控和维护。
干气密封工作原理

干气密封工作原理一、引言干气密封是一种广泛应用于各种机械设备中的密封方式,它通过利用气体的特性来实现密封效果,具有结构简单、维护方便等优点。
本文将详细介绍干气密封的工作原理及其应用。
二、工作原理干气密封的工作原理基于气体的压力平衡原理和密封面的相对运动。
一般情况下,干气密封由静密封和动密封两部分组成。
1. 静密封部分静密封部分主要由密封面和密封环组成。
密封面通常采用硬质合金、陶瓷等材料制成,具有良好的耐磨性和耐腐蚀性。
密封环则负责与密封面接触,并通过压缩使其与密封面形成密封。
2. 动密封部分动密封部分主要由活塞、活塞环和密封环组成。
活塞和活塞环的运动可产生压力差,从而形成气体的流动。
密封环则负责承受气体的压力,并通过其自身的弹性使气体无法泄漏。
三、工作过程干气密封的工作过程可以分为压缩、密封和润滑三个阶段。
1. 压缩阶段当活塞运动时,活塞环与密封环之间形成一定的压力差,使气体被压缩。
同时,密封环的弹性使其与密封面紧密接触,形成初步的密封效果。
2. 密封阶段在密封阶段,由于活塞环的运动,压缩气体逐渐流向密封面,与密封面接触。
此时,密封面与密封环之间的压力差逐渐增大,从而形成更好的密封效果。
3. 润滑阶段在润滑阶段,密封面和密封环之间的润滑剂起到重要的作用。
润滑剂可减少密封面和密封环之间的摩擦,提高密封的效果。
四、应用领域干气密封广泛应用于各种机械设备中,特别是涉及高速旋转的轴承和密封件。
其主要应用领域包括但不限于以下几个方面:1. 压缩机在压缩机中,干气密封可有效防止压缩气体泄漏,提高压缩机的工作效率。
同时,干气密封还可减少摩擦磨损,延长设备的使用寿命。
2. 泵站在泵站中,干气密封可防止液体泄漏,保证泵站的正常运行。
与传统的液体密封相比,干气密封不会受到液体蒸发和结晶的影响,具有更好的稳定性和可靠性。
3. 机床在机床中,干气密封可防止切削液进入主轴轴承,保护轴承免受污染。
同时,干气密封还可减少主轴轴承的磨损,提高机床的加工精度和效率。
干气密封工作原理

干气密封工作原理
干气密封是一种常用于机械设备的密封方式,它的工作原理主要是利用气体的压力差来实现对介质的密封。
干气密封的工作原理可分为以下几个部分:
1. 气体压力:在干气密封中,通常会利用高压气体来形成一个气体密封区域。
高压气体通过密封间隙进入密封区域,并且由于气体分子的碰撞,形成气体压力。
这种气体压力能够与外界介质形成良好的隔离,从而实现密封效果。
2. 密封间隙:干气密封中的密封间隙通常由一对摩擦表面之间的间隙形成。
这个间隙足够小,以至于气体分子无法通过间隙漏出或外界介质无法进入其中。
密封间隙通常由密封面的平衡结构保持,以确保间隙的稳定性。
3. 干气供给:为了保持密封的效果,干气密封需要持续地向密封间隙供给干燥的气体。
这种干气通常由外部气源供给,并通过压缩机或其他气流装置进行处理,以确保气体的干燥性和稳定性。
供给干燥的气体能够减少介质中的水分,从而避免气体在密封过程中的胀缩问题。
干气密封的工作原理实质是通过控制气体压力和密封间隙,以及供给干燥的气体,来实现对介质的有效密封。
它具有结构简单、维护方便、适用范围广等优点,在各种机械设备中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
止杂质从叶轮侧进入密封。
2.串联密封结构
如图5,串联结构是一种操作可靠性较高的干气密封结构。作为油 和气工业的标准结构,它是设计简单且仅需要一个相当简单的气体辅助 系统。典型应用是介质气体少量泄漏到大气中是容许的工况。
A—介质冲洗 C—火炬 D—分离气体 S—排气口 图5 串联结构(如:BURGMANN DGS) A—介质冲洗 B—缓冲气体 C—火炬 D—分离气体 S—排气口 图6 带中间迷宫的串联结构 (如:BURGMANN DGS) A—介质冲洗 B—缓冲气体 D—分离气体 S—排气口 图7 双端面密封结构(如:BURGMANN DGS) 在串联结构中,两个单封被前后放置形成两级密封。介质侧密 封(主密封)和大气侧密封(辅助密封)能够承受全部压力差。在一般的操 作中,介质侧的密封承受了全部压差。介质侧密封和大气侧密封之间的 泄漏可通过接口“C”引到火炬。大气侧密封所承受的压力与火炬压力相 同,因此介质泄漏到大气侧和到排气口的量几乎为零。此结构使用过程 中,当主密封失败时,辅助密封可作为安全密封,保证介质不会泄漏到 大气中。 3.带中间迷宫的串联密封结构 如果工艺介质不允许泄漏到大气中和缓冲气体不允许泄漏到工艺介 质中,此时串联结构的两级密封间可加迷宫密封。典型的应用是不允许 介质泄漏到大气中,如H2压缩机,H2S含量较高的天然气压缩机(酸 气),和乙烯、丙烯压缩机。 此种结构的密封工作时,工艺气体的压力通过介质侧密封被降低。 泄漏的工艺气体通过接口“C”排到火炬。大气侧密封通过接口“B”被缓冲 气体(氮气或空气)加压。缓冲气体的压力保证有连续的气流通过迷宫到
密封面采用硬对硬组对,为了在启动和停车时,增强偶然端面接触
的自润滑性,博格曼干气密封在采用硬对硬材料组对时,碳化硅表面喷
涂金刚砂-即DLC=diamond-like carbon。
2.辅助密封材料
辅助密封材料见表4。对于辅助密封最重要的特性是温度极限,挤
压特性和压力相关的气吸现象。在气吸的环境,密封腔的压力突然下降
气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现
气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。
动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙
的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效
应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴
间隙(μm) 无压的情况下启离速度*
(m/s) 静止时,启离压力*(MPa)
V形槽 单向
U形槽 双向
仅能短期的反向运 转
所有操作速度均可以
3~10
2~8
0.6
1.2
≥0.6
≥0.6
*注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分
离层是必要的。
三、密封材料分析
1.端面材料
干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力
向载荷较大的情况下也将形成一个不被破坏的稳定气膜。
干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定
的气膜是由密封墙的节流效应和所开动压槽)是平面,靠它的节流效应限制了泄漏量。
干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的
闭合。
选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。
一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的 气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小, 寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染 等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷 宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多 工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩 机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运 转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取 代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机 的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、 使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密 封的具体结构。
热膨胀系数(10-6/K) 4~5 4.8
4
2.1 0~20
碳化硅的弹性模量(420GPa)较高保证了压力和温度的影响下密封面和
辅助件的变形最小。因此,在所有操作期间,确保了密封间隙的稳定。
碳化硅优良的热传导性(导热系数为100~125W/m.K)保证必要的热量消
散,因此密封端面的温度分布也是均匀的。
五、设计与操作范围 1.压力 为了确定最大允许压力必须考虑与密封元件的挤压间隙和挤压特性 相关的密封端面的变形。所有间隙必须被计算来排除在操作压力和操作 温度下辅助密封元件的挤压。 每一个气体密封的间隙情况必须根据有效的操作温度检查。 2.温度 为了确定最大允许操作温度,不仅考虑被密封气体的使用温度也要 考虑密封间隙间的涡流和摩擦所产生的热。这些热与密封的速度、压 力、气体和密封设计结构有关。因此,在应用温度下,密封的每一个元 件都应被计算。 这些计算的温度应低于材料的特性温度,即密封元件的最大允许温 度。 3.端面速度 端面的最大滑移速度以端面材料允许作用的载荷为基础,计算的安 全系数至少为1.5,允许靠离心力来减少张力。它们在旋转试验中检 查。
析碳化硅做端面材料的优势最大。
表3 各种端面材料的物理特性
浸Sb石墨 WC(Ni) SiC烧结 Si3N4 韧性材料
密度(kg/dm3) 2~2.5 14.5 3.1 3.26 7~9
E-模量(GPa) 20~40 600 420 350 200~220
导热系数(W/m*K) 7~12 80 100~125 30 5~25
六、干气密封制造质量要求 压缩机密封和它们的缓冲气系统产品由质量部严格控制。重要
的材料和组件的试验被记录。这确保了密封及相应的缓冲气系统产品的 质量恒定和操作的可靠性。 1.标准检查计划 干气密封和缓冲气系统的标准试验和检查属于标准检查计划。附加 材料和组件试验也可以要求。 标准检查计划的要点为: .对于关键性零件符合EN 10204/3.1B标准的材料证明 .动环的速度试验(旋转试验) .动环的表面破裂试验 .静压和动压功能试验 .平衡符合平衡等级G2.5(标准)或G1.0。 2.旋转试验 在操作期间被加载的动环的抗拉应力因离心力而减少。金属材料制 造保证材料的抗拉强度,但碳化硅制造和其他非金属端面材料将仅采用 失效概率因子作为加载功能。 每一个动环的强度都要试验,因此,在旋转试验中,旋转试验需要 的速度为最大操作速度的1.225倍。试验压力为操作时压力的1.5倍。如 果碳化硅环经住此试验,它就能保证组件能长时间承受工作载荷。 3.功能试验 压缩机密封总是由制造商进行静压和动压功能试验。试验是在比最 高工况值高的情况下完成的。空气被用作试验介质。 4.使用寿命 无论是否特殊,压缩机密封的设计和材料选择经过计算来确保在连 续操作的情况下密封的寿命至少为50 000小时。在橡胶易老化的流程中 它是可行的。 使用60个月后建议进行下面的维护: 更换所有的橡胶件; 更换弹簧;
将导致O型圈气体侧爆炸减压,因此引起橡胶圈的变形。为了消除气吸
的损害,压力下降率应低于2MPa/min。
表4 辅助密封材料
O型圈 博格曼 DIN24960 材质 代码 代码
温度极限℃
硬度 (Sh)
应用
氢化晴 胶
HNBR
X4*
-40~+125(-54 ~+135)
75
乙烯
氟胶 V
V
-20~+200
75 空气、CO2、N2、
最大滑动速度数值根据用来计算的直径不同,每种制造也是不同 的。动环的内径或外径和静环的动态的或气动的直径全是可能的。 碳化硅动环外径的最大滑动速度可以达到200m/s。 4.一般操作范围 压缩机气体密封的基本形式应用范围如下: 公称直径 46~250mm 此直径指的是动环的内径(小于或大于此范围的公称直径也是可以 的)。 压力 2~10MPa(绝)(橡胶辅助密封) >10~25MPa(绝)(非橡胶辅助密封) 最大压力差与材料和公称直径有关。 温度 -20℃~+200℃(橡胶辅助密封) -55℃~+250℃(非橡胶辅助密封) 滑动速度 动环外径的最大速度Vg为200m/s。最大操作速度与滑动面的材料 有关。 允许的轴位移 轴向:DN46~118 标准为±1.0mm DN130~220 标准为±2.0mm DN230~250 标准为±3.0mm 特殊形式为:最大±4.0mm 径向: DN46~250 标准为±0.6mm
如图4,此结构可作为一种无泄漏结构选择,此结构有一个可把泄
漏引到一个适合的火炬或排气口接口。在这种情况下主要的泄漏与分离
气一起被输送到火炬或排气口。
A—介质冲洗 C—火炬 D—分离气体
图4 单端面密封结构
(如:BURGMANN DGS)
如果输送的气体介质含有杂质,介质必须被过滤后才能通过接
口“A”输送到密封腔。这样,过滤的介质从密封腔流向叶轮侧,从而阻
碳化硅Buka25 碳化硅表面喷涂金刚砂