高分子材料流变学
高分子流变学

材料科学与化学工程学院
Zimm model
Zimm模型描述聚合物链运动的数学模型: 在溶剂中,聚合物链是以一个半径为 R、且扩张体积中包含 溶剂的线团作为整体进行运动的,其摩擦力为: ζz ≈ ηz R 由Einstein公式可得Zimm链的扩散系数为 Dz = k T / ζz Stokes定律来确定其关系式: ζz= 6πηR(球的体积影响) 根据聚合物链均方末端距的普适表达式R=b Nv,可将Zimm链的 松弛时间改写为: R=b N0.6 τ z = R2/ Dz = R2 ζz / k T =6πη R3 / k T = 6πηb 3N1.8 / k T Zimm链的扩散系数为 Dz = k T / ζz = k T / 6πηb N0.6 η= G( τ ) τ z =(k T / N V0 ) 6πηb 3N1.8 / k T = 6πηb 3N0.8 / V0
流动 流体
粘性
耗散能 量
产生永 久变形
时间过 程
牛顿定 律
根据经典流体力学理论,不可压缩理想流体的流动为纯粘 性流动,在很小的剪切应力作用下流动立即发生,外力释 去后,流动立即停止,但粘性形变不可恢复。切变速率不 大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律 ,且应力与应变本身无关。
材料科学与化学工程学院
变形
固体
弹性
储存能 量
变形可 以恢复
瞬时响 应
虎克定 律
根据经典固体力学理论,在极限应力范围内,各向同 性的理想弹性固体的形变为瞬时间发生的可逆形变。 应力与应变呈线性关系,服从胡克弹性定律,且应力 与应变速率无关。
牛顿流体与胡克弹性体是两类性质被简化的抽象物体
材料科学与化学工程学院
高分子材料流变学

高分子科学与工程学院
青岛科技大学
2.2.2 计算高分子液体黏度的经验方程
Ostwald-de Wale幂律方程(power law) 幂律公式
K n
n 1 a K
流动指数或非牛顿指数
n d ln d ln
图8-15 几种聚合物熔体剪切应力与剪切速率的关系 (测试温度200℃)
第4章 剪切黏度的测量方法 4.1 毛细管流变仪测量表观剪切黏度 4.2 恒速式双毛细管流变仪简介 4.3 锥-板型转子流变仪简介 4.4 落球式黏度计的测量原理 第5章 高分子熔体流动不稳定性 5.1 挤出过程中的畸变和熔体破裂行为 5.2 纺丝成型过程中的拉伸共振现象 第6章 加工成型过程的流变分析 6.1压延工艺的流变分析 6.2挤出成型的流变分析 6.3 注射成型的流变分析
聚合物
聚丙烯
聚合物 天然橡胶 低压聚乙烯 聚氯乙烯 聚苯乙烯
流动温度/℃
126-160 170-200 165-190 ~170
流动温度/℃
200-220 190-250 250-270 170-190
聚甲基丙烯酸甲 酯
尼龙66 聚甲醛
流动机理 研究表明,黏流态下大分子流动的基本结构单元并不是分子整链,而是链 段,分子整链的运动是通过链段的相继运动实现的。 研究高分子黏流活化能时发现,当熔体分子量很低时,随分子量增大而增 大。分子量达到一定值后,值趋于恒定。与该恒定值对应的最低分子量相 当于由20-30个C原子组成的链段的大小,说明熔体流动的基本结构单元 是链段。
青岛科技大学
高分子材料流变学
Rheology of Polymer Materials
王新 杨文君
Qingdao University of Science and Technology Qingdao,2011
高分子材料的流变性能研究

高分子材料的流变性能研究高分子材料是一类由大量重复单元构成的大分子化合物,具有广泛的应用领域。
在实际应用中,高分子材料的流变性能研究对于了解其内在特性、优化工艺以及预测材料在不同工况下的表现至关重要。
本文将以高分子材料的流变性能研究为主题,探讨流变性能的定义、测试方法以及研究意义。
首先,我们来了解什么是高分子材料的流变性能。
流变学是研究物质在外力作用下变形和流动行为的学科。
高分子材料的流变性能即指其在外力作用下的变形和流动行为特性。
高分子材料的流变性能与其分子结构、链长、分子量分布、交联程度等因素密切相关,直接影响材料的物理力学性能和加工工艺。
在研究高分子材料的流变性能时,重要的一步是选择合适的测试方法。
目前常用的高分子材料流变性能测试方法包括旋转流变仪、拉伸流变仪、压缩流变仪等。
旋转流变仪主要用于测量高分子材料的剪切流变性能,通过在不同剪切速率下测量应力和应变的关系,以了解材料的粘弹性、塑性和黏弹性等特性。
拉伸流变仪则主要用于测量高分子材料的拉伸性能,通过施加不同的拉伸速率和应力,研究材料的应变和应力关系。
压缩流变仪则可在承受压力情况下,研究高分子材料的压缩变形特性。
通过上述测试方法,我们可以获得高分子材料的流变性能数据。
这些数据对于了解材料的变形行为、判断材料的应用性能以及指导材料的设计和制备具有重要意义。
从流变性能数据中,可以获得高分子材料的流变学参数,如剪切模量、拉伸模量、弹性模量、黏滞系数等。
这些参数反映了材料的力学性能、变形能力和变形时间。
通过分析这些参数值的变化趋势,可以评估材料的物理力学性能以及材料在不同应用条件下的性能稳定性。
高分子材料的流变性能研究具有广泛的应用领域,例如在工程塑料的开发中,了解材料在高温、高压下的流变行为,有助于判断材料在实际应用中的性能表现。
在医疗领域,研究生物材料的流变性能,可以为医疗器械的设计和材料选择提供依据。
在涂料和胶粘剂行业,通过研究材料的流变性能,可以优化涂料的施工性能和胶粘剂的黏附力。
高分子材料流变学教学

高分子材料流变学教学引言高分子材料流变学是研究高分子材料在外力作用下的变形和流动行为的学科,对于合理设计高分子材料的工艺参数、提高高分子材料的加工性能具有重要意义。
本文将介绍高分子材料流变学教学的内容、教学方法和案例分析,以帮助学生深入了解该学科的基本概念和实际应用。
教学内容高分子材料流变学教学主要包括以下内容:1.高分子材料的力学性能:介绍高分子材料的弹性、塑性和黏弹性等力学性能,以及与这些性能相关的工艺因素和材料结构的关系。
2.流变学基本概念:介绍高分子材料流变学的基本概念,包括应力、应变、应变速率、粘度、屈服应变等,以及流变学中常用的测试方法和仪器。
3.流变学模型与实验数据处理:介绍高分子材料流变学的常用模型,如弹性模型、粘弹性模型和塑性流变模型,并探讨如何利用实验数据对模型进行参数拟合和分析。
4.高分子材料加工和应用:介绍高分子材料在不同加工条件下的流变行为,如挤出、注塑和拉伸等,以及高分子材料的应用领域,如塑料制品、橡胶制品和复合材料等。
教学方法高分子材料流变学教学可以采用以下方法:1.理论讲解:通过教师的讲解,介绍高分子材料流变学的基本概念和理论知识,帮助学生建立起对该学科的整体认识和框架。
2.实验操作:通过实验操作,让学生亲自进行流变学测试,并学习如何操作流变仪器和处理实验数据,加深对流变学知识的理解和应用。
3.讨论和案例分析:通过讨论和案例分析,引导学生分析和解决实际问题,培养学生的独立思考和问题解决能力。
4.专业实习:安排学生到工业企业或科研机构进行实习,让学生实践所学的流变学知识,并了解高分子材料流变学在实际工作中的应用。
案例分析下面以挤出加工为例进行案例分析:挤出是一种常用的高分子材料加工方法,通过挤出机将高分子材料加热融化后,通过模具挤出成型。
在挤出过程中,高分子材料会受到剪切力和压力的作用,因此流变学的知识对于优化挤出工艺和提高产品质量具有重要影响。
在案例中,学生需要分析挤出过程中高分子材料的流变行为,并根据实验数据对材料流变模型进行拟合和参数分析。
高分子流变学基本概念课件

高分子流体的粘弹性
弹性
高分子流体在受到外力作用时发生的形变能够部分恢复。
粘性
高分子流体在受到外力作用时产生的剪切应力。
粘弹性
高分子流体同时具有弹性和粘性,其流变行为受温度、应力和分 子结构的影响。
高分子流体的流动行为
层流与湍流
高分子流体在管中流动时,层流 状态下剪切速率与距离成线性关 系,湍流状态下剪切速率与距离 成非线性关系。
高分子流变学基本概 念课件
目录
CONTENTS
• 高分子流变学简介 • 高分子流体的基本性质 • 高分子流变学的基本理论 • 高分子流变学在工业中的应用 • 高分子流变学的未来发展
01 高分子流变学简介
高分子流变学的定义
总结词
高分子流变学是一门研究高分子材料 流动和变形的学科。
详细描述
高分子流变学主要研究高分子材料在 受到外力作用时发生的流动和变形行 为,以及流动和变形过程中涉及的物 理、化学和力学等现象。
流动曲线
描述剪切速率与剪切应力之间关 系的曲线,分为牛顿区、屈服点 和粘弹性区域。
流动不稳定性
高分子流体在流动过程中可能出 现的各种不稳定性现象,如拉伸 流动、漩涡脱落等。
03 高分子流变学的基本理论
唯象理 论
唯象理论是从宏观角度研究高分子流体的行为,通过实验观察和经验公式 来描述高分子流体的流变性质。
高分子流变学的跨学科研究
01
与物理学的交叉
研究高分子流体的热力学性质和 流动行为,探索高分子链的动力 学过程。
02
与化学的交叉
03
与工程的交叉
研究高分子材料的合成和改性, 探索高分子链的化学结构和反应 机理。
将高分子流变学的理论应用于实 际生产过程中,解决工程实际问 题。
高分子材料流变学

高分子材料流变学【名词解释】1.假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<12.膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>13.宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ4.牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体5.剪切变稀:粘度随剪切速率升高而降低6.爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象7.挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径8.熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状9.无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象10.第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11?τ22=φ1?γ 212(N1通常为正值)11.第二法向应力差:同上,关系式为N2=τ22?τ33=φ2?γ 212 (N2通常为负值)12.本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。
13.剪切应力:单位面积上的剪切力,τ=FA14.剪切速率:流体以一定速度沿剪切力方向移动。
在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy 也可理解成一定间距的液层,在一定时间内的相对移动距离。
15.高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。
以及这种行为与材料结构及其他物理化学的关系。
16.出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象【简答题】1.常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等)2.流变测量的目的:(1)物料的流变学表征。
高分子材料流变学

高分子材料流变学高分子材料是一类大分子化合物,在工业、生活中广泛应用,如聚乙烯、聚氨酯、聚酰胺等。
高分子材料在流变学中具有独特的物理性质。
流变学是研究物质内部变形的学科,它揭示了物质在受力作用下的变形规律,包括粘弹性、塑性、弹性等性质。
高分子材料的流变学研究对于了解其本质、设计新材料以及控制加工过程具有重要意义。
高分子材料的流变学行为主要有以下几个特点:1. 高分子材料具有非牛顿性质。
牛顿性质是指流体的应力与应变率成比例。
高分子材料在流变学中的非牛顿性表现为其应力-应变率曲线不是一条直线,而是弯曲的曲线,即呈现出剪切黏度的变化。
2. 高分子材料具有黏弹性。
在受力加速度作用下,高分子材料既具有黏度,同时又具有弹性。
这种黏弹性特征表现为高分子材料在受力后能够保持一定时间的形状,而不会立即回复到原始形状。
3. 高分子材料具有稀溶液的行为。
高分子材料最为常见的形态是稀溶液。
由于高分子材料的分子量较大,其在溶液中的浓度很低。
此时,高分子材料能够表现出溶液的流变学性质。
4. 高分子材料的流变行为受温度、负荷历史和加速度作用等因素的影响较大。
当温度增大时,高分子材料的流变性质将发生变化。
不同的负荷历史将导致高分子材料的流变性质发生变化,这对高分子材料加工、使用过程中的性能具有显著影响。
在受到不同加速度作用的情况下,高分子材料的流变性质也将发生变化。
5. 高分子材料的流变学行为与形状和尺寸等参数有关。
高分子材料在流变学中的行为与其形状和尺寸等参数密切相关。
例如,高分子材料在不同形状或尺寸下的加工性能和使用性能存在差异。
因此,高分子材料的流变学研究对于设计新材料、控制加工过程和改善使用性能具有重要意义。
目前,流变学技术在高分子材料的研究、开发和应用中得到了广泛的应用。
例如,在高分子材料的合成、加工、改性等方面,流变学技术能够提供有用的表征和信息。
在高分子材料的应用领域,流变学技术能够帮助改进产品性能和生产效率。
高分子材料流变学

课程编号:0301106高分子材料流变学Polymer Rheology总学时:32总学分:2课程性质:专业基础课开设学期及周学时分配:第六学期,4或3学时/周适用专业及层次:高分子材料专业,本科相关课程:物理化学、高分子物理、橡胶工艺学、聚合反应工程学、塑料成型工艺学教材:《高分子材料流变学》,吴其晔编著,高等教育出版社,2002年推荐参考书:《聚合物加工流变学》,C. D. Han著,徐僖、吴大诚译,科学出版社,1985年一、课程目的及要求《高分子材料流变学》是高分子材料与工程专业本科生的必修课,课程设置的目的是:1. 使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理有比较全面的认识。
结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。
2. 掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。
为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。
3. 讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。
本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。
二、课程内容及学时分配(一)课程内容第一章绪论§1-1 流变学概念§1-2 高分子流变学研究的内容和意义§1-3 高分子液体的奇异流变现象高粘度与剪切变稀;Weissenberg效应;挤出胀大现象;不稳定流动和熔体破裂现象§1-4 高聚物粘流态特征和流动机理粘流态特征;流动单元;流动机理,简介“高分子构象改变理论”及“力化学流动图象”参考书:《高分子材料流变学》第一章,第1,2,3,4节第二章基本物理量和高分子液体的基本流变性质§2-1 粘度与法向应力差函数形变(剪切形变、拉伸形变);形变率和速度梯度(剪切速率、拉伸速率);应力(切向应力、法向应力、法向应力差);剪切粘度(零剪切粘度、表观粘度、无穷剪切粘度);法向应力差函数(第一、二法向应力差函数);拉伸粘度参考书:《高分子材料流变学》第二章,第3节§2-2 非牛顿型流体的分类Bingham塑性体(屈服应力);假塑性流体(牛顿流动区、剪切变稀区、幂律定律、第二牛顿流动区);胀塑性流体(剪切变稠性);触变体和震凝体参考书:《高分子材料流变学》第二章,第4节;第一章,第3.9节第三章关于高分子液体粘弹性的讨论§3-1 关于剪切粘度的深入讨论温度的影响Arrhenius方程;粘流活化能;W-L-F方程剪切应力和剪切速度的影响流变曲线的特点;流变曲线的时温叠加性超分子结构参数的影响平均分子量的影响(Fox-Flory公式;分子链缠结对流变性的影响);分子量分布的影响;长链支化的影响配合剂的影响填充补强剂的影响(炭黑、碳酸钙);软化剂、增塑剂的影响参考书:《高分子材料流变学》第二章,第5节;第四章,第4节§3-2 关于“剪切变稀”及“液体弹性”的说明高分子构象改变说参考书:《高分子材料流变学》第二章,第6节§3-3 高分子液体的弹性效应挤出胀大效应熔体破裂现象高分子液体弹性效应的定量描述法向应力差函数;可恢复剪切形变;挤出胀大比与出口压力降参考书:《高分子材料流变学》第二章,第7节;第六章,第2.4节;第九章,第1节第四章流变学基础方程及应用§4-1 连续性方程简介质量守恒定律、连续性方程的物理意义§4-2 运动方程简介动量守恒定律、运动方程的物理意义;Navier-Stokes方程§4-3 能量方程简介能量守恒定律、能量方程的物理意义§4-4 应用举例§4-5 高聚物流变本构方程简介参考书:《高分子材料流变学》第五章,第1234节;第三章,第1节第五章剪切粘度的测量方法§5-1 流变测量的目的、意义测粘仪器的种类§5-2 落球式粘度计的测量原理§5-3 毛细管流变仪原理及数据处理完全发展区的流动分析,剪应力和剪切速率的计算,Rabinowitch修正,粘度的测量;入口区的流动分析,入口压力校正(Bagley校正)§5-4 转子式流变仪简介§5-5 Brabender-Haake转矩流变仪简介§5-6 动态粘度的测量储能模量、损耗模量、复数模量、动态粘度、复数粘度、损耗因子参考书:《高分子材料流变学》第六章,第1,2,3,4,5节第六章高聚物典型加工过程的流变分析§6-1 混炼工艺、压延工艺的流变分析§6-2 挤出成型过程的流变分析§6-3 注射成型过程的流变分析参考书:《高分子材料流变学》第七章,第1,2节;第八章,第1节第七章高分子基多相体系的加工流变行为§7-1 多相共聚-共混体系的流变行为高分子-高分子共混原则;高分子共混体系的形态;多相共混体系粘性行为的特点;多相共混体系弹性行为的特点§7-2 高聚物填充体系的流变行为填充体系的屈服现象;填充体系的粘性行为;填充体系的弹性行为三、教学重点与难点第一、二、三章:1. 前三章为本课程学习的重点和基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛科技大学
研究高分子材料流变性的意义
高分子熔体和溶液具有流动性和可塑性,是高分子材料可以加工成型不 同形状制品的依据; 研究流变规律性,对于聚合工程和聚合物加工工程的合理设计、优化和 正确操作,实现高产、优质、低耗具有指导意义; 在当前高分子工程中,流变学设计已成为分子设计,材料设计,制品设 计及模具与机械设计的重要组成部分。
高分子科学与工程学院
青岛科技大学
2.2.2 计算高分子液体黏度的经验方程
Ostwald-de Wale幂律方程(power law) 幂律公式
K n
n 1 a K
流动指数或非牛顿指数
n d ln d ln
图8-15 几种聚合物熔体剪切应力与剪切速率的关系 (测试温度200℃)
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
1 .2 高分子黏流态特征及流动机理
黏流态 高分子材料的黏流态,指温度处于黏流温度(Tf)和分解温度 (Td)之间的一种凝聚态。从宏观看,黏流态主要特征是在外力 场作用下,熔体产生不可逆永久变形和流动。微观看,发生黏性 流动时分子链产生重心相对位移的整链运动。
图8-2 高分子液体“爬杆”效应示意 图
光滑 20 s-1
光滑 30 s-1
鲨鱼皮畸变 100 s-1
鲨鱼皮畸变 200 s-1
黏-滑转变 300 s-1
螺纹状畸变 800 s-1
螺纹状畸变 1000 s-1
熔体破裂 2000 s-1
School of Polymer Science & Engineering
第4章 剪切黏度的测量方法 4.1 毛细管流变仪测量表观剪切黏度 4.2 恒速式双毛细管流变仪简介 4.3 锥-板型转子流变仪简介 4.4 落球式黏度计的测量原理 第5章 高分子熔体流动不稳定性 5.1 挤出过程中的畸变和熔体破裂行为 5.2 纺丝成型过程中的拉伸共振现象 第6章 加工成型过程的流变分析 6.1压延工艺的流变分析 6.2挤出成型的流变分析 6.3 注射成型的流变分析
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
剪切速率和剪切应力的影响
剪切变稀,表征材料的黏-切依赖性。
曲线特征: 1)各材料的零剪切黏度高低不同,主 要反映平均分子量的差别; 2)材料流动性由线性行为转入非线性 行为的临界剪切速率不同; 3)幂律流动区的曲线斜率不同,即流 动指数n不同。
第一法向应力差系数 第二法向应力差系数
1
2
N1
2
11 22 2 、
22 33 2
2 2
N2
2
N1>0,且随剪切速率的增加而增大 N2<0,绝对值很小,通常可忽略
图8-11 第1、第2法向应力差曲线
School of Polymer Science & Engineering
适用条件:T>Tg+100℃
0 T Ke
E RT
E — 黏流活化能
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
WLF方程
适用条件:Tg<T<Tg+100℃
lg
(T ) (Tg )
lg T
17 .44 (T Tg ) 51 .6 T Tg
N 1 T11 T22 11 22
N 2 T22 T33 22 33
ii Tii p ( i 1, 2 , 3) 称偏应力分量,p为各向同性水压力。
三个法向应力分量互不相等是高分子液体具有弹性的表现,因此高分子液体称 黏弹性液体。法向应力差函数可作为描述液体弹性的物理量。 小分子液体流动时,三个法向应力相等,因此小分子液体无弹性,只有黏性。
非晶态线形高分子材料的形变-温度曲线示意图 ML、MH分别代表低分子量和高分子量
低结晶度线形高分子材料的形变-温度曲线示意图 ML、MH分别代表低分子量和高分子量
School of Polymer Science & Engineering
Hale Waihona Puke 高分子科学与工程学院青岛科技大学
表8-2 部分聚合物的流动温度
图8-6 单位立方体上各应力 分量的位置关系
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学 剪切应力 反应了液体流动时的内摩擦,表现为黏性。
法向应力
反应了液体所受的挤压和拉伸,表现为弹性。
高分子液体流动时三个法向应力分量互不相等,存在法向应力差(normal stress difference)。通常定义两个法向应力差函数描写这种性质: 第一法向应力差 第二法向应力差 式中
高分子科学与工程学院
青岛科技大学
第三章 关于高分子液体黏弹性的讨论
3.1 影响剪切黏度的主要因素
流场参数的影响(温度T;压力p;剪切速度或剪切应力等) 大分子结构参数的影响(平均分子量;分子量分布;长链支化度等) 物料结构及成分的影响(配方成分)
3.1.1 流场参数的影响
温度的影响
Andrade方程(即Arrhenius方程)
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
2.1.2 速度梯度和形变速率
形变速率
单位时间内发生的形变。在剪切流场中称剪切速率(shear rate);在拉伸流场中称拉伸速率(elongation rate)。
d dt
dv x dy
高分子科学与工程学院
青岛科技大学
2.1.3 表观剪切黏度
为
( ) a ( )
特性:剪切变稀
图8-9 高分子熔体流动曲线示意图
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
2. 1. 4 第一、第二法向应力差系数
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
2.3 关于“剪切变稀”和熔体弹性的说明
大分子构象改变说
熵弹性 弹性/黏性形变共存 (a)剪切前 (b)剪切后
图8-17 大分子链在切应力作用下沿流动方向取向
School of Polymer Science & Engineering
图8-1 挤出胀大效应示意图
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学 3)爬杆现象(Weissenberg效应) 又称Weissenberg效应。出现原因 也被归结为高分子液体是一种弹性液 体,具有法向应力差效应。 4)挤出畸变和熔体破裂现象
图8-20 几种高分子熔体在200℃的黏度与剪切速率的关系 〇-HDPE;Δ-PS;●-PMMA;▽-LDPE;□-PP
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
3.1.2 分子结构参数的影响
平均分子量的影响 Fox- Flory公式
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
第二章 高分子液体的基本流变性质 2.1 基本物理量与基本流变函数
2.1.1 剪切应力分量和法向应力分量
应力 定义为外力或外力矩作用下材料内部或表面 单位面积上的响应力,单位为Pa(1Pa = 1N/m2)或MPa (1MPa = 106 Pa)。 实际材料受外力作用后内应力状态十分复杂。 分析某点附近立方体三个正交独立平面上的 应力综合,就能完整描述该点的应力状态。 应力分两类:一类应力作用在相应面元的法线 方向上,称法向应力分量;一类应力作用在相 应面元的切线方向上,称剪切应力分量。
图8-3 不同挤出速率下LLDPE熔体挤出物外观照片
高分子科学与工程学院
青岛科技大学 5)无管虹吸,拉伸流动和可纺性
图8-4 无管虹吸和侧壁虹吸效应示意图(N表示牛顿流体,P表示高分子液体)
这些现象也与高分子液体的弹性有关。由于有弹性因此液体能承受拉伸形 变,产生拉伸流动,且拉伸液流的自由表面相当稳定。这是高分子液体具 有良好纺丝(一维拉伸)和成膜(一维或二维拉伸)能力的根据。
高 分如何处理? 学 院 子科学与工程
青岛科技大学
2.2 假塑性流体的流动规律
2.2.1 假塑性流体的流动曲线
第一牛顿区 — 零剪切黏度 0 假塑性流动区 第二牛顿区 — 无穷剪切黏度
图8-13 假塑性高分子液体的流动曲线示意图
School of Polymer Science & Engineering
图8-7 简单剪切流场示意图
School of Polymer Science & Engineering
高分子科学与工程学院
青岛科技大学
(a)
(b)
图8-8 一维单轴拉伸流场(a)和二维双轴拉伸流场(b) 剪切流场下,流速方向与速度梯度方向垂直; 拉伸流场中流速方向与速度梯度的方向平行。
School of Polymer Science & Engineering