03平面连杆机构优化设计

合集下载

平面连杆机构运动精度可靠性优化设计及评价

平面连杆机构运动精度可靠性优化设计及评价

平面连杆机构运动精度可靠性优化设计及评价随着机械朝着高精度和高可靠性方向发展,机构运动精度可靠性作为机械可靠性的重要分支,受到人们的广泛关注并日益突出。

但真实机构系统的内外部总是存在不确定性,例如杆长公差和配合间隙等导致机构运动输出精度降低和失效等特征。

因此,本文旨在设计阶段考虑上述影响因素所带来的真实机构输出的不确定性,选择平面轨迹四杆机构、曲柄滑块机构和平面五杆二自由度变胞机构为代表的经典机构进行了运动精度可靠性优化设计、分析与评价。

主要研究内容如下:(1)针对考虑构件杆长公差和转动副间隙的平面轨迹机构,提出一种多尺寸概率综合法,构建了机构运动误差概率分析模型,以轨迹点运动精度最大失效概率最小化为目标,将可靠性和运动无缺陷作为性能概率约束,建立了机构运动精度可靠性概率优化设计模型,并验证了模型的有效性。

优化出了最优杆长及允差等设计参数。

研究了不同铰点配合间隙对机构运动精度可靠度的影响程度。

(2)针对曲柄滑块机构,增加考虑移动副间隙,提出了一种含混合间隙及多尺寸公差的误差分析法。

针对十二种配合方案进行了全局优化设计。

全面观测了滑块往、返一周的实际运动轨迹和运动误差分布状况。

针对滑块往区间,定量分析了杆长尺寸公差条件下,混合间隙对机构运动精度可靠度的影响程度。

(3)针对平面五杆二自由度变胞机构,将杆长尺寸公差和间隙等作为误差源,建立了机构高精度高可靠性的多目标优化设计模型。

定量分析了机构不同构态区间各轨迹点处的运动误差值和失效概率等分布特征。

获得了构态变换产生的累积误差。

(4)针对所研究的平面连杆机构,基于成本-公差函数,预估了不同方案的机构制造成本,兼顾运动精度可靠度,进行方案综合评价。

根据设计目标要求不同,合理的选出最优设计方案,为实际工程设计提供了一套可量化的评价体系。

《平面连杆机构》课件

《平面连杆机构》课件
尺寸优化
减小机构的整体尺寸,使其更 加紧凑。
重量优化
降低机构的重量,以实现轻量 化设计。
成本优化
通过优化设计降低制造成本。
优化方法
数学建模
建立平面连杆机构的数学模型,以便进行数 值分析。
优化算法
采用遗传算法、粒子群算法等智能优化算法 对机构进行优化。
有限元分析
利用有限元方法对机构进行应力、应变和振 动分析。
实例二:搅拌机
总结词
搅拌机利用平面连杆机构实现搅拌叶片的周期性摆动,促进物料在容器内均匀混 合。
详细描述
搅拌机中的四连杆机构将原动件的运动传递到搅拌叶片,使叶片在容器内做周期 性的摆动,通过调整连杆的长度和角度,可以改变搅拌叶片的摆动幅度和频率, 以满足不同的搅拌需求。
实例三:飞机起落架
总结词
飞机起落架中的收放机构采用了平面连杆机构,通过连杆的 传动实现起落架的收放功能。

设计步骤
概念设计
根据需求,构思连杆机构的大 致结构。
仿真与优化
利用计算机仿真技术对设计进 行验证和优化。
需求分析
明确机构需要实现的功能,分 析输入和输出参数。
详细设计
对连杆机构进行详细的尺寸和 运动学分析,确定各部件的精 确尺寸。
制造与测试
制造出样机,进行实际测试, 根据测试结果进行必要的修改 。
实验验证
通过实验验证优化结果的可行性和有效性。
优化实例
曲柄摇杆机构优化
通过调整曲柄长度和摇杆摆角,实现 机构的优化设计。
双曲柄机构优化
通过改变双曲柄的相对长度和转动顺 序,提高机构的运动性能。
平面四杆机构优化
通过调整四根杆的长度和连接方式, 实现机构的轻量化和高性能。

平面连杆机构优化设计及运动仿真

平面连杆机构优化设计及运动仿真

{ = 一 ( 卢 一 ∞
: +一


一 咖 5
‘ 一 ‘ 。 。 妒 ( 13 )

将 已 知 数 据 代 入 优 化 设 计 的数 学 模 型 表 示为 :
r —— —— — — —— —— —— 一
2 ‘ √ + 等 一 2 ‘ c 0 s 妒
m i n f ( x ) = 、 / ∑ 【 一 m ) + ( 一 ) ]

其中 = 0 +r p f ; 0 为曲柄 1 的起
( 2 .1 )
始角,c p f 为已 知量。
1 . 3确定约 束条件 1 . 3 . 1曲柄摇杆机构存在条件约束 为
岛( x ) = 3 0 P — y ≤ 0 ( 22 )

g 1 ( ) :/ 1 + , 2 一 一『 4 0 g : ( ) =f l + f ] 一f 2 一f 4 0
g 3 ( ) =f l +7 4 一f 3 — 1 2 0
g 4 ( ) =一 ‘≤0
应 用技 术
平面连杆机构优化设计及运动仿真
邹 学敏 蒋 晓 峰
湖南省特 种设 备检 验检 测研 究院永州分院 湖南 永州 4 2 5 0 0 0
摘要: 以四杆机构为例 ,根据其设计要求和特点 , 建 立 了四杆机构 的优化设计数 学模型 ,在满足诸多影响 因素 的条件下 ,用计算机软件进行优化设 计 以获得 一个在各 方面均 较令人 满意的机构 设计方案;并对优化设计 的曲柄摇杆机构进行运 动仿真分 析。结果表 明: 采用优化设 计方法可以缩短设 计周期 、 提高设计质 量和设 计精度 ; 运动仿真起 到很好的反馈作用和验证作用。同时该方 法也为 多杆机构和其他机构 的优 化和仿真设计提供 了 借 鉴。 关键 词 :平 面连杆机构 M A T L A B 优化设计 运 动仿真

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计平面连杆机构是由连杆和连接点组成的机械结构,广泛应用于各种机械设备中。

它的功能是将输入的旋转运动转化为输出的直线运动或者将输入的直线运动转化为输出的旋转运动。

本文将对平面连杆机构的分析与设计进行介绍。

首先,对平面连杆机构进行分析。

平面连杆机构的主要组成部分是连杆和连接点。

连杆是连接点之间的刚性杆件,可以是直杆、曲杆或者具有其他特殊形状的杆件。

连接点是连杆的两个端点或者连杆与其他机构的连接点,可以是支点、铰链等。

平面连杆机构的运动可以分为三种基本类型:平动、转动和复动。

平动是指连杆的一端保持固定,另一端进行直线运动;转动是指连杆的一端保持固定,另一端进行旋转运动;复动是指连杆的一端进行直线运动,另一端同时进行旋转运动。

进行平面连杆机构的设计时,需要考虑以下几个要点。

首先,确定机构的类型和功能。

根据机构的动作要求和功能要求,选择适合的连杆类型和连接点类型。

其次,进行机构的运动分析。

根据机构的运动要求,确定连杆的长度和连接点的位置,使连杆能够实现所需的运动。

然后,进行机构的力学分析。

根据机构的受力情况,确定连杆的截面尺寸和材料,保证机构的刚度和强度。

最后,进行机构的优化设计。

考虑机构的性能要求和制造要求,对机构进行优化设计,提高机构的工作效率和使用寿命。

在平面连杆机构的设计中,还需要考虑机构的动力学问题。

机构的动力学分析包括静力学分析和动力学分析两个方面。

静力学分析是指在机构静止或静力平衡状态下,对机构受力和力矩进行分析。

动力学分析是指在机构进行运动时,对机构的加速度、速度和位移进行分析。

通过对机构的动力学分析,可以确定机构的惯性力和惯性矩,从而确定机构的动态特性和振动特性。

总之,平面连杆机构的分析与设计是一项复杂而重要的工作。

在进行分析与设计时,需要考虑机构的类型和功能,进行运动分析和力学分析,优化设计和动力学分析。

通过合理的分析与设计,可以使机构具有较好的工作性能和使用寿命,满足各种工程应用的要求。

《平面连杆机构修改》课件

《平面连杆机构修改》课件

降低成本的目标。
实例二
针对某印刷机传动系统的平面连 杆机构,采用模拟退火算法进行 优化设计,提高了机构的运动性
能和稳定性。
实例三
针对某农用收割机割台的平面连 杆机构,采用粒子群算法进行优 化设计,在满足强度和刚度要求 的前提下,实现了减轻重量和降
低成本的目标。
PART 05
平面连杆机构的制作与调 整
传力特性
传力特性是指平面连杆机构在传递力 时表现出的性质和特点。
传力特性的好坏直接影响到机器的工 作性能和效率,因此需要了解和掌握 传力特性的基本规律。
平面连杆机构通过曲柄、连杆和从动 件之间的相互作用,将主动力传递到 从动件上,使其产生所需的运动。
传力特性的影响因素:曲柄的形状、 连杆的长度、从动件的形状和尺寸等 因素都会影响传力特性的表现。
输标02入题
急回特性的产生是由于平面连杆机构中曲柄与连杆的 相对运动关系,使得从动件在某些位置时获得较大的 速度,而在其他位置时获得较小的速度。
01
03
急回特性的影响因素:曲柄的长度、曲柄与连杆的相 对位置、从动件的行程等因素会影响急回特性的表现

04
急回特性的应用:在生产实践中,可以利用急回特性 缩短机器的空程时间,提高机器的工作效率。
装配与调试
总结词
装配与调试是平面连杆机构制作过程中的重要环节,直接关系到机构的整体性能和运行稳定性。
详细描述
在装配过程中,应遵循设计图纸和技术要求,确保各部件正确安装并保持良好的配合。同时,需要进 行调试,检查机构运动是否顺畅、无卡滞现象,以及各部件之间的协调性和整体性能是否达到设计要 求。对于发现的问题,应及时进行调整和改进。
REPORTING
材料选择与加工工艺

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案一平面连杆机构及其分析与设计一、教学目标及基本要求1掌握平面连杆机构的基本类型,掌握其演化方法。

2,掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。

4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;正确理解自锁的概念,掌握确定自锁条件的方法。

5,了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。

二、教学内容及学时分配第一节概述(2学时)第二节平面连杆机构的基本特性及运动分析(4.5学时)第三节平面连杆机构的运动学尺寸设计(3.5学时)三、教学内容的重点和难点重点:1.平面四杆机构的基本型式及其演化方法。

2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。

3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。

4.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。

难点:1.平面连杆机构运动分析的相对运动图解法求机构的加速度。

2.按给定连架杆的2~3个对应位置设计函数生成机构。

四、教学内容的深化与拓宽平面连杆机构的优化设计。

五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化一反转法等。

机械基础-案例11实现预定轨迹的平面四连杆机构的优化设计

机械基础-案例11实现预定轨迹的平面四连杆机构的优化设计

实现预定轨迹的平面四连杆机构的数学建模及其优化设计一.问题描述设计一平面四连杆机构,如图1所示。

要求曲柄在运动过程中实现运动轨迹x y 2=,52<<x ,因传递力的需要,最小转动角γ大于50度。

图1二.建立优化数学模型 1.确定设计变量根据设计要求,由机械原理知识可知,设计变量有L1、L2、L3、L4、ϕ。

将曲柄的长度取为一个单位长度1,其余三杆长可表示为L1的倍数。

由图1所示的几何关系可知⎥⎦⎤⎢⎣⎡⋅⋅--+=4324232212)(arccos L L L L L L ϕϕ为杆长的函数。

另外,根据机构在机器中的许可空间,可以适当预选机架L4的长度,取L4=5,经以上分析,只剩下L2、L3两个独立变量,所以,该优化问题的设计变量为[][]TTL L X X X 3221,,==因此。

本优化设计为一个二维优化问题。

2.建立目标函数按轨迹的优化设计,可以将连杆上M 点()mi mi y x ,与预期轨迹点坐标偏差最小为寻优目标,其偏差为i Mi i x x x -=∆和i Mi i y y y -=∆()n x i ,,2,1⋅⋅⋅=,如图2。

为此,把摇杆运动区间2到5分成S 等分,M 点坐标有相应分点与之对应。

将各分点标号记作i ,根据均方根差可建立其目标函数,即()()()[]min 2/122→-+-=∑i Mi i Mi y y x x X fϕsin 3L y Mi =ϕcos 33⋅+=L x Mii i xy ⋅=2)1(31-+=i sx i ,S 为运动区间的分段数⎥⎦⎤⎢⎣⎡⋅⋅--+=4324232212)(arccos L L L L L L ϕ于是由以上表达式便构成了一个目标函数的数学表达式,对应于每一个机构设计方案(即给定21,X X ),即可计算出均方根差()X f 。

图 23.确定约束条件根据设计条件,该机构的约束条件有两个方面:一是传递运动过程中的最小传动角γ应大于50度;二是保证四杆机构满足曲柄存在的条件。

平面连杆机构的优化设计教案

平面连杆机构的优化设计教案

平面连杆机构的优化设计【教学目标】1.了解连杆机构优化设计的一般步骤2.掌握连杆机构优化设计的方法【教学重点】1.掌握连杆机构优化设计的方法【教学难点】1.掌握连杆机构优化设计的方法【教学准备】多媒体课件、直尺、圆规。

【教学过程】一、以工程实际案例引入课题实例1:飞机起落架(结合最近美国波音飞机频繁失事的新闻)实例2:汽车雨刮器说明:平面连杆机构的实用在生产生活中随处可见,是机械设计当中常见的一种机构。

二、定义回顾【提问】平面四杆机构的基本形式有哪些?【预设】机械原理是本科第四学期的课程,学生可能记不全,要引导性地带大家回忆。

【答案】曲柄摇杆机构、双曲柄机构、双摇杆机构三、回顾以前所学习的连杆机构设计方法,对比引入优化设计。

新课教授一、曲柄摇杆机构再现已知运动规律的优化设计1.设计变量的确定决定机构尺寸的各杆长度,以及当摇杆按已知运动规律开始运动时,曲柄所处的位置角φ0 为设计变量。

[][]1234512340T T x x x x x x l l l l ϕ== 考虑到机构的杆长按比例变化时,不会改变其运动规律,因此在计算时常l 1=1 ,而其他杆长按比例取为l 1 的倍数。

()()22212430124arccos 2l l l l l l l ϕ⎡⎤++-=⎢⎥+⎢⎥⎣⎦()221243034arccos 2l l l l l l ψ⎡⎤+--=⎢⎥⎢⎥⎣⎦经分析后,只有三个变量为独立的:[][]123234T T x x x x l l l ==2.目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即()()21minm Ei i i f x ψψ==-→∑3.约束条件的确定1)曲柄摇杆机构满足曲柄存在的条件()()()()()()1122133144143251234613240g x l l g x l l g x l l g x l l l l g x l l l l g x l l l l =-≤=-≤=-≤=+--≤=+--≤=+--≤六、课堂小结(板书)通过曲柄摇杆机构的优化设计,更深层的体会了优化设计数学模型的步骤:1.设计变量的确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例3 平面连杆机构优化设计
一、问题描述
平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。

一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。

在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。

曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。

设计一曲柄摇杆机构(如图1所示)。

已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。

摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。

在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π
32
ϕϕψψ-+
=。

为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。

图1 机构运动简图
二、基本思路
四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。

本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π
32
ϕϕψψ-+
=。

优化设计时,通常无精确解,一般采用数值方法得到近似解。

本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MA TLAB 优化工具箱的相关函数进行求解。

三、要点分析
优化设计数学模型的三要素包括设计变量、目标函数和约束条件。

依次确定三要素后,编写程序进行计算。

1.设计变量的确定
通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即
T
04321T 54321)()(ϕl l l l x x x x x ==X
(1)
考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。

若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即
4
212
32
42210)(2)(cos arc l l l l l l l +-++=ϕ (2)
4
32
32
422102)(cos arc l l l l l l --+=ψ (3)
因此,设计变量缩减为3个独立变量,即
T
432T 321)()(l l l x x x ==X
(4)
2.目标函数的建立
以机构预定的运动规律观测量ψE i 与实际运动规律观测量ψi 之间的偏差平方和最小为指标来建立目标函数,即
min )()(1
2E →-=∑=m
i i i f ψψX (5)
式中,m 为输入角的等分数;ψE i 为预期输出角,ψE i=ψE (φi );ψi 为实际输出角。

由图2可知:

⎨⎧<≤+-<≤--=)π2π(π)π0(πi i i i i i i ϕβαϕβαψ (6)
32
22322arccos l l l i i i ρρα-+= (7)
42
12422arccos l l l i i i ρρβ-+= (8)
i i l l l l ϕρcos 2412421-+= (9)
(a) 0≤φi <π (b) π≤φi <2π
图2 曲柄摇杆机构的运动学关系
3. 约束条件的确定
(1) 曲柄摇杆机构应满足曲柄存在条件,可得
0)(211≤-=l l g X (10)
0)(312≤-=l l g X (11) 0)(413≤-=l l g X (12) 0)(32414≤--+=l l l l g X (13) 0)(43215≤--+=l l l l g X (14) 0)(42316≤--+=l l l l g X (15)
(2) 连杆与摇杆的夹角应在γmin 和γmax 之间,即
02)(arccos )(max 3
22
4232
271≤-+-+=γl l l l l l g X (16)
02)(arccos )(3
22
12322min 84≤--+-=l l l l l l g γX (17)
四、具体步骤
1. 选择设计变量
已知l 1=100mm ,l 4=500mm ,且φ0和ψ0不是独立参数,它们可由下式(2)、式(3)求出,即
)100(1000250000)100(cos
arc 22
3220l l l +-++=ϕ 3
2
32201000250000)100(cos
arc l l l --+=ψ
所以该问题只有两个独立参数l 2和l 3,故设计向量为
T 32T 21)()(l l x x ==X
2. 建立目标函数
将输入角分成30等分,并依次取30个观测点ψ1, ψ2, ..., ψ30,得目标函数
∑=-=30
1
2E )()(i i i f ψψX
式中:i i i βαψ--=π
2
2
12
2232223222arccos x r x x r l r l l r i i i i i -+=
-+=α i i i i i r r l r l l r 1000240000
arccos
2arccos 24212
42+=-+=β i
i i l l l l r ϕϕcos 100000260000cos 2412
421-=-+=
()200E π
32
ϕϕψψ-+
=i i 3. 确定约束条件
约束函数按曲柄存在条件及对传动角的限制来建立,得
0100)(11≤-=x g X 0100)(22≤-=x g X
0600)(213≤--=x x g X
400)(214≤--=x x g X
0400)(125≤--=x x g X
160000414.1)(212
2216≤--+=x x x x g X
0414.1360000)(2122217≤---=x x x x g X
4. MATLAB 程序及优化结果
这是一个具有2个设计变量、7个不等式约束条件的优化设计问题。

应用MATLAB
软件的优化工具箱的fmincon 函数对上述优化问题求解。

(1) 编写m 文件Objfun.m 定义目标函数。

function f=objfun(x) l1=100; l4=500;
th0=acos(((100+x(1))^2-x(2)^2+250000)/(1000*(100+x(1)))); ps0=acos(((100+x(1))^2-x(2)^2-250000)/(1000*x(2))); f=0;
for th=th0:pi/2/30:th0+pi/2
r=(10000+250000-2*100*500*cos(th))^0.5; a=acos((r^2+x(2)^2-x(1)^2)/(2*r*x(2))); b=acos((r^2+240000)/(1000*r)); ps=pi-a-b ;
pse=ps0+2/(3*pi)*(th-th0)^2; f=f+(ps-pse)^2;
end
(2) 编写m 文件confun.m 定义约束。

function [c ,ceq]=confun(x) c(1)=100-x(1); c(2)=100-x(2); c(3)= 600-x(1)-x(2); c(4)= x(1)-x(2)-400; c(5)= x(2)-x(1)-400;
c(6)= x(1)^2+x(2)^2-1.414*x(1)*x(2)-160000; c(7)= 360000-x(1)^2-x(2)^2-1.414*x(1)*x(2); ceq=[];
(3) 编写m 文件run.m 求解计算。

x0=[400 400];
options=optimset('LargeScale','off');
[x,fval]=fmincon(@objfun,x0,[],[],[],[],[],[],@confun)
(4) 运行m文件run.m,得最优解X*=(412.8926mm, 232.2417mm),f(X *)=0.0076 mm2。

五、问题拓展
满足预定运动轨迹的优化设计,要求机构在运行过程中,连杆上的某点(分析点)尽可能沿着给定的曲线运动。

设计时,连杆分析点坐标可由机构杆长和夹角表示。

以分析点的预定轨迹观测点坐标值与实际轨迹观测点坐标值之间的偏差平和最小为指标来建立目标函数,并列出传动角要求、曲柄存在条件以及杆长尺寸限制等约束条件。

相关文档
最新文档