高中物理选修3-3“气体”知识点总结

合集下载

高中物理选修3-3知识点总结[1]

高中物理选修3-3知识点总结[1]

高中物理选修3-3知识点第一章分子动理论第二章固体、液体和气体第三章热力学定律及能量守恒2012年8月第1课时分子动理论一、要点分析1.命题趋势本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。

由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点, 试题多为低档题,中档题基本没有。

分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。

分子的动能和势能、物体的内能是高考的热点。

2.题型归纳随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。

3.方法总结(1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。

(2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。

(3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。

4.易错点分析(1)对布朗运动的实质认识不清布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。

布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。

布朗运动的剧烈程度与颗粒大小、液体的温度有关。

布朗运动永远不会停止。

最新人教版高中物理选修3-3:8.3理想气体的状态方程 知识点总结及课时练习

最新人教版高中物理选修3-3:8.3理想气体的状态方程 知识点总结及课时练习

3理想气体的状态方程记一记理想气体的状态方程知识体系一个模型——理想气体一个方程——理想气体的状态方程三个特例——p1V1T1=p2V2T2⎩⎪⎨⎪⎧T1=T2时,p1V1=p2V2V1=V2时,p1T1=p2T2p1=p2时,V1T1=V2T2辨一辨1.理想气体也不能严格地遵守气体实验定律.(×)2.实际气体在温度不太低、压强不太大的情况下,可看成理想气体.(√)3.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍.(×)4.气体由状态1变到状态2时,一定满足方程p1V1T1=p2V2T2.(×)5.一定质量的理想气体体积增大到原来的4倍,可能是因为压强减半且热力学温度加倍.(√)想一想什么样的气体才是理想气体?理想气体的特点是什么?提示:在任何温度、任何压强下都严格遵从实验定律的气体;特点:①严格遵守气体实验定律及理想气体状态方程,是一种理想化模型.②理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.③理想气体分子除碰撞外,无相互作用的引力和斥力.④理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.思考感悟:练一练=1.有一定质量的理想气体,如果要使它的密度减小,可能的办法是( )A .保持气体体积一定,升高温度B .保持气体的压强和温度一定,增大体积C .保持气体的温度一定,增大压强D .保持气体的压强一定,升高温度解析:由ρ=m /V 可知,ρ减小,V 增大,又由pV T =C 可知A 、B 、C 三项错,D 项对.答案:D2.对于一定质量的理想气体,下列状态变化中可能的实现是( )A .使气体体积增加而同时温度降低B .使气体温度升高,体积不变、压强减小C .使气体温度不变,而压强、体积同时增大D .使气体温度升高,压强减小、体积减小解析:由理想气体状态方程pV T =恒量得A 项中只要压强减小就有可能,故A 项正确;而B 项中体积不变,温度与压强应同时变大或同时变小,故B 项错;C 项中温度不变,压强与体积成反比,故不能同时增大,故C 项错;D 项中温度升高,压强减小,体积减小,导致pV T 减小,故D 项错误.答案:A3.一定质量的理想气体,经历一膨胀过程,这一过程可以用图上的直线ABC 来表示,在A 、B 、C 三个状态上,气体的温度T A 、T B 、T C 相比较,大小关系为( )A .TB =T A =T CB .T A >T B >T CC .T B >T A =T CD .T B <T A =T C解析:由图中各状态的压强和体积的值可知:p A · V A =p C ·V C <p B ·V B ,因为pV T =恒量,可知T A =T C <T B .答案:C4.如图所示,1、2、3为p -V 图中一定量理想气体的三种状态,该理想气体由状态1经过程1→3→2到达状态2.试利用气体实验定律证明:p 1V 1T 1=p 2V 2T 2. 证明:由题图可知1→3是气体等压过程,据盖—吕萨克定律有:V 1T 1=V 2T3→2是等容过程,据查理定律有:p 1T =p 2T 2联立解得p 1V 1T 1=p 2V 2T 2.要点一对理想气体的理解1.(多选)关于理想气体,下列说法中正确的是()A.严格遵守玻意耳定律、盖—吕萨克定律和查理定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.和质点的概念一样,理想气体是一种理想化的模型D.一定质量的理想气体,内能增大,其温度可能不变解析:理想气体是一种理想化模型,是对实际气体的科学抽象;温度不太低、压强不太大的情况下可以把实际气体近似视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,A、B、C三项正确;理想气体的内能只与温度有关,温度升高,内能增大,温度降低,内能减小,D项错误.答案:ABC2.(多选)关于理想气体,下列说法正确的是()A.温度极低的气体也是理想气体B.压强极大的气体也遵从气体实验定律C.理想气体是对实际气体的抽象化模型D.理想气体实际并不存在解析:气体实验定律是在压强不太大、温度不太低的情况下得出的,温度极低、压强极大的气体在微观上分子间距离变小,趋向于液体,故答案为C、D两项.答案:CD要点二对理想气体状态方程的理解和应用3.(多选)一定质量的理想气体,初始状态为p、V、T,经过一系列状态变化后,压强仍为p,则下列过程中可以实现的是() A.先等温膨胀,再等容降温B.先等温压缩,再等容降温C.先等容升温,再等温压缩D.先等容降温,再等温压缩解析:根据理想气体状态方程pVT=C,若经过等温膨胀,则T不变,V增加,p减小,再等容降温,则V不变,T降低,p减小,最后压强p肯定不是原来值,A项错,同理可以确定C项也错,正确为B、D两项.答案:BD4.一定质量的气体,从初态(p0、V0、T0)先经等压变化使温度上升到32T0,再经等容变化使压强减小到12p0,则气体最后状态为()A.12p0、V0、32T0 B.12p0、32V0、34T0C.12p0、V0、34T0 D.12p0、32V0、T0解析:在等压过程中,V∝T,有V0T0=V33T02,V3=32V0,再经过一个等容过程,有:p032T0=p02T3,T3=34T0,所以B项正确.答案:B5.如图所示,一定质量的空气被水银封闭在静置于竖直平面的U形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h,能使h变小的原因是()A.环境温度升高B.大气压强升高C.沿管壁向右管内加水银D.U形玻璃管自由下落解析:对于左端封闭气体,温度升高,由理想气体状态方程可知:气体发生膨胀,h增大,故A项错.大气压升高,气体压强将增大,体积减小,h减小,故B项对.向右管加水银,气体压强增大,内、外压强差增大,h将增大,所以C项错.当管自由下落时,水银不再产生压强,气体压强减小,h变大,故D项错.答案:B6.一水银气压计中混进了空气,因而在27 ℃、外界大气压为758 mmHg时,这个水银气压计的读数为738 mmHg,此时管中水银面距管顶80 mm.当温度降至-3 ℃时,这个气压计的读数为743 mmHg,求此时的实际大气压值为多少?解析:画出该题初、末状态的示意图分别写出被封闭气体的初、末状态的状态参量p1=758 mmHg-738 mmHg=20 mmHgV1=(80 mm)·S(S是管的横截面积)T1=(273+27) K=300 Kp2=p-743 mmHgV2=(738+80) mm·S-743(mm)·S=75(mm)·ST2=(273-3)K=270 K将数据代入理想气体状态方程p1V1 T1=p2V2 T2解得p=762.2 mmHg.答案:762.2 mmHg要点三理想气体变化的图象7.在下图中,不能反映理想气体经历了等温变化→等容变化→等压变化,又回到原来状态的图是()解析:根据p -V ,p -T 、V -T 图象的意义可以判断,其中D 项显示的理想气体经历了等温变化→等压变化→等容变化,与题意不符.答案:D8.图中A 、B 两点代表一定质量理想气体的两个不同的状态,状态A 的温度为T A ,状态B 的温度为T B ;由图可知( )A. T B =2T AB. T B =4T AC. T B =6T AD. T B =8T A 解析:对于A 、B 两个状态应用理想气体状态方程p A V A T A =p B V B T B可得:T B T A =p B V B p A V A =3×42×1=6,即T B =6T A ,C 项正确. 答案:C基础达标1.关于一定质量的理想气体发生状态变化时,其状态参量p 、V 、T 的变化情况不可能的是( )A .p 、V 、T 都减小B .V 减小,p 和T 增大C.p和V增大,T减小D.p增大,V和T减小解析:由理想气体状态方程pVT=C可知,p和V增大,则pV增大,T应增大.C项不可能.答案:C2.(多选)理想气体的状态方程可以写成pVT=C,对于常量C,下列说法正确的是()A.对质量相同的任何气体都相同B.对质量相同的同种气体都相同C.对质量不同的不同气体可能相同D.对质量不同的不同气体一定不同解析:理想气体的状态方程的适用条件就是一定质量的理想气体,说明常量C仅与气体的种类和质量有关,实际上也就是只与气体的物质的量有关.对质量相同的同种气体当然常量是相同的,而对质量不同的不同气体,只要物质的量是相同的,那么常量C也是可以相同的.答案:BC3.(多选)对一定质量的理想气体,下列说法正确的是() A.体积不变,压强增大时,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密度一定减小C.压强不变,温度降低时,气体的密度一定减小D.温度升高,压强和体积可能都不变解析:由pVT=C(常量)可知,V不变、p增大时T增大,故A项正确;T增大时,p与V至少有一个要发生变化,故D错误;把V=mρ代入pVT=C得pmρT=C,由此式可知,T不变时,ρ随p的减小而减小,故B项正确;p不变时,ρ随T的减小而增大,故C 项错误.答案:AB4.(多选)关于理想气体的状态变化,下列说法中正确的是()A.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .一定质量的理想气体由状态1变到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,可能是压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,可能是体积加倍,热力学温度减半解析:理想气体状态方程p 1V 1T 1=p 2V 2T 2中的温度是热力学温度,不是摄氏温度,A 项错误,B 项正确;由理想气体状态方程及各量的比例关系即可判断C 项正确,D 项错误.答案:BC5.光滑绝热的轻质活塞把密封的圆筒容器分成A 、B 两部分,这两部分充有温度相同的气体,平衡时V A :V B =1:2,现将A 中气体温度加热到127 ℃,B 中气体温度降低到27 ℃,待重新平衡后,这两部分气体体积的比V A ′:V B ′为( )A .1:1B .2:3C .3:4D .2:1解析:对A 部分气体有:p A V A T A =p A ′V ′A T A ′① 对B 部分气体有:p B V B T B =p B ′V B ′T B ′② 因为p A =p B ,p A ′=p B ′,T A =T B ,所以由①②得V A V B =V A ′T B ′V B ′T A ′,所以V A ′V B ′=V A T A ′V B T B ′=1×4002×300=23答案:B6.如图所示,内壁光滑的汽缸和活塞都是绝热的,缸内被封闭的理想气体原来体积为V ,压强为p ,若用力将活塞向右压,使封闭的气体体积变为V 2,缸内被封闭气体的( )A .压强等于2pB .压强大于2pC .压强小于2pD .分子势能增大了解析:汽缸绝热,压缩气体,其温度必然升高,由理想气体状态方程pV T =C (恒量)可知,T 增大,体积变为V 2,则压强大于2p ,故B 项正确,A 、C 两项错,理想气体分子无势能的变化,D 项错.答案:B7.(多选)如图所示,一定质量的理想气体,从图示A 状态开始,经历了B 、C 状态,最后到D 状态,下列判断正确的是( )A .A →B 温度升高,压强不变B .B →C 体积不变,压强变大C .B →C 体积不变,压强不变D .C →D 体积变小,压强变大解析:由图象可知,在A →B 的过程中,气体温度升高、体积变大,且体积与温度成正比,由pV T =C ,气体压强不变,是等压过程,故A 项正确;由图象可知,在B →C 是等容过程,体积不变,而热力学温度降低,由pV T =C 可知,压强p 减小,故B 、C 两项错误;由图象可知,在C →D 是等温过程,体积减小,由pV T =C可知,压强p 增大,故D 项正确.答案:AD8.一气泡从30 m 深的海底升到海面,设水底温度是4 ℃,水面温度是15 ℃,那么气泡在海面的体积约是水底时的( )A .3倍B .4倍C .5倍D .12倍解析:根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2,知V 2V 1=p 1T 2p 2T 1,其中T 1=(273+4) K =277 K ,T 2=(273+15) K =288 K ,故T 2T 1≈1,而p 2=p 0≈10ρ水 g ,p 1=p 0+p ≈40 ρ水 g ,即p 1p 2≈4,故V 2V 1≈4.故选B 项.答案:B9.(多选)如图所示,用活塞把一定质量的理想气体封闭在导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图象表示( )解析:由题意知,由状态①到状态②过程中,温度不变,体积增大,根据pV T =C 可知压强将减小.对A 项图象进行分析,p -V图象是双曲线即等温线,且由状态①到状态②体积增大,压强减小,故A 项正确;对B 项图象进行分析,p -V 图象是直线,温度会发生变化,故B 项错误;对C 项图象进行分析,可知温度不变,但体积增大,故C 项错误;对D 项图象进行分析,可知温度不变,压强减小,D 项正确.答案:AD10.如图所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小解析:由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pV T =常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 项正确;若温度升高,体积减小,则压强一定增大,B 、C 两项错误;若温度不变,体积减小,则压强一定增大,D 项错误.答案:A11.某不封闭的房间容积为20 m 3,在温度为7 ℃、大气压强为9.8×104 Pa 时,室内空气质量为25 kg.当温度升高到27 ℃、大气压强为1.0×105 Pa 时,室内空气的质量是多少?(T =273 K +t )解析:假设气体质量不变,末态体积为V 2,由理想气体状态方程有:p 1V 1T 1=p 2V 2T 2, 解得V 2=p 1V 1T 2p 2T 1=9.8×104×20×3001.0×105×280=21.0 m 3. 因为V 2>V 1,即有部分气体从房间内流出,设剩余气体质量为m 2,由比例关系有:V 1V 2=m 2m 1,m 2=m 1V 1V 2=23.8 kg.答案:23.8 kg12.图甲为1 mol 氢气的状态变化过程的V -T 图象,已知状态A 的参量为p A =1 atm ,T A =273 K ,V A =22.4×10-3 m 3,取1 atm=105 Pa ,在图乙中画出与甲图对应的状态变化过程的p -V 图,写出计算过程并标明A 、B 、C 的位置.解析:据题意,从状态A 变化到状态C 的过程中,由理想气体状态方程可得:p A V A T A =p C V C T C ,p C =1 atm ,从A 变化到B 的过程中有:p A V A T A=p B V B T B,p B =2 atm. A 、B 、C 的位置如图所示.答案:见解析13.[2019·潍坊高二检测]内燃机汽缸里的混合气体,在吸气冲程结束瞬间,温度为50 ℃,压强为1.0×105 Pa ,体积为0.93 L .在压缩冲程中,把气体的体积压缩为0.155 L 时,气体的压强增大到1.2×106 Pa.这时混合气体的温度升高到多少摄氏度?解析:气体初状态的状态参量为p 1=1.0×105 Pa ,V 1=0.93 L ,T 1=(50+273) K =323 K.气体末状态的状态参量为p 2=1.2×106 Pa ,V 2=0.155 L ,T 2为未知量.由p 1V 1T 1=p 2V 2T 2可求得T 2=p 2V 2p 1V 1T 1, 将已知量代入上式,得T 2=1.2×106×0.1551.0×105×0.93×323 K =646 K , 所以混合气体的温度t =(646-273) ℃=373 ℃.答案:373 ℃能力达标14.[2019·长春市质检]如图所示,绝热气缸开口向上放置在水平地面上,一质量m =10 kg,横截面积S=50 cm2的活塞可沿气缸无摩擦滑动;被封闭的理想气体温度t=27 ℃时,气柱长L=22.4 cm.已知大气压强为标准大气压p0=1.0×105Pa,标准状况下(压强为一个标准大气压,温度为0 ℃)理想气体的摩尔体积为22.4 L,阿伏加德罗常数N A=6.0×1023mol-1,g=10 m/s2.求:(计算结果保留两位有效数字)(1)被封闭理想气体的压强;(2)被封闭气体内所含分子的数目.解析:(1)被封闭理想气体的压强为p=p0+mg Sp=1.2×105 Pa(2)由p0V0T0=pVT得标准状况下的体积为V0=pVT0 p0T被封闭气体内所含分子的数目为N=N A V0 V m解得N=3.3×1022个答案:(1)1.2×105 Pa(2)3.3×1022。

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15一、分子动理论1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由分子组成的。

①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ2、油膜法估测分子的大小: ①SV d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。

②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。

3、分子热运动:①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。

②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。

③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。

颗粒越小、温度越高,现象越明显。

从阳光中看到教室中尘埃的运动不是布朗运动。

4、分子力:①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。

②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r<r 0,表现为斥力。

③从无穷远到不能再靠近的距离过程中,分子力先增大,再减小,再增大。

④当r ≥10r 0=10-9m 时,分子力忽略不计,理想气体分子距离大于10-9m ,故不计分子力。

⑤两块纯净的铅压紧,它们会“粘”在一起,说明分子间存在引力,但破碎的玻璃不能重新拼接在一起不是因为其分子间存在斥力。

5、物体内能:①物体内能:物体所有分子做热运动的动能和分子势能的总和。

②温度是物体分子热运动的平均动能的标志。

③分子势能与分子间距离有关,分子间距离与体积有关,所以分子势能与体积有关,分子势能可类比弹簧弹性势能,原长相当于r 0位置。

两分子从很远处移到不能再靠近的距离过程中,分子势能先减小后增大。

④理想气体:理想化模型(与质点和点电荷一样),理想气体忽略分子间的作用力和分子势能,理想气体的内能只取决于温度。

新人教版高中物理选修3-3理想气体的状态方程

新人教版高中物理选修3-3理想气体的状态方程

理想气体的状态方程新课标要求〔一〕知识与技能1.掌握理想气体状态方程的内容及表达式。

2.知道理想气体状态方程的使用条件。

3.会用理想气体状态方程进行简单的运算。

〔二〕过程与方法通过推导理想气体状态方程,培养学生利用所学知识解决实际问题的能力。

〔三〕情感、态度与价值观理想气体是学生遇到的又一个理想化模型,正确建立模型,对于学好物理是非常重要的,因此注意对学生进行物理建模方面的教育。

教学重点1.掌握理想气体状态方程的内容及表达式。

知道理想气体状态方程的使用条件。

2.正确选取热学研究对象,抓住气体的初、末状态,正确确定气体的状态参量,从而应用理想气体状态方程求解有关问题。

教学难点应用理想气体状态方程求解有关问题。

教学方法讲授法、电教法教学用具:投影仪、投影片教学过程〔一〕引入新课教师:〔复习提问〕前面我们已经学习了三个气体实验定律,玻意耳定律、查理定律、盖-吕萨克定律。

这三个定律分别描述了怎样的规律?说出它们的公式。

学生甲:玻意耳定律描述了气体的等温变化规律:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比。

公式:=pV 常量或2211V p V p =学生乙:查理定律描述了气体的等容变化规律:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比。

公式:C Tp= C 是比例常数。

或2211T p T p =学生丙:盖-吕萨克定律描述了气体的等压变化规律:一定质量的某种气体,在压强不变的情况下,体积V 与热力学温度T 成正比。

公式:C TV= C 是比例常数。

或2211T V T V =教师点出课题:以上三个定律讨论的都是一个参量变化时另外两个参量的关系。

那么,当气体的p 、V 、T 三个参量都变化时,它们的关系如何呢?〔二〕进行新课 1.理想气体教师:以上三个实验定律都是在压强不太大〔相对大气压强〕、温度不太低〔相对室温〕的条件下总结出来的。

当压强很大、温度很低时,上述定律的计算结果与实际测量结果有很大的差别。

人教版高中物理选修3-3知识点复习(共52张PPT)

人教版高中物理选修3-3知识点复习(共52张PPT)
2.微观意义:温度是分子平均动能的标志
分子势能:由分子和分子间相对位置所决定的能.
分子力做功跟分子势能变化的关系: 分子力做正功时,分子势能减少,分子力做
负功时(克服分子力做功),分子势能增加.
物体的内能:物体中所有分子做热运动的动能和分 子势能的总和叫做物体的内能.
决定物体内能的因素 从微观上看:物体内能的大小由组成物体的分子总数、 分子热运动的平均动能和分子间的距离三个因素决 定.
• 间 接 说 明:分子间有间隙
• 2)布朗运动:悬浮在液体中的固体微粒的 无规则运动,不是液体分子的无规则运动 因微粒很小,所以要用光学显微镜来观察.
• 布朗运动发生的原因是受到包围微粒的液 体分子无规则运动地撞击的不平衡性造成 的.因而布朗运动说明了分子在永不停息 地做无规则运动.
• (1)布朗运动不是固体微粒中分子的无规 则运动.
• 热学包括:研究宏观热现象的热力学、研 究微观理论的统计物理学
• 统计规律:单个分子的运动都是不规则的、 带有偶然性的;大量分子的集体行为受到 统计规律的支配
气体温度的微观意义
1.氧气分子的速率分布图象特点: “中间多、两头少”
温度升高时, 速率大的分子数增加 速率小的分子数减少
T aEk a为比例常数
(4)当r<r0时,分子力随距离增大而减小;当r>r0 时, 分子力随距离先增大后减小
(5)当r>10r0时,分子力等于0,分子力是短程力。
取分子间距离无限远时分子势能为零
分子间距离从无限远逐渐减少至r0的过程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F

人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3—3知识点总结第七章 分子动理论第一节 物体是由大量分子组成的一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10m 。

2.阿伏加德罗常数:N A =6.02×1023_mol -1。

3.两种分子模型 分子 模型意义分子大小或分子间的平 均距离图例球形 模型固体和液体可看成是由一个个紧挨着的球形分子排列而成的,忽略分子间的空隙d =36V 0π(分子大小)立方体 模型 (气体)气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的大小d =3V 0 (分子间平 均距离)设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式:(1)一个分子的质量:m 0=MN A=ρV 0。

(2)一个分子的体积:V 0=V N A =MρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间体积)。

(3)一摩尔物质的体积:V =Mρ。

(4)单位质量中所含分子数:n =N A M 。

(5)单位体积中所含分子数:n ′=N AV 。

(6)气体分子间的平均距离:d = 3VN A 。

(7)固体、液体分子的球形模型分子直径:d =36V πN A ;气体分子的立方体模型分子间距:d = 3VN A。

第二节 分子的热运动一、扩散现象1.定义:不同物质能够彼此进入对方的现象。

2.产生原因:物质分子的无规则运动。

3.意义:反映分子在做永不停息的无规则运动。

二、布朗运动1.概念:悬浮微粒在液体(或气体)中的无规则运动。

2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。

3.影响因素:微粒越小、温度越高,布朗运动越激烈。

4.意义:间接反映了液体(或气体)分子运动的无规则性。

高中物理选修3-3必背资料

高中物理选修3-3必背资料

高中2021届物理记背资料(选修3-3)〇、知识网络1、理论基础(1)微观——分子动理论↕统计观点——质量、体积、温度、压强、内能,阿伏加德罗常数(2)宏观——热力学定律(〇、一、二、三)2、物质凝聚态(1)固体——晶体(单晶体、多晶体)、非晶体↕液晶(2)液体——表面张力↕汽液共存态——饱和蒸汽(压)、不饱和蒸汽,相对湿度(3)气体——气体实验定律(理想气体:nRT pV =)一、二级结论(一)分子动理论与统计观点1、分子直径数量级为10-10m ,质量数量级为10-26~10-27kg 。

2、微观量和宏观量的关系:(1)分子的质量m 0与摩尔质量M :m 0=M N A =ρV m N A;(2)分子的体积V 0与摩尔体积V m :V 0=V m N A =M ρN A(只适用于固体、液体,不适用于气体);(3)物体所含的分子数:N =n ·N A ,N =V V m ·N A =m ρV m ·N A ,N =m M ·N A =ρV M·N A 。

3、分子热运动的实验依据:扩散现象、布朗运动(1)扩散现象:温度越高,分子平均速率越大,扩散越快;气体最快,液体次之,固体最慢;(2)布朗运动:布朗粒子(固体颗粒)被液体分子撞击的不平衡性而导致的运动;温度越高(液体分子无规则运动越剧烈),布朗粒子越小,液体分子对布朗粒子撞击的不平衡性越明显,布朗运动越剧烈。

4、分子力曲线,分子势能曲线5、麦克斯韦气体分子速率分布律与温度(1)气体温度较高时,较多的分子处于速率较大的区间,温度较低时,较多的分子处于速率较小的区间;但是,无论温度高低,都有分子速率很大和很小的分子;(2)温度是分子平均动能的标志:k 2i E kT =——平均平动动能kT E 23k =。

6、物体的内能,等于物体中所有分子的热运动的动能与分子势能的总和;物体内能的大小由物体的温度、体积和物质的量共同决定。

高中物理选修3-3-气体的等容变化和等压变化

高中物理选修3-3-气体的等容变化和等压变化

气体的等容变化和等压变化知识元气体的等容变化和等压变化知识讲解1.查理定律(等容变化):①内容:一定质量的气体,在体积不变的情况下,它的压强跟热力学温度成正比,这个规律叫做查理定律。

②数学表达式:③成立条件:a.气体的质量、体积保持不变;b.气体压强不太大,温度不太低。

④p-T图象--等容线:一定质量的某种气体在p-T图上的等容线是一条延长线过原点的倾斜直线;p-t图中的等容线在t轴的截距是-273.15℃,在下图中V1<V2。

2.盖•吕萨克定律(等压变化):①内容:一定质量的气体在压强不变的情况下,它的体积跟热力学温度成正比。

②数学表达式:③适用条件:a.气体质量不变、压强不变;b.气体温度不太低、压强不太大。

④V-T图象--等压线:一定质量的某种气体在V-T图上的等压线是一条延长线过原点的倾斜直线;V-t图中的等压线在t轴的截距是-273.15℃,在下图中p1<p2。

例题精讲气体的等容变化和等压变化例1.如图所示,气缸内装有一定质量的气体,气缸的截面积为S,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F缓慢推活塞,汽缸不动,此时大气压强为P0,则气缸内气体的压强P为()A.P=P0B.P=P0C.P=P0D.P=P0例2.如图所示,活塞的质量为m,缸套的质量为M,通过弹簧吊在天花板上,汽缸内封住一定质量的气体,缸套和活塞间无摩擦,活塞面积为S,大气压强为p0,则封闭气体的压强为()A.p=p0B.p=p0C.p=p0D.p例3.如图所示,竖直放置的U形管,左端开口右端封闭,管内有a、b两段水银柱,将A、B两段空气柱封闭在管内。

已知水银柱a长h1为10cm,水银柱b两个液面间的高度差h2为5cm,大气压强为75cmHg,空气柱B的压强是____cmHg例4.把75厘米长的两端开口的细玻璃管全部插入没在水银中,封闭上端,将玻璃管缓慢地提出水管,管中留有水银柱高度是____厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理选修3-3“气体”知识点总结
1、气体实验定律
①玻意耳定律:pV C =(C 为常量)→等温变化
微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这
适用条件:压强不太大,温度不太低 图象表达:1p V
-
②查理定律:p C T =(C 为常量)→等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情
适用条件:温度不太低,压强不太大 图象表达:p V -
③盖吕萨克定律:V C T =(C 为常量)→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变
适用条件:压强不太大,温度不太低 图象表达:V T -
2、理想气体
宏观上:严格遵守三个实验定律的气体,在常温常压下实验
气体可以看成理想气体
微观上:分子间的作用力可以忽略不计,故一定质量的理想 气体的内能只与温度有关,与体积无关 理想气体的方程:pV C T
= 3、气体压强的微观解释
大量分子频繁的撞击器壁的结果
影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)
V V。

相关文档
最新文档