第二章重量与平衡

合集下载

流体力学第二章

流体力学第二章

p z z hp g
hp p g
§2-3 重力场中流体的平衡
几何意义
在重力作用下,静止的 不可压缩流体的静水头 线和计示静水头线均为 水平线

§2-3 重力场中流体的平衡
帕斯卡原理
p p z z h 0 g g
p p0 gh
——静力学基本方程形式之二。
§2-2 流体平衡微分方程式
一、方程式的建立 它是流体在平衡条件下,质量力与表面力所满足的关系式。
l 根据流体平衡的充要条件,静止流体受的所有力在各个坐标轴 方向的投影和都为零,可建立方程。
fi 0
l
方法:微元分析法。在流场中取微小六面体,其边长为 dx、dy、dz,然后进行受力分析,列平衡方程。
1、 流体静压强:静止流体作用在单位面积上的力。
设微小面积上的总压力为
P
平均静压强:
,则
P p A
ΔP
点静压强:
p lim
A0
P A
ΔA
即流体单位面积上所受的垂直于该表面上的力。单位:N/m2 (Pa) 1、 ( 牛) 2、总压力:作用于某一面上的总的静压力。P 单位:N
3、流体静压强单位:
2
n
略去二阶以上无穷小量,得到A1、A2处的压强分别为:
p dx p1 p x 2
则表面力在x方向的合力为:
p dx p 2 p+ x 2
p dx p dx p p1 p2 dy dz p p dy dz dx dy dz x 2 x 2 x
代入Ⅱ式得
dp dU
所以
p U C
令 p=p0时,U=U0 , 则 C=p0-ρU0

第二章 流体静力学

第二章 流体静力学

第二章流体静力学作用在流体上的力有面积力与质量力。

静止流体中,面积力只有压应力——压强。

流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。

第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。

2.按作用方式分:质量力和面积力。

二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。

单位牛顿(N)。

2.单位质量力:单位质量流体所受到的质量力。

(2-1) 单位质量力的单位:m/s2,与加速度单位一致。

最常见的质量力有:重力、惯性力。

三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。

它的大小与作用面面积成正比。

表面力按作用方向可分为:压力:垂直于作用面。

切力:平行于作用面。

2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力 (2-3)1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。

2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。

第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强(如图B 点),且静水压强方向与作用面的内法线方向重合。

图2-2流体不能承受拉力,且具有易流动性(如图A点,必须τ0=)。

2.作用于静止流体同一点压强的大小各向相等,与作用面的方位无关。

即有:(2-4)证明:从平衡状态下的流体中取一微元四面体OABC,如图2-3所示取坐标轴。

由于液体处于平衡状态,则有,即各向分力投影之和亦为零,则:图2-3x方向受力分析:表面力:n为斜面ABC的法线方向质量力:当四面体无限地趋于O点时,则d x趋于0,所以有:p x=p类似地有:p x=p y=p z=p而n是任意选取的,所以同一点静压强大小相等,与作用面的方位无关。

第一章飞机结构

第一章飞机结构
用来连接机翼与机身,把机翼上的力传递到机身隔框上。接头 分为固接和铰接两种,固接的接头,接点既不可移动,也不可转动; 因此,它既能传递剪力又能传递弯矩。铰接不可移动、但可以旋转, 只传剪力,不传弯矩。
单块式机翼:梁弱,多长 桁、厚蒙皮
• 由蒙皮、桁条和缘条组 成一整块构件。现代飞 机多采用单块式机翼。
桁条
蒙皮
纵向元件有翼梁、长桁、墙(腹板) 横向元件有翼肋(普通翼肋和加强翼肋) 以及包在纵、横元件组成的骨架外面的蒙皮
一、蒙皮:蒙皮的直接功用是形成流线型的机翼外表面。 蒙皮受到垂直于其表面的局部气动载荷;
蒙皮还参与机翼的总体受力—— 它和翼梁或翼墙的腹板组合在一起, 形成封闭的盒式薄壁梁承受机翼的扭矩



构航 空
工 程 学
孟 令
院兵
第0章 授课计划
授课内容 第一章 飞机结构 第二章 重量与平衡 第三章 液压系统 第四章 起落架系统 第五章 飞机飞行操纵系统 第六章 座舱环境控制系统 第七章 防水排雨系统 第八章 飞机燃油系统 第九章 飞机防火系统 第十章 飞机电子系统
课时 12 8 8 8 6 6 4 4 4 4
• 加强翼肋:除具有普通翼肋的功用 外,还作为机翼结构的局部加强件, 承受较大的集中载荷或悬挂部件。
翼肋RIB
形成并维持翼剖面之形状;并将纵向骨架与蒙皮连成一体; 把由蒙皮和桁条传来的空气动力载荷传递给翼梁。
68
蒙皮
• 承受空气动力,形成和维持机翼外形,并承受扭矩,有 些机翼蒙皮还承受弯矩。
接头
• 特点:蒙皮较厚;桁条 较多而且较强;弯曲引 起的轴向力由蒙皮、桁 条和缘条组成的整体壁 板承受。
• 优点:能较好的保持翼 形;抗弯、扭刚度较大; 受力构件分散;

《流体力学》第二章流体静力学

《流体力学》第二章流体静力学
z4
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f

z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px

第二章 流体静力学

第二章 流体静力学
pv pa p
——相对压力或表压 ——绝对压力
二、静压强计量单位
1、应力单位。在法定单位制中是Pa=N/m2或bar=105Pa, 在工程制中是kgf/cm2,应力单位多用于理论计算。 2、液柱高单位。液柱高单位有mH2O、mmHg等等。 3、大气压单位。标准大气压(atm)是根据北纬45度海平面 上150C时测定的数值。 1atm=760mmHg=1.033 kgf/cm2=1.01325bar=1.01325105Pa 另外工程制单位中规定:
重力作用下静水压强的分布规律又可写为:

位置水头z :任一点在基准面0-0以上的位置高 度,表示单位重量流体从某一基准面算起所具 有的位置势能,简称位能。
测压管高度 p/ g:表示单位重量流体从压强为 大气压算起所具有的压强势能,简称压能(压 强水头)。
测压管水头( z+p/ g):单位重量流体的总势 能。
质量力: fx 0
fy 0
v 静压强分布规律为:
p p0 gh
等压面:一簇水平面
fz g
2. 等加速直线运动流体的平衡
质量力:fx a
fy 0
fz g ,代入流体微分平衡方程式
adx gdz 1 dp
积分得 p ax gz C
h为液体中任一点距液面的垂直液体深度, 又称淹深。
—— 不可压缩性流体的静压强基本 公式或静液压强基本公式。
结论:
(1)在重力作用下,液体内的静压强只是坐标轴z的函数,压强随深 度h的增大而增大。
(2)静压强由两部分组成,即液面压强p0和液体自重gh引起的压强。 液面压强是外力施加于液体而引起的,可通过固体、气体或不同质的 液体对液面施加外力而产生压强。

《第二章 物质世界的尺度、质量和密度》知识点梳理

《第二章 物质世界的尺度、质量和密度》知识点梳理

北师版八年级上册物理《第二章 物质世界的尺度、质量和密度》知识点梳理物体的质量及其测量1、质量:(1)定义: 叫做质量。

用字母 表示。

质量的国际单位是 ,1t= kg ,1kg= g= mg .一个中学生的质量50(2)实验中常用 来测量物体的质量。

各种秤也是测 的工具。

2、天平:天平是测的 工具,天平的使用的方法如下:首先把天平放在 的桌面上,之后把 放在标尺左端的 处,调节 ,使指针指到分度盘的 处,表示天平已调平衡。

若指针左偏,左右两个平衡螺母都像 调。

平衡后才能称量质量。

称质量时,物体放在天平的 盘,砝码加在 盘,加砝码时先加质量 的后加质量 的,最后加 ,直到指针指到分度盘的中线处;读数时物体的质量= 质量+ 质量。

3、使用天平称质量时应注意:不能用手拿砝码,应用 加减砝码,;不能把化学药品或液体等直接放在砝码盘里称质量,要用烧杯等装起来称量;加砝码时要轻拿轻放。

如何称小瓶中水的质量?4、质量是物体的固有属性,它不随 、 、 、 而改变。

1kg 的冰化成水后质量为 2kg 的面拿到月球上质量为 ,一铁丝把它完成铁环质量 (变、不变)。

*5、天平秤质量时,若物码放反了,则物体的质量= 。

学生实验探究——物质的密度1、同种物质质量和体积的关系:同种物质质量和体积成 。

函数图象为2、密度:(1)定义、 叫做密度,用字母 表示密度。

密度的公式是 ;(2)单位:密度的国际单位是 ,常用单位为 ,密度的单位是由 的单位和 的单位组合而成。

换算1g/cm 3= kg/m 3; a ×103 kg/m 3;= g/cm 33、水的密度为 kg/m 3,读作 ,它表示的物理意思 ,;一桶水的密度与一滴水的密度那个大?答 。

4、密度的大小由 决定,还与物质的 有关。

同种物质的密度同否?答 。

一般有:固体的密度 液体的密度 气体的密度;铝的密度 铁的密度 铜的密度 水银的密度;盐水的密度 水的密度 冰的密度 木块的密度。

化工——第二章_3(衡算)

化工——第二章_3(衡算)

分析: 求流量qv 已知d 求u 直管
qv 3600u
判断能否应用?

4
d2
任取一截面
气体
柏努利方程
解:取测压处及喉颈分别为截面1-1’和截面2-2’
截面1-1’处压强 :
P1 Hg gR 13600 9.81 0.025 3335 Pa(表压)
截面2-2’处压强为 :
1.20kg / m
2
3
2
u1 3335 u 2 4905 2 1.20 2 1 .2
化简得:
u 2 u1 13733
由连续性方程有:
2
2
(a)
2
u1S1 u2 S 2
0.08 d1 u1 u 2 u1 d 0.02 2
求△Z
柏努利方程
并以截面2-2’的中心线为基准水平面,在两截面间列柏努利
方程式:
u p1 u2 p2 gZ1 H e gZ 2 hf 2 2
2 1
2
式中: Z2=0 ;Z1=?
P1=0(表压) ; P2=9.81×103Pa(表压)
qv qv 5 u2 1.62 m / s 2 S d 2 3600 0.033 4 4
④静压能(流动功)
1 2 单位质量流体所具有的动能 u ( J / kg ) 2
通过某截面的流体具有的用于
克服压力功的能量
流体在截面处所具有的压力
F pS
流体通过截面所走的距离为
V pV ( J ) 流体通过截面的静压能 Fl pS S V 单位质量流体所具有的静压能 p p / ( J / kg ) m

工程力学第二章(力系的平衡)

工程力学第二章(力系的平衡)

{
平衡方程其他形式: 平衡方程其他形式:
Σ Fx = 0 Σ MA(F)= 0 Σ MB(F)= 0 Σ MA(F)= 0 Σ MB(F)= 0 Σ MC(F)= 0
A
B
x
A、B 连线不垂直于x 轴 连线不垂直于x
(两矩式) 两矩式)
{
C B A C
(三矩式) 三矩式)
A、B、C三点不 在同一条直线上
l FC C B F
∑F x
y
∑M ( F) = 0,
A
F cos 45 ⋅l − F ⋅ 2l = 0 C
y FAy AF
Ax
l C FC
l x
45
B F
3、解平衡方程,可得 解平衡方程,
FC = 2 F cos 45 = 28.28 kN
FAx = − FC ⋅ cos 45 = −2 F = −20 kN
平面任意力系平衡方程讨论: 平面任意系平衡方程讨论:
{
x
Σ Fx = 0 Σ Fy = 0 Σ MO= 0
请思考:x , y 的选择是否有一定任意性? 请思考: 的选择是否有一定任意性?
x y y x
y
例4 支架的横梁AB与斜杆DC彼此以铰链C连 支架的横梁AB与斜杆 彼此以铰链 与斜杆DC彼此以铰链C
FBC cos 60 − G − Fcos 30 = 0
FBC = 74.5 kN
联立求解得 FAB = −5.45 kN
约束力F 为负值, 约束力FAB为负值,说明该力实际指向与 图上假定指向相反,即杆AB实际上受 实际上受拉 图上假定指向相反,即杆AB实际上受拉力。
解析法的符号法则: 解析法的符号法则:
平面任意力系平衡的充分必要条件: 平面任意力系平衡的充分必要条件:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机重心(CG)通常应处于MAC上的压力 重心靠前的位置上。因此重心位置通常相对 于机翼来表示,这就是用机翼MAC上的百分 率来表示CG位置。
• 飞机的水平顶置
最常用的顶置工序是在飞机构架上的几个 制定点安置气泡水准仪。
• 飞机的水平顶置
对于飞机进行称重时,重量集中在磅秤上 的一点叫做称重点。通常把机轮放在磅秤上。
滑行道起飞点时已消耗了部分燃油。
最大着陆重量的影响
• 起落架强度 • 机体结构 • 机场条件 • 进近爬升剃度和接地速度
最大起飞重量的影响
• 场温、场压和机场标高; • 风向、风速; • 跑道长度; • 起飞场地坡度、跑道结构及干湿程度; • 机场周围净空条件; • 航路上单发超越障碍物能力。
• 最大许可业载
2.飞机重心太靠前:
① 飞机会有俯冲的趋势; ② 稳定性降低; ③ 要求有较大的发动机功率。
3.飞机重心太靠后:
① 飞行速度降低; ② 发生失速较快; ③ 稳定性降低; ④ 需要较大的发动机功率。
注意:任何一种情况都可能导致严重后果。
2.2定期称重的必要性
• 飞机会因不易清洗的角落里积聚灰尘和油 脂等而有增加重量的趋势。飞机在一定时 间内的增重程度则取决于飞机的使用、飞 行时间、环境状况以及起降场地的类型。 所以定期对飞机称重是必要的。
飞机上的某些结构部位(如主梁上的千斤 顶底座),可当作称重点而采用千斤顶支撑 方式来对飞机称重。
重量与平衡履历本中会记载称重时的称重 点位置。
• 燃油装载(Fuel load) 不包括管路中或邮箱沉淀槽里的剩余燃油。
• 最小燃油量 指飞机在极端装载的条件下为使载重验算
合格而必须具有的燃油量。它应小于发动机 以最大功率连续工作0.5h所需的燃油量。
重量与平衡
《飞机构造基础》
① 重量与平衡的重要性 ② 重复称重的必要性 ③ 重量与平衡的理论 ④ 重量与平衡的术语 ⑤ 飞机称重 ⑥ 重量和平衡的极端情况 ⑦ 重心的移动
2.1重量与平衡的重要性
飞机是一部动力机械,它要求在安全和有效的飞行中收到 的所有的力都严格平衡。
升力由机翼产生的,它大约集中作用于从机翼前缘到后缘 的1/3的位置上。
• 重心 从基准面开始算起。 飞机重心位置与装载情况有关,与飞机的
飞行状态无关。
• 最大重量
经过核准的飞机及其载重的最大重量,并 在该机型的技术规范中有明确规定。
对于很多飞机来说,根据飞机执行的任务和 飞行条件,最大容许重量有所不同。
• 最大着陆重量
• 最大起飞量
• 最大停机重量 它不同于最大起飞重量,因为在起飞地面
W1·g·L1=W2·g·L2
下述资料可得重量与平衡的数据:
• 飞机的技术规范; • 飞机的适用限制; • 飞机的飞行手册; • 飞机重量与平衡报告。
2.4重量与平衡术语
• 基准面 飞机处于平飞姿态时,为考虑平衡问题所
选取的假想直面,而全部水平距离都是相对 于该基准面测量的。
• 力臂 从基准面到所设置的设备的水平距离。 力臂的符号 在基准面以后的距离为正(+),在基准面以 后的距离为负(-)。 力矩的符号 力矩=重量×g×力臂
重心,即飞机的所有重量集中于重心一点上,它位于升力 重心稍前一点。
这种布置将使飞机头部下俯,下俯力矩由水平尾翼的载荷 平衡,它使飞机水平飞行。
重心在焦点前,纵向静稳定;重心在焦点后,纵向静不稳定。
焦点:当飞机的攻角发生变化时,飞机的气动力对该点的力矩 始终不变,因此它可以理解为飞机气动力增量的作用点。
2.3重量与平衡理论
• 重量与平衡的理论是非常简单的,它就像 由一个点支撑的杠杆处于水平位置时表现 力的平衡或平衡状态一样。
一般情况下, 较轻的物体(W1)离指点较 远时(L1)与较重的物体(W2)离支点较近 时(L2),有相同的作用。物体离支点的距 离(L1 ,L2)叫做力臂,力臂乘以物体的重力叫 做力矩。即
• 无燃油重量
• 毛重 所有额外项目的重量
• 有用载重 也称实用装载、营运装载或实用载重。一
架飞机的有用载重规定为从最大容许重量重 减去空重的值。
2.5飞机称重
• 飞机称重前的准备 • 称重设备的准备 • 飞机的称重程序 • 称重计算
称重前准备
• 使飞机处于水平姿态。 • 清洗飞机。称重时保持飞机干燥。 • 检查飞机设备清单以确保所有需要的设备
重量与平衡的目的
❖调整飞机重量与平衡的主要目的是为了安 全。
❖其次是为了在飞行中达到最高效率。
重量与平衡问题
• 超过最大载重 • 前部载重过大 • 后部载重过大
1.如果飞机超载将发生下列情况:
① 需要较长的跑到长度; ② 较小的爬升角和较大的速度; ③ 降低了结构安全系数; ④ 增加了失速速度; ⑤ 要求飞机功率较大。
——由最大落地重量(MLDW)来计算: • APLD=MLDW+T/F(航行耗油重量)-(DOW+TOF)
• 空重
包含飞机内实际安装的所有固定设备
剩余燃油:指燃油导管和油箱内放不掉的 液体。(必须包含在空中中的剩余流体重量, 都记录在飞机技术规范中。)
• 空重重心
EWCG(Empty weight center of gravity) • 空中重心范围
航空器最大许可业载(ALLOW PLD)简称 APLD,是指航空器在飞行过程中所能载运的 最大重量(不包括燃油重量)。
最大许可业载的计算方法
——由最大无油重量(MZFW)来计算: • APLD=MZFW-DOW (干燥操作重量)
——由最大起飞重量(MTOW)来计算: • APLD=MTOW-(DOW+TOF)
空重重心范围是表明在这个限制范围内方 可容许空机重心位置变化。 • 实用重心范围
指在有关的飞机技术规范或型号合格证数 据单中给出的重心前极限和重心后极限的距 离。
• 平均空气动力弦(MAC)
平均空气动力弦是飞机的纵向特征长度, 是一个特别重要的几何参数。弦长和位置均 可在飞机技术手册上查到。
• 平均空气动力弦(MAC)
确实安装好,拆下不包括在飞机设备清单 内的所有项目。 • 对燃油系统放油直到优良指示为零,即排 空。 • 装满液压油箱及滑油箱。(属于空重) • 饮用和洗涤水箱以及厕所便桶排空。 • 当对一架飞机称重时,如扰流板、襟翼等 装置的位置应收好。
相关文档
最新文档