聚羧酸类高性能减水剂的合成及复配--
浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺近几十年来,我国的混凝土工程技术取得了很大进步,高性能混凝土、自密实混凝土的应用越来越广泛,因此,对高效减水剂的要求也越来越高。
聚羧酸系高效减水剂是近几年发展的新型高效减水剂,其主要成分为聚羧酸盐或脂的聚合物,其分散能力强,减水率高,对水泥的适应性好,将是今后高效减水剂研究和发展的重点。
研究开发新型的聚羧酸系减水剂受到国内外广泛关注,代表了高效减水剂的主要发展方向。
1、聚羧酸系高效减水剂的作用机理聚羧酸系减水剂由于其优异性能而引起业内广泛的关注。
为了有效开发这一类型的减水剂,对其减水机理的研究非常重要。
减水剂分散减水机理主要包括以下几个方面。
1.1水化膜润滑作用。
聚羧酸减水剂由于分子结构中存在具有亲水性的极性基,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。
水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌合水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大,和易性好。
1.2静电斥力作用。
水泥颗粒的稳定性主要由静电斥力和范德华引力的平衡来决定。
减水剂加入到新拌混凝土中,其中的负离子就会在水泥粒子的正电荷的作用下定向吸附在水泥颗粒表面,形成扩散双电层的离子分布,使得水泥颗粒表面带上电性相同的电荷,产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。
1.3空间位阻作用。
一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,聚羧酸类减水剂吸附在水泥颗粒表面,虽然使水泥颗粒的负电位降低较小,静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。
1.4引气隔离“滚珠”作用。
浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。
聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。
聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。
聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。
对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。
1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。
聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。
(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。
这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。
日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的商品混凝土外加剂。
其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为23个)、200份甲基丙烯酸、150份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40份10%过硫酸按水溶液。
滴加完毕后,再在1h内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000的聚合物水溶液为最终成品。
(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。
这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。
此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。
典型合成工艺:以烷氧基胺H2N(BO)—R为反应物与聚授酸接技出(BO代表氧化烯基团,n为整数,R为C1~C4烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。
反应时,胺反应物加量一般为—COOH摩尔数的10%~20%。
聚羧酸减水剂生产工艺

二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚 酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
(3)、中和反应,将反应好的聚合物降温至50C以下,边搅拌边加入片 碱100kg,调节PH值6—乙反应完成,得到含固量为30%勺聚酯类聚羧酸系高 性能减水剂成品。
(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应―中和反应―成品
(2)、反应过程如下:
1、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵 入滴定罐A备用,是为A料。计量丙烯酸,配以44kg去离子水,泵入滴定罐B备用,是为B料。往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55C,加入双氧水(配114kg去离子水),同时滴定A B料,B料3小时滴定完,A料小时滴定完,保温1小时。(温度控制60±2C)。
聚羧酸减水剂生产工艺
一、引言
一般认为, 减水剂的发展分为三个阶段: 以木质素磺酸钙为代表的第一代普通减 水剂阶段; 以萘系为代表的第二代高效减水剂阶段; 以聚羧酸系为代表的第三代 高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚 羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合 成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、 (甲基)丙烯酸、 烯丙醇聚氧乙烯醚等。2.在分子结构上, 聚羧酸系高性能减水剂的分子结构是线 形梳状结构, 而不是传统减水剂单一的线形结构。 该类减水剂主链上聚合有多种 不同的活性基团,如羧酸基团(一COOH羟基基团(一0H、磺酸基(一S03Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的 空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水 剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已 成为混凝土外加剂研究领域的重点和热点之一。
聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。
研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。
结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。
在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。
聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。
%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。
聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。
2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。
该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。
由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。
因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。
聚酯类:包括酯化和聚合两个过程。
聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。
聚羧酸系高性能减水剂的合成及应用研究

z H A N G Wa n f en g ( F u j i a n A c a d e m y o f B u i l d i n g R e s e a r c h , F u z h o u 3 5 0 0 2 5 )
Ab s t r a c t : B a s e d o n p r i n c i p l e s o f m a c r o mo l e c u l a r d e s i g n ,p o l y e a r b o x y l a t e s h i h —p g e r f o r ma n c e w a t e r —r e d u c i n g a g e n t w e e r s y n t h e s i z e d t h r o u g h t h e m i x t u r e o f
t i a t o r r o l e o f t h e t wo t ig r g e ed r b y f r e e r a d i c a l c o p o l y me iz r a t i o n . T h e p a p e r s r e s e a r c h e d t h e p o l y me i r z a t i o n f a c t o r s o n he t i n f l u e n c e o f p o l y c a r b o x y l a t e s u p e r p l a s t i - e i z e r s y n t h e s i s ,a nd o p t i mi z e d c o n di t i o n s we r e d e t e mi r n e d b y a s e ie r s o f e x p e ime r n t s .T h e TW —P S h a s b e e n u s e d i n mu c h i mp o r t a n t e n g i n e e in r g o f HPC,
混凝土外加剂合成与复配技术详解

混凝土外加剂合成技术复配技术的工程应用在众多高性能减水剂中,具有梳形分子构造的聚羧酸系减水剂由于其具有减水率高,混凝土坍落度经时损失小,掺量低。
等优点,已成为国内外外加剂研究与开发的热点[1~3]。
本文在总结现有聚羧酸系减水剂合成方法的根底上,采用了一种新的合成途径,试验合成了一代号为NKY的聚羧酸系减水剂。
1 现有的合成方法根据现在公开报道的文献,可以把聚羧酸减水剂的合成方法简单地归结为两类:一是先缩合后共聚;二是先共聚后缩合。
1.1 先缩合后共聚所谓先缩合后聚合就是先将脂肪族羧酸单体,通常是丙烯酸或甲基丙烯酸单体,与聚乙二醇醚进展缩合反响,在聚醚上引入活性双键,缩合成分子量在200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。
T.Hirate等人网采用不同链长的甲氧基聚乙二醇醚与甲墓丙烯酸缩合,再由该大单体与甲基丙烯酸共聚而得一混凝土坍落度保持性很好的外加剂。
M.Ki-noshitam等人先合成了甲基封端的聚氧乙烯丙烯酸酯,然后与丙烯酸钠、烯丙基磺酸钠在水溶液中共聚,制得水溶性共聚物,作为混凝土外加剂使用时,只需添加0.01%—0.2%,便可改善混凝土的和易性,提高了混凝土的强度。
清华大学的李崇智[3]那么用过量的丙烯酸与不同分子量的聚乙二醇局部酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减水剂的水泥净浆流动度1h根本无变化。
华东理工大学包志军等的[6]合成方法如下:第一步在四口烧瓶中依次按配比参加聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲基丙烯酸,加热搅拌,并升温至110~C,反响5h,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反响后得成品,该产品在0.8%掺量,时的减水率达25.1%。
国内的研究者大多采用此种方法。
这种方法的优点是各官能团的摩尔比率可任意调节,分子设计多样性。
但缺点也是很多的,其一是功能性大分子单体的合成难度大,未形成商品化生产,如何保证双羟基的聚乙二醇只有一个羟基与丙烯酸发生酯化反响比拟困难,工艺复杂,控制不好那么会交联成网状高分子而失去流动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HPEG和TPEG实例
• 氧化-还原共轭体系: • 预备:(1)AA36克+去离子水20克 • (2)L-抗坏血酸0.3克+巯基乙酸0.69+去离子水 110 • (3)NOH13克+水260 • 合成前1小时备好 • 流程: • 1.在在配有搅拌和加热装置的四口瓶(1000毫升) 中加入去离子水200克。边搅拌边加入TPEG共365克; 加热搅拌溶解到60度后直接加双氧水(30%浓度)3 克。
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间3h左右];稍后5分钟后开始滴加 (2)[控制滴加时间3.5h左右]。全部滴加完 毕后开启加热到60度。并在此温度范围继 续搅拌1h. • 3.降温到50度以下。在10分钟左右缓慢加入 (3)。调节PH值在6-7。 • 抽检。成品
聚羧酸类高性能减水剂复配
4.具体投料比例(以100公斤MPEG计): MPEG1000-100公斤=100摩尔 MAA=100摩尔*4*86/1000=34.4公斤 对甲苯磺酸=MPGG1000的100公斤*2%=2公 斤 • 对苯二酚=MAA的34.4公斤*1%=0.344公斤
• 5.实验室操作参考: • 把计量好的MPEG1000共200克;对苯二酚 0.69克;对甲苯磺酸4克依次投入干净的有 配套加热的四口烧瓶中,在80度熔化,滴 加计量好的MAA68.8克,滴加时间在30-50 分钟,加完后升温到130度。分别在每一小 时间歇抽真空。收集冷却下来的液体。在 130度反应6小时以上。
1.APEG参考合成工艺
• 国内目前APEG共聚工艺大体是俩种反应体系: 一是采取75度以上温度纯氧化体系;二是45度 左右的氧化-还原体系。 • 各供应商为推广产品也提供不少合成工艺。 • 就目前来看,人们习惯的把每个百分点价格来 讨论减水剂成本。其实产品的成本我认为应该 是同混凝土配合比,同掺量(比如都配成掺量 C*1%的)的成品成本对比。另外还要考虑广 泛的适应性。APEG虽然价格较HPEG和TPEG低, 但是综合成本还是不一定低。
• 备注: • 抽真空时,通过管道阀门控制:放空阀门, 打开真空泵,缓慢关闭阀门,随着反应釜 内的真空度增大。 • 反应釜内的甲基丙烯酸和水通过冷凝器冷 却。注意观察反应釜内,防止爆沸,若发 现应慢慢打开阀门减少真空度,防止液体 冒锅,直到真空度稳定在一定值釜内不爆 沸。大概抽10分钟左右。
• • • •
• 后聚合生产温度在90士2度。大单体和酸及MAS混合液 体单独计量滴加,滴加时间为3小时左右5分钟;引发剂 一般用过硫酸铵(APS),用量为(MAA+MAAMPEG+MAS)*2%左右;引发剂水溶液也单独计量滴加, 滴加时间为3小时左右5分钟。 • 链转移剂使用巯基乙酸或者3-巯基丙酸,用量为大单体 体重量的1%左右。 • 反应釜内计量一定数量的去离子水并加热到90士2度。 在搅拌和能调节温度情况下,俩种溶液同时开始滴加, 待俩种溶液滴加完毕后。继续在搅拌状态下恒温3小时。 抽样检测后根据需要浓度补充一定数量的去离子水。 • 一般最后成品浓度是20%左右。
• (4)MPEG通过酯化才能引入不饱和键。 但酯键键能低,特别是聚合形成减水剂大 分子后。酯键很容易脱落,造成部分酯化 逆反应。从而引起产品PH值降低,降低产 品性能。 • (5)最近市场好多厂家停止生产酯类产品。 原因是工艺控制麻烦。对生产和储存设备 要求高。储存稳定性差。
三。醚类聚羧酸类高性能减水剂
APEG实例
• 一步直接投料工艺: • 1.在配有搅拌和加热装置的四口瓶(1000毫升)中 加入去离子水180克。边搅拌边加入APEG2400共240 克(1摩尔);马来酸酐(MA)34.3克(0.35摩尔) • 2.升温到60度。搅拌至全部溶解后依次投入MAS 6克; APS 2.4克。待全部溶解透明后,继续加热到75-80度。 在此温度范围搅拌保温3小时后,继续加热到85-90 度,恒温搅拌30分钟。 • 3。加入四口瓶90克去离子水,并降温到55度以下, 边搅拌边缓慢加入NaOH(30%浓度)约78克调节PH 值到7以上. 成品
• 醚类是指直接用一定分子量的含有不饱和 键封端的聚氧乙烯醚直接与其他含有不饱 和键的小分子量单体在酸性条件下直接共 聚成聚羧酸类高性能减水剂。目前市场上 这种醚大概分为三种:1,APEG(烯丙基封 端聚氧乙烯醚).2,HPEG(异丁烯醇封端 聚氧乙烯醚)。3,TPEG(异戊烯醇封端聚 氧乙烯醚)
一。酯类聚羧酸高性能减水剂合成 工艺
• 一般酯类聚羧酸高性能减水剂合成所用MPEG 的分子量都是在600-1200左右;也有专门跟厂 家订做分子量600。800.1000的。MPEG是环氧 乙烷在碱性条件下,用甲醇做起始剂生产的。 一般成品都经过用醋酸中和后PH值在7左右。
• 所用含有不饱和键的酸一般为:(甲基)丙烯 酸;衣糠酸;马来酸(酐);富马酸等。目前 使用最多的是甲基丙烯酸和衣糠酸。
• APEG是个不错的产品,虽然聚合活性较差。 但是很容易做出缓凝和早强类聚羧酸高性 能减水剂。特别是缓凝类聚羧酸类高性能 减水剂。相对HPEG和TPEG就不容易做到。 • 一般用于APEG聚合形成主链的不饱和酸是 马来酸(酐);富马酸;丙烯酸等。甲基 丙烯酸由于双键键位所决定的键能较高, 不容易打开。所以很难与APEG直接共聚。
• (1)一般情况下酯化率和反应釜的罐装度有 关。越小,同时间酯化率越高。反之亦然。 • (2)酯化过程中存在很多不确定因素,很难 通过测定数据来计算酯化率,往往以相对酯化 率来表示。若以羧酸的转化率来表示,建议酯 化结束后的酯化率应达到99%以上,相对酯化 率的稳定反应酯化反应的稳定。 • (3)建议使用分子量分布窄的,切PEG含量小 于0.5%的MPEG。条件允许,建议用高效液相 色谱进行分析各产物的含量。
• 一般把聚羧酸类高性能减水剂分为4代: 第一代是MPEG酯化共聚类 第二代是烯醇类封端的PEG直接共聚类 第三代是:酰胺/亚酰胺型。 第四代是:两性 或非离子型 目前醚类聚羧酸类高性能减水剂是指用APEG, HPEG,TPEG直接共聚的三种产品
• APEG:烯丙醇封端聚氧乙烯醚。分子量有 1200和2400俩种。大部分使用分子量2400的。 如:APEG2400;F54;540等 • HPEG:异丁烯醇封端聚氧乙烯醚。大部分使 用分子量2400的。有的叫国产封端改性聚醚; GPEG;SPEG;109;608;H004等。生产使用 的起始剂异丁烯醇是国内生产所以得名。 • TPEG:异戊烯醇封端聚氧乙烯醚。大部分使用 分子量2400的。有的叫国外封端改性聚醚。生 产使用的起始剂异戊烯醇(3甲基-2-丁烯醇) 是国外生产所以得名。市场上有108;501等
• 目前聚羧酸类高性能减水剂的复配国内好多人 进行了研究。特别是好多人把对萘系减水剂的 复配方法搬过来使用。为此出现不少问题。建 议将复配好的成品模拟实际使用的储存环境和 时间再进行测试验证。 • 经验:复配最好,最有效的办法是采用2种以 上不同性质的羧酸原液。然后再考虑小料
• 一般用于复配的小料是葡萄糖酸钠;食用糖等。 柠檬酸(钠)等夏天容易发酵的小料最好别用。
• 参考实例:MPEG1000酯化和聚合工艺配方 • 1.主要原料: • MPEG1000;对苯二酚;对甲苯磺酸;甲基丙 烯酸(MAA,分子量86);甲基丙烯磺酸钠 (MAS,分子量158.2);过硫酸铵(APS) • 2.酯化配方: • 摩尔比:MAA/MPEG=4/1 • 对苯二酚用量为MAA重量的1% • 对甲苯磺酸用量为MPEG1000重量的2%
• 用于APEG的接枝其他基团作用的不饱和小高分 子较多。也比较灵活。如:烯丙基磺酸钠 (AS);甲基烯丙基磺酸钠(MAS);丙烯酰 胺;苯乙烯磺酸钠;2-丙烯酰胺-2-甲基丙烯磺 酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯 酸羟乙酯;醋酸乙烯酯等。 • 在去离子水中自由共聚一般氧化(引发)剂使 用过硫酸铵(或者钾);双氧水。还原剂使用 L-抗坏血酸;甲醛合次亚硫酸氢钠;焦亚硫酸 钠等
聚羧酸类高性能减水剂的合成 及复配
主要针对目前市场常用羧酸工艺 北京科峰技术发展有限公司 潘科 锋
一。合成总述
• 目前市场所使用聚羧酸类高性能减水剂人 们习惯性的分为醚类和酯类。 • 酯类一般是指用不同分子量的MPEG(甲氧 基封端的聚氧乙烯醚)在浓硫酸或者对甲 苯磺酸等催化剂作用下与含有不饱和键的 羧酸进行酯化。形成所谓的“大单体”。 然后再用“大单体”和其他含有不饱和键 的小分子单体在酸性条件下进行开链共聚, 生成聚羧酸类高性能减水剂
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间1h40min左右];稍后5分钟后开始 滴加(2)[控制滴加时间1h左右]。全部滴 加完毕后开启加热到50-55度。并在此温度 范围继续搅拌30min. • 3.缓慢加入(3)。调节PH值在6.5-7范围 • 成品。抽样检测
• 由于各供应商的APEG产品存在重均分子量 不同和分子量分布不同,甚至同一个供应 商的不同批次产品都有差异。建议对每批 次的材料经过合成小实验再确定配方工艺。
• • • • • • •
7.几个供应商的经验比例数据: MAA/MPEG-MAA/MAS 克莱恩 5 / 1 /0 海安石化 4.5/ 1 /0.1 科隆 3 / 1 /0.15 奥克 5 / 1 /0.3 以上数据仅供参考。由于供应商的MPEG波 动。建议还是要经过小试确定。
二。酯类产品生产注意和个人观点
• 催化剂一般使用浓硫酸和对甲苯磺酸
• 酯化反应是可逆反应。在隔绝空气或者厌 氧条件下进行。在酯类聚羧酸高性能减水 剂合成中,酯化的好坏对最终产品的性能 起决定作用,是控制的关键! • 酯化温度一般在125-135度。由于在此温度 下MAA有可能自聚。所以要在反应中加对 苯二酚或者吩噻嗪等做阻聚剂。
• 以上反应在130度恒温7小时左右后,将四 口烧瓶整体冷却到50度以下,然后将收集 的液体倒回烧瓶。再加入20%(约67克)的 水配成80%的大单体溶液,以保证大单体是 液态,便于后聚工艺的取料和计量。