Separation Process Principles-2
化工原理设计,苯和甲苯的分离

化工原理设计一、引言化工原理设计是化学工程领域的基础内容之一,它涉及到各种化学物质的物理和化学性质,并通过设计和优化流程来实现目标产物的分离和提纯。
本文将以苯和甲苯的分离为例,介绍其中涉及的一些化工原理设计。
苯(C6H6)是一种无色液体,具有具有独特的芳香气味。
它是许多有机化合物的基础和重要的工业原料。
苯的沸点为80.1℃,相对分子质量为78.11 g/mol。
甲苯(C7H8)也是一种无色液体,具有类似苯的芳香气味。
甲苯可以作为溶剂广泛应用于化工、涂料、药品和塑料等行业。
其沸点为139.1℃,相对分子质量为92.14 g/mol。
苯和甲苯分离的方法有很多种,下面将对其中两种常用的方法进行介绍。
1. 蒸馏法蒸馏法是一种通过液体之间的沸点差异来实现分离的方法。
对于苯和甲苯的分离,可以通过在适当的温度下进行蒸馏,将苯和甲苯分别收集。
在具体操作中,可以将含有苯和甲苯的混合物加热至苯的沸点,然后收集蒸馏出的苯。
接着,将剩余液体继续加热至甲苯的沸点,再次收集蒸馏出的甲苯。
通过多次的蒸馏过程,可以使苯和甲苯得到较好的分离。
2. 结晶法结晶法是一种通过溶解度差异来实现分离的方法。
对于苯和甲苯的分离,可以利用它们在不同溶剂中的溶解度差异进行分离。
在具体操作中,可以将苯和甲苯的混合物溶解在适当的溶剂中,然后逐渐降低温度,使其中一种物质结晶出来。
通过过滤或离心等方法,可以将结晶出的物质分离出来。
再用其他溶剂将残留物溶解,再次进行结晶,以实现苯和甲苯的分离。
四、化工原理设计考虑的因素在化工原理设计中,需要考虑许多因素,以实现苯和甲苯的高效分离。
1. 温度温度是影响蒸馏法和结晶法分离效果的重要因素。
对于蒸馏法,适当的温度可以使苯和甲苯有较大的沸点差异,以便更好地进行分离。
对于结晶法,合适的温度可以使其中一种物质结晶,而另一种物质保持在溶液中。
2. 压力压力也会对蒸馏法的分离效果产生影响。
适当的压力可以改变苯和甲苯的沸点,从而更好地进行分离。
多功能连续精馏实验报告

多功能连续精馏实验报告1. 背景多功能连续精馏是一种常用的分离技术,广泛应用于化工领域。
它通过利用不同组分的挥发性差异,将混合物中的各个组分逐一分离出来。
在本实验中,我们使用了一套多功能连续精馏设备,对一个二元混合物进行了分离实验。
2. 实验目的本实验旨在探究多功能连续精馏技术在二元混合物分离中的应用,并通过实验结果和数据分析,评估该技术的效果和优劣势。
3. 实验方法3.1 实验设备和试剂本次实验所使用的设备包括:•多功能连续精馏塔•加热装置•冷凝器•进料泵•液位计•温度计试剂为一个已知比例的二元混合物。
3.2 实验步骤1.将二元混合物倒入进料容器中。
2.打开进料泵,并调节进料速率。
3.打开加热装置,提供足够的热量。
4.监测塔内液位和温度变化。
5.收集不同组分的产物样品。
4. 实验结果通过实验,我们获得了以下结果:1.实验过程中,随着加热装置的工作,混合物开始沸腾,并进入多功能连续精馏塔。
2.在塔内,我们观察到了不同组分的液位变化。
随着温度升高,液位逐渐下降。
3.在冷凝器中,我们收集到了多个不同组分的产物样品。
通过对这些样品进行分析,我们确定了它们的组成比例。
5. 数据分析在数据分析部分,我们对实验结果进行了详细的处理和计算。
通过计算各个组分的回收率、纯度等指标,评估了多功能连续精馏技术在该二元混合物分离中的效果。
5.1 回收率计算回收率是衡量分离效果的重要指标之一。
通过与原始混合物中各个组分的初始含量进行比较,可以评估多功能连续精馏技术对各个组分的回收情况。
回收率(%)= (产物中某个组分浓度 / 初始混合物中该组分浓度)× 100%5.2 纯度计算纯度是另一个重要的指标,它反映了产物中某个组分的纯净程度。
通过测量产物样品中某个组分的浓度,可以计算出其纯度。
纯度(%)= (产物中某个组分浓度 / 产物总浓度)× 100%6. 结论和建议通过对实验结果和数据的分析,我们得出以下结论:1.多功能连续精馏技术能够有效地将二元混合物中的各个组分进行分离,并且具有较高的回收率和纯度。
Separation Process Principles-7

through the wall of the chamber to water, producing condensate that dripped into a product receiver. The word distillation is derived from the Latin word destillare, which means dripping or tricking down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so-called Rectificatorium. The term rectification is derived from the Latin words recte facere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multistage contacting. Throughout the twentieth century, multistage distillation has been by far the most widely used method for separating liquid mixtures of chemical components. Unfortunately, distillation is a very energy-intensive technique, especially when the relative volatility, α, of the components being separated is low (<1.5). Mix et al. report that the energy consumption for distillation in the US for 1976 totaled 2×1015 Btu (2 quads), which was nearly 3% of the entire national energy consumption. Approximately two-thirds of the distillation energy was consumed by petroleum refining, where distillation is widely used to separate crude oil into petroleum fractions, light hydrocarbons (C2’s to C5’s), and aromatic chemicals. The separation of other organic chemicals, often in the presence of water, is widely practiced in the chemical industry. The fundamentals of distillation are best understood by the study of binary distillation, the separation of a 2-component mixture, which is the subject of this chapter. The more general and much more difficult case of a multicomponent mixture is covered in Chapter 10 and 11. A representative binary distillation operation is shown in Fig. 7.1 for the separation of 620 lbmol/h (0.0781 kmol/s) of a binary mixture of 46 mol% benzene (the
“化工分离过程”考资料资料精

“化工分离过程”考资料1. 陈洪钫. 基本有机化工分离工程. 北京: 化学工业出版社, 1981.2. 陈洪钫, 刘家祺. 化工分离过程. 北京: 化学工业出版社, 1995.3. 刘家祺, 姜忠义, 王春艳. 分离过程与技术. 天津: 天津大学出版社, 2001.4. 刘家祺. 分离过程. 北京: 化学工业出版社, 2002.5. 李淑芬, 姜忠义. 高等制药分离工程. 北京: 化学工业出版社,2004.6. 刘家祺. 传质分离过程. 北京: 高等教育出版社, 2005.7. 刘家祺. 分离过程与模拟. 北京: 清华大学出版社, 2007.8. 史季芬. 多级分离过程——蒸馏、吸收、萃取、吸附. 北京: 化学工业出版社, 1991.9. 吴俊生, 邓修等. 分离工程. 上海: 华东化工学院出版社, 1992.10. 郁浩然. 化工分离工程. 北京: 中国石油出版社, 1992.11. 蒋维钧. 新型传质分离技术. 北京: 化学工业出版社, 1992.12. (日)大矢晴彦著,张瑾译. 分离的科学与技术. 北京: 中国轻工业出版社 1999.13. 邓修,吴俊生. 化工分离工程. 北京: 科学出版社, 2000.14. 耿信笃. 现代分离科学理论导引. 北京: 高等教育出版社, 2001.15. (美)塞德等,分离过程原理. 北京: 化学工业出版社,2002.16. 袁惠新. 分离工程. 北京: 中国石化出版社, 2002.17. 伍钦. 传质与分离工程. 广州: 华南理工大学出版社, 2005.18. 陈欢林. 新型分离技术. 北京: 化学工业出版社, 2005.19. 宋海华. 多级分离理论(一)精馏模拟. 天津: 天津大学出版社, 2005.20. 丁玉明. 现代分离方法与技术. 北京: 化学工业出版社, 2006.21. 郁浩然. 化工分离工程,北京: 中国石化总公司情报研究所出版社, 2006.22. 胡小玲, 管萍. 化学分离原理与技术. 北京: 化学工业出版社, 2006.23. 蒋维均, 余立新. 新型传质分离技术(第二版). 北京: 化学工业出版社, 2006.24. 西德尔, 亨利著; 朱开宏, 吴俊生译. 分离过程原理. 上海: 华东理工大学出版社, 2007.25. 袁惠新. 分离过程与设备. 北京: 化学工业出版社, 2008.26. 小岛和夫著; 傅良译. 化工过程设计的相平衡. 北京: 化学工业出版社, 1985.27. 张建侯, 许锡恩. 化工过程分析与计算机模拟. 北京: 化学工业出版社, 1989.28. 时钧, 汪家鼎, 余国琮, 陈敏恒. 化学工程手册. 第二版. 北京: 化学工业出版社, 1996.29. 倪进方. 化工过程设计, 北京: 化学工业出版社, 2001.30. 杨志才. 化工生产中的间歇过程-原料、工艺及设备. 北京: 化学工艺出版社, 2001.31. 武汉大学编写组. 化学工程基础, 北京: 高等教育出版社, 2002.32. 顾觉奋. 分离纯化工艺原理. 北京: 中国医药科技出版社, 2002.33. (美)吉科利斯著,齐鸣斋译. 传递过程与分离过程原理. 上海: 华东理工大学出版社, 2007.34. 刘茉娥. 膜分离技术. 北京: 化学工业出版社, 1998.35. 王湛. 膜分离技术基础. 北京: 化学工业出版社, 2000.36. 时钧, 袁权, 高从堦. 膜技术手册. 北京: 化学工业出版社, 2001.37. 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用. 北京: 化学工业出版社, 2003.38. 任建新. 膜分离技术及其应用. 北京: 化学工业出版社,2003.39. 于丁一,宋澄章,李航宇. 膜分离工程及典型设计实例. 北京: 化学工业出版社, 2005.40. 许振良, 马炳荣. 微滤技术与应用. 北京: 化学工业出版社, 2005.41. 王湛, 周翀. 膜分离技术基础(第二版) . 北京: 化学工业出版社, 2006.42. 陈观文. 分离膜应用与工程案例. 北京: 国防工业出版社, 2007.43. 高自立, 孙思修, 沈静兰. 溶剂萃取化学. 北京: 科学出版社, 1991.44. 陈维枢. 超临界流体萃取的原理和应用. 北京: 化学工业出版社, 1998.45. 张镜 . 超临界流体萃取. 北京: 北京化学工业出版社, 2000.46. 朱自强. 超临界流体技术—原理和应用. 北京: 北京化学工业出版社, 2000.47. 汪家鼎, 陈家镛. 溶剂萃取手册. 北京: 北京化学工业出版社, 2001.48. 戴猷元. 新型萃取分离技术的发展及应用. 北京: 化学工业出版社, 2007.49. 孙彦. 生物分离工程. 北京: 化学工业出版社, 1998.50. 毛忠贵. 生物工业下游技术. 北京: 中国轻工业出版社, 1999.51. 欧阳平凯. 生物分离技术. 北京: 化学工业出版社, 1999.52. 严希康. 生化分离工程 . 北京: 化学工业出版社, 2000.53. 严希康. 生化分离工程. 北京: 化学工业出版社, 2001.54. 孙彦. 生物分离工程(第二版. 北京: 化学工业出版社, 2005.55. 卢鲜花. 中药有效成分提取分离技术. 北京: 化学工业出版社, 2005.56. 刘小平, 李湘南,徐海星. 中药分离工程. 北京: 化学工业出版社, 2005.57. 曹学君. 现代生物分离工程. 上海: 华东理工大学出版社, 2007.58. 谭天伟. 生物分离技术. 北京: 化学工业出版社, 2007.59. 辛秀兰. 生物分离与纯化技术. 北京: 科学出版社, 2008.60. 田瑞华. 生物分离工程. 北京: 科学出版社, 2008.61. 丁绪淮, 谈遒. 工业结晶. 北京: 化学工业出版社, 1985.62. 冯霄, 李勤凌. 化工节能原理与技术. 北京: 化学工业出版社, 1998.63. 褚良银等. 旋转流分离理论. 北京: 冶金工业出版社, 2002.65. 陈翠仙, 韩宾兵, 朗宁威 . 渗透蒸发和蒸气渗透. 北京: 化学工业出版社, 2004.66. (英])什顿,沃德, 霍尔迪奇著; 朱企新译. 固液两相过滤及分离技术(第2版) . 北京: 化学工业出版社, 2005.67. 蒋培华. 反应与分离工程基础. 北京: 中国石化出版社, 2008 .68. King C J. Separation Processes, 2nd. New York : McGraw Hill, 1980.69. Henley E J, Seader J D. Equilibrium Stage Separation in Chemical Engineering. New York : John Wiley&Sons, 1981.70. Rousseau R W. Handbook of Separation Process Technology. New York: John Wiley & Sons, 1987.71. Wankat P C. Equilibrium-Stage Separations in Chemical Engineering. New York : Elsevier, 1988.72. Wankat P C. Rate-Controlled Separations. New York : Elsevier Applied Science, 1990.73. Schweitzer P. Handbook of Separation Technique for Chemical Engineers, 3rd ed. New York : McGraw Hill, 1997.74. Seader J D, Henley E J. Separation Process Principles. New York : John Wiley & Sons, 1998.75. Clifton E. Meloan. Chemical Separations: Principles, Techniques and Experiments (Techniques in Analytical Chemistry) . Wiley-Interscience, 1999.76. Christie John Geankoplis. Transport Processes and Separation Process Principles (Includes Unit Operations) (4th Edition) . New Jersey, 2003.77. Phillip C. Wankat,Separation Process Engineering (2nd Edition). Prentice Hall PTR,2006.78. Michael E. Prudich, Huanlin Chen, Tingyue Gu, Ram B. Gupta, Keith P. Johnston, Herb Lutz, Guanghui Ma, Zhiguo Su . Perry's Chemical Engineers' Handbook 8/E Section 20:Alternative Separation Processes . McGraw-Hill Professional, 2007.79. Robinson C S, Gilliland E R. Elements of Fractional Distillation, 4th ed. New York : McGraW-Hi11, 1950.80. Smith B D. Design of Equilibrium Stage Processes. New York : McGraw-Hill, 1963.81. McCade W L, Smith J C. Unit Operation of Chemical Engineering. New York : McGram Hill, 1976.82. Broul M, Nyvlt K, Sohnel O. Solubilities in Binary Aqueous Solution. Prague : Academia, 1981.83. Lo T C, Baird M I, Hanson C. Handbook of Solvent Extraction. New York : John Wiley&Sons, 1983.84. Walas S M. Phase Equilibria in Chemical Engineering. Boston : Butterworths, 1985.85. Yang R T. Gas Separation by Adsorption Processes. Boston : Butterworths, 1987.86. Duong D D. Adsorption Analysis: Equilibria and Kineties. New York : Lmperial College Press, 1988.87. Myerson A S. Handbook of Industrial Crystallization. Boston : Butterworth-Heinemann, 1992.88. Thornton J D. The Science and Practice of Liquid-Liquid Extraction. Oxford : Oxford Press, 1992.89. Garside J. Separation Technology: The Next Ten Years. London : Institution of Chemical Engineers, 1994.90. Ruthven D M, Farooq S, Kanebel K S. Pressure Swing Adsorption. New York : VCH, 1994.91. Diwekar M U. Batch Distillation. US: Taylor&Francis, 1995.92. Michael C. Flickinger. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. New York : John Wiley&Sons, 1999.93. Antonio A. Garcia, Mathew R. Bonen. Bioseparation Process Science. Blackwell Science Inc, 1999.94. Seider W D, Seader J D, Lewin D R. Process design principles:synthesis, analysis,and evaluation. 北京: 化学工业出版社, 2002.95. Jones A G. Crystallization Process Systems. Boston : Butterworth-Heinemann, 2002.96. David Baldacci ,Split Second,艺州出版社, 2004.97. J.M. Smith, Hendrick C Van Ness, Michael Abbott. Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, 2004.98. Richard M. Felder, Ronald W. Rousseau. Elementary Principles of Chemical Processes. Wiley, 2004.99. F. B. Petlyuk. Distillation Theory and its Application to Optimal Design of Separation Units . Cambridge University Press, 2004.100. J. D. Seader , Ernest J. Henley. Separation Process Principles,Wiley, 2005.101. Wallace,Woon-Fong Leung. Centrifugal Separations in Biotechnology. Academic Press, 2007.102. Henry Z. Kister, Paul Mathias, D. E. Steinmeyer, W. R. Penney, B. B. Crocker,James R. Fair. Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation . McGraw-Hill Professional, 2007.网上资源:1. 泡露点及闪蒸过程计算Free Software about bubble point and dew point1.1 Flash Calculator/chemsim.htm#FTTech("FLSC") is a self-contained, easy-to-use product for getting single flash solutions and bubble or dew points. It contains Digital Analytics' vapor-liquid equilibrium database and modelling methodology which includes Peng-Robinson EOS, UNIFAC, and Wilson methods.1.2 ThermoSolver/education/Thermosolver/ThermoSolver is a software program which accompanies the textbook Engineering and Chemical Thermodynamics by Milo Koretsky. This software allows students to perform complex thermodynamics calculations, and explore thermodynamics for systems which would be impossible to solve without a significant investment in programming.•Thermodynamic properties for 350+ compounds are provided.•Saturation pressure calculator can be used with 338 species in the database. •Solver for the Peng-Robinson and Lee-Kesler equations of state is provided. •Fugacity coefficients can be solved for pure species or mixtures.•Models for Gibbs energy can be fit to isobaric or isothermal vapor-liquid equilibrium data. Sample data sets are provided. The results can be plotted.•Bubble-point and dew-point calculations can be made.•Equilibrium constant (KT) solver is provided.•General chemical reaction equilibria solver is provided.•Equations used in the calculation process can be viewed.1.3 BR AET Calculation Shareware/fractional-distillation/shareware.htmlThis program is a useful utility when estimating boiling points at reduced pressures. It allows the calculation of AET (Atmospheric Equivalent Temperature) by entering the actual temperature and pressure. The actual temperature can be calculated by entering the AET and the actual pressure.2.精馏过程计算2. Free Software about distillation2.1 /McCabe-Thiele.html2.2 Online Calculation of a Binary Distillation Column2.3 Pressure Swing Adsorption Calculator by James Ritter at the University of South CarolinaAdsorption and Chromatography Software at the University of Bath Basic programs and MS Excel spreadsheets employing the tanks in series modelNumerical Simulation of Nonlinear Multicomponent Chromatography Quattro Pro spreadsheet developed by D. D. Frey at UMBC. It's more sophisticated and accurate than the U. of Bath and UMCP software. Assorted online calculators for engineering problems3.膜分离过程计算3. Free Software about Membrane Separation3.1 Membrane Simulator Version 2.0/koros/index.php?do=resources3.2 Membrane Simulation 2.0/Default.asp?Category=Simulation4. 美国麻省理工学院“分离”开放课程网站(1) /OcwWeb/Chemical-Engineering/10-32Spring-2005/CourseHome/(2)/OcwWeb/Chemical-Engineering/10-445Summer-2005/CourseHome/。
化工原理课程教学内容设计

化工原理课程教学内容设计一、课程简介化工原理是化学工程专业的基础课程之一,旨在培养学生对化学工程领域中的基本原理和理论进行掌握和应用的能力。
本课程内容设计旨在帮助学生全面了解化工原理的基本概念、原理和应用,并培养学生的分析问题和解决问题的能力。
二、教学目标1. 掌握化工原理中的基础概念和本质;2. 理解化工原理与化学工程实际应用的关系;3. 培养学生的问题分析与解决能力;4. 培养学生的团队合作和沟通能力。
三、教学内容及安排1. 化工原理的基本概念(2周)1.1 化学工程与化工原理的关系1.2 化工原理的发展历程1.3 化工原理中的重要概念和术语2. 物质的组成与结构(3周)2.1 原子和元素2.2 分子和化学键2.3 物质的组成与性质2.4 化学平衡与反应动力学3. 基本热力学(4周)3.1 能量和热力学基本概念3.2 热力学定律与计算3.3 化学反应热力学3.4 理想气体混合物的热力学计算4. 流体力学基础(3周)4.1 流体的性质和流动方式4.2 流体静力学4.3 流体动力学4.4 流体力学方程和应用5. 物质传输基础(4周)5.1 质量传输基础5.2 热传输基础5.3 动量传输基础5.4 物质传输方程和应用6. 反应工程基础(4周)6.1 化学反应工程基本概念6.2 反应动力学与反应速率方程6.3 反应器的基本类型和性能6.4 反应器的设计和应用四、教学方法1. 理论讲授:通过教师的讲授,向学生传授化工原理的基本概念和理论知识。
讲授过程中,可采用多媒体辅助教学,例如使用投影仪展示示意图、计算公式等。
2. 实验教学:在教学过程中,适当安排化学工程实验、模拟实验等,通过实际操作和实验数据分析,帮助学生深入理解化工原理的实际应用。
3. 讨论研究:引导学生参与课堂讨论,组织小组讨论,提出问题和解决问题的思路。
通过学生的交流和思考,培养学生的问题分析和解决问题的能力。
4. 课程设计项目:每学期结合具体实例,布置一到两个课程设计项目。
化工最重要的三本专业课英语作文

化工最重要的三本专业课英语作文The Three Most Important Books for Little Chemical EngineersHi there! My name is Timmy and I'm 8 years old. I know I'm just a kid, but I already know I want to be a chemical engineer when I grow up. Chemical engineers are like magic scientists who get to mix up different chemicals and materials to make awesome new stuff!My dream is to one day invent a new type of super candy that never melts and tastes like chocolate strawberry banana split forever. Wouldn't that be the best?! But before I can make my dream a reality, I need to study really hard and learn all about chemistry and different materials.Luckily, I've already started reading the three most important books that every brilliant chemical engineer needs to know backwards and forwards. These books teach you all the fundamentals and basics about chemistry, materials, energy, and more. If you want to be a stellar chemical engineer like me someday, you gotta read these three books!Book #1: Elementary Principles of Chemical ProcessesThis bright green book is a classic! It was written by this really smart guy named Richard M. Felder waaaay back in 2019 (that's like a million years ago!). But don't worry, all the information is still totally up-to-date and useful.The book covers all the key principles that make up the core foundations of chemical engineering. Things like material and energy balances, basic thermodynamics and physics, fluid mechanics, heat transfer, kinetics, and reactor design. It explains each concept through easy-to-understand language and colorful visuals.My favorite part is the end-of-chapter problem sets that let you practice what you've learned. They start off super simple but then get really hard and tricky by the end. I still have trouble with some of those advanced problems, but I'm getting better every day!Book #2: Perry's Chemical Engineers' HandbookWoah, just that title is a mouthful! But despite its super long name, this classic reference book is an absolute must-have for any chemical engineer worth their salt.Originally published wayyyy back in 1934 (that's literally like a hundred years ago!), the handbook contains pretty much everyessential fact, data point, equation, and calculation method you could ever need as a chemical engineer. It's like an entire encyclopedia of chemical engineering knowledge, all conveniently collected into one gigantic book.The newest 9th edition from 2019 has over 2,800 pages covering everything from fluid and particle dynamics to thermodynamics, reactor design, process control, and so much more. It's sort of like a real-life Wikipedia but only forultra-technical chemical engineering topics.I'll be honest, because it's so comprehensive it can be kind of dense and overwhelming at times, especially for a kid like me. But any time I get stuck on a concept or need to quickly look up an equation or data table, Perry's always has the answer! It's a ultra valuable resource.Book #3: Transport Processes and Separation Process PrinciplesThis red book was written by some seriously smart professors - Christie John Geankoplis, Abdul Rashid Hatcher, and Ronald W. Rousseau. I bet they're all like, crazy chemical engineering geniuses or something!While the material can get pretty advanced and make my brain hurt at times, the book does an amazing job breaking down all the fundamentals of separations processes like absorption, distillation, leaching, membrane separations, and more. It gets deep into the nitty-gritty details of mass transfer principles, which are hugely important for designing industrial processes.My favorite chapters are the ones on crystallization and particle technology. How cool is it that you can create solid particles and crystals from liquid solutions through chemistry? That's exactly the kind of thing I'll need to understand if I want to make my dream no-melt candies a reality someday!There's no way I'd be able to grasp all the complex math and science in this book without the strong foundations I built from the other two textbooks first. But all three of them combined create the holy trifecta - the three most vital books every aspiring chemical engineer needs to study.While the material can definitely be challenging for a kid like me at times, I'm slowly but surely working my way through these books page-by-page, chapter-by-chapter. I know if I stick with it and study hard, I'll have absorbed all the key knowledge andskills I need to become a world-class chemical engineer when I'm older.Who knows, maybe my name will be featured in one of the brand new editions of these books someday after I've made my mark on the field by finally inventing my wildly successfulno-melt candy! A kid can dream, right? But for now, it's time for me to get back to hitting the books. Being a great chemical engineer ain't easy, but it will all be worth it in the end! Catch ya later!。
Separation Process Principles-3-3

Surface renewal theory The penetration theory is not satisfying because the assumption of a constant contact time for all eddies that temporarily reside at the surface is not reasonable, especially for stirred tanks, contactors with random packings, and bubble and spray columns where the bubbles and droplets cover a wide range of sizes. In 1951, Danckwerts suggested an improvement to the penetration theory that involves the replacement of the constantssumption of a residence-time distribution, wherein the probability of an eddy at the surface being replaced by a fresh eddy is independent of the age of the surface eddy.
3.5 Mass transfer in turbulent flow In the two previous sections, diffusion in stagnant media and in laminar flow were considered. For both cases, Fick’s law can be applied to obtain rates of mass transfer. A more common occurrence in engineering is turbulent flow, which is accompanied by much higher transport rates, but for which theory is still under development and the estimation of mass transfer rates relies heavily on empirical correlations of experimental data and analogies with heat and momentum transfer. As shown by the famous dye experiment of Osborne Reynolds in 1883, a fluid in laminar flow moves parallel to the solid boundaries in streamline patterns. Every particle of fluid moves with the same velocity along a streamline and there are no fluid velocity components normal to these streamline. For a Newtonian fluid, the momentum transfer, heat transfer, and mass transfer are by molecular transport, governed by Newton’ law of viscosity, Fourier’s law of heat conduction, and Fick’s law of molecular diffusion, respectively. In turbulent flow, the rates of momentum, heat, and mass transfer are orders of magnitude greater than for molecular transport. This occurs because streamlines no longer exist and particles or eddies of fluid, which are large compared to the mean free path of the molecules in the fluid, mix with each other by moving from one region to another in fluctuating motion. This eddy mixing by velocity fluctuations occurs not only in the direction of flow but also in the direction normal to flow, with the latter being of more interest. Momentum, heat, and mass transfer now occur by two parallel mechanisms: (1) molecular motion, which is slow; and (2) turbulent or eddy motion, which is rapid except near a solid surface, where the flow velocity accompanying turbulence decreases to zero.
关于特殊精馏过程与液液萃取课件

4
第 1章 绪 论
1.1 分离过程的地位和作用
1.1.1 分离过程的重要性
清洁工艺:合理利用资源,减少甚至消除废料的产生
绿色化学与化工:为实现资源高效率的利用、减少与消除有害物质对人类 健康与环境的威胁所作出的化学过程与产品的设计、开 发和生产。
13
第 1章 绪 论
1.3.3 过程的集成
一、传统分离过程的集成
二、传统分离过程与膜分离的集成 渗透蒸发和精馏集成
1.4 设计变量
Ni = Nv – Nc Nv: 独立变量数 Nc:约束关系数(独立方程式数目)
14
第 1章 绪 论
1.4 设计变量
f = C – π +2 (f = C – P +2 )
自由度指强度性质的变量
约束关系式包括:物料平衡式;能量平衡式;相平衡关系式;内在关系式 MESH 方程
E 相平衡 c (π-1) 1相 A1 B1 C1 2相 A2 B2 C2 3相 A3 B3 C3
15
第 1章 绪 论
作业:对乙苯和三种二甲苯混合物的分离方法进行选择。 (1)列出间二甲苯和对二甲苯的有关性质:沸点、熔点、临界温度、临
关于特殊精馏过程与液液 萃取
1
内容
1。绪论 2。单级平衡过程
• 相平衡 • 多组分物系的泡点和露点计算 • 闪蒸过程的计算 • 液液平衡过程的计算 • 多相平衡过程
3。多组分精馏和特殊精馏
• 多组分精馏过程 • 萃取精馏和共沸精馏 • 反应精馏 • 加盐精馏
2
内容
4。液液萃取
• 萃取过程与萃取剂 • 液液萃取过程的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•
All separation processes must satisfy the energy balance. Inefficient separation processes require large transfer of heat and/or shaft work both into and out of the process; efficient processes require smaller levels of heat transfer and/or shaft work. The first law of thermodynamics provides no information on energy efficiency, but the second law of thermodynamics (also referred to as the entropy balance) does. The entropy balance is
•
•
• •
heat transfer, mass transfer, and chemical reaction must be reduced. Practical limits to this reduction exist because, as driving forces are decreased, equipment sizes increase, tending to infinitely large sizes as driving forces approached zero. For a separation process that occurs without chemical reaction, the summation of the stream availability functions leaving the process is usually greater than the same summation for streams entering the process. In the limit for a reversible process (LW=0), Eq. (3) of Table 2.1 reduces to Eq. (4), where Wmin is the minimum work required to conduct the separation and is equivalent to the difference in the heat transfer and shaft work terms in Eq. (3). This minimum work is independent of the nature (or path) of the separation process. The work of separation for an actual irreversible process is always greater than the minimum value computed from Eq. (4). The second-law efficiency is defined as (fractional second-law efficiency) = (minimum work of separation)/(equivalent actual work of separation)
2.1 Energy, entropy, and availability balances
* Most commercial separation operations utilize large quantities of energy in the form of heat and/or shaft work. For example, the energy consumption by distillation in the US is approximately $10 trillion per year (1991). Thus, it is of considerable interest to know the extent of energy consumption in a separation process, and to what degree energy requirements might be reduced. Such energy estimates can be made by applying the first and second laws of thermodynamics.
(stream availability flows + availability of heat + shaft work) entering system - (stream availability flows + availability of heat + shaft work) leaving system = loss of availability (lost work) * For any separation process, lost work can be computed from Eq. (3) in Table 2.1. Its magnitude depends on the extent of process irreversibilities, which include fluid friction, heat transfer due to finite temperature-driving forces, mass transfer due to finite concentration or activitydriving forces, chemical reactions proceeding at finite displacements from chemical equilibrium, mixing of streams at differing conditions of temperature, pressure, and/or composition, and so on. Thus, to reduce the lost work, driving forces for momentum transfer,
•
At steady state, if kinetic, potential, and surface energy changes are neglected, the first law of thermodynamics (also referred to as the conservation of energy or the energy balance), states that the sum of all forms of energy flowing into the system equals the sum of the energy flows leaving the system: (stream enthalpy flows + heat transfer + shaft work) leaving system - (stream enthalpy flows + heat transfer + shaft work) eny flows + entropy flows by heat transfer) leaving system - (stream entropy flows + entropy flows by heat transfer) entering system = production of entropy by the process Note that the entropy balance contains no terms related to shaft work. * Although the production of entropy, Sirr, is a measure of energy inefficiency, it is difficult to relate to this measure because it does not have the units of energy/time (power).
Separation Process (system)
Sirr, LW Streams out n, zi, T, P, h, s, b, v
(Surroundings) T0 (Ws)in (Ws)out
Shaft work in and out
•
One or more feed streams flowing into the system are separated into two or more product streams that flow out of the system. n- molar flow rates, zi- the component mole fractions T- temperature, b- molar availabilities h- molar enthalpies, s- molar entropies P- pressure, Q- heat flows in or out, W- shaft work crossing the boundary of the system
•
Consider the continuous, steady-state flow system for a general separation process in Fig. 2.1.
Heat transfer in and out Qin, Ts Qout, Ts
Streams in n, zi, T, P, h, s, b, v