人教版高中物理选修3-3知识点汇总
高中物理选修3-3知识点总结[1]
![高中物理选修3-3知识点总结[1]](https://img.taocdn.com/s3/m/fdcc14b64afe04a1b071dede.png)
高中物理选修3-3知识点第一章分子动理论第二章固体、液体和气体第三章热力学定律及能量守恒2012年8月第1课时分子动理论一、要点分析1.命题趋势本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。
由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点, 试题多为低档题,中档题基本没有。
分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。
分子的动能和势能、物体的内能是高考的热点。
2.题型归纳随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。
3.方法总结(1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。
(2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。
(3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。
4.易错点分析(1)对布朗运动的实质认识不清布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。
布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。
布朗运动的剧烈程度与颗粒大小、液体的温度有关。
布朗运动永远不会停止。
高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15一、分子动理论1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由分子组成的。
①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ2、油膜法估测分子的大小: ①SV d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。
②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。
3、分子热运动:①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。
②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。
③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。
颗粒越小、温度越高,现象越明显。
从阳光中看到教室中尘埃的运动不是布朗运动。
4、分子力:①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。
②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r<r 0,表现为斥力。
③从无穷远到不能再靠近的距离过程中,分子力先增大,再减小,再增大。
④当r ≥10r 0=10-9m 时,分子力忽略不计,理想气体分子距离大于10-9m ,故不计分子力。
⑤两块纯净的铅压紧,它们会“粘”在一起,说明分子间存在引力,但破碎的玻璃不能重新拼接在一起不是因为其分子间存在斥力。
5、物体内能:①物体内能:物体所有分子做热运动的动能和分子势能的总和。
②温度是物体分子热运动的平均动能的标志。
③分子势能与分子间距离有关,分子间距离与体积有关,所以分子势能与体积有关,分子势能可类比弹簧弹性势能,原长相当于r 0位置。
两分子从很远处移到不能再靠近的距离过程中,分子势能先减小后增大。
④理想气体:理想化模型(与质点和点电荷一样),理想气体忽略分子间的作用力和分子势能,理想气体的内能只取决于温度。
(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单
位体积内的分子数(体积)
三、物态和物态变化
9、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异
性
非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向
同性
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点
《高中物理选修 3-4 、3-5 知识点》
Ⅰ 选修 3-4 部分
一、简谐运动 简谐运动的表达式和图象 Ⅰ
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零 . ②阻力很小 . 使振动物体回到平衡位置的
力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
⑶周期 T:振动物体完成一次余振动所经历的时间叫做周期。 所谓全振动是指物体从
某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次
全振动。
⑷频率 f :振动物体单位时间内完成全振动的次数。
⑸角频率 ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这
个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,
②这两种方式改变系统的内能是等效的
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或
物体的不同部分)之间内能的转移
14、热力学第一定律
①表达式 u W Q
②
符
W
Q
u
号
外界对3;
做功
吸热
加
15、能量 律
系统对外界 做功
系统向外界 放热
高中物理3-3热学知识点归纳

分子的数量.n =M N =£V NM p V 1V N =N A V A 1 2•分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。
(2)扩散现象:不同物质能够彼此进入对方的现象。
本质:由物质分子的无规则运动产生的。
(3)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。
布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。
①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。
因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。
②布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。
简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。
③影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。
④ 能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在错误!未找到引用源。
,这种微粒肉眼是看不到的,必须借助于显微镜。
3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。
分分子质量:分子平均占据的空间大小)分子直径: N 4兀(°)3=V球体模型:A 32I 16V d=31■ 3兀\6V ~ 0-(固体、液体一般用此模型) 选修3-3热学知识点归纳一、分子运动论1•物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是错误!未找到引用源。
(2)分子质量分子质量很小,一般分子质量的数量级是错误!未找到引用源。
(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:错误!未找到引用源。
高中物理选修3-3知识复习提纲:第十章 热力学定律(人教版)

高中物理选修3-3知识复习提纲:第十章热力学定律(人教版)高中物理选修3-3知识点总结:第十章热力学定律(人教版)冷热变化是最常见的一种物理现象,本章主要将的就是热力学的有关问题,其中热力学的第一和第二定律是比较重要得,对于能量守恒定律必须要深刻的理解。
考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。
Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。
要求Ⅰ:热力学第一定律、能量守恒定律、热力学第二定律、热力学第二定律的微观结构等内容。
要求Ⅱ:这一章这项要求考察比较少。
知识网络:内容详解:一、功、热与内能●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。
●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U表示。
●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。
●热传递的方式:热传导、对流热、热辐射。
二、热力学第一定律、第二定律●第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。
表达式uWQ符号+-W外界对系统做功系统对外界做功Q系统从外界吸热系统向外界放热u系统内能增加系统内能减少●第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。
另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。
●应用热力学第一定律解题的思路与步骤:一、明确研究对象是哪个物体或者是哪个热力学系统。
二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。
三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。
人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3—3知识点总结第七章 分子动理论第一节 物体是由大量分子组成的一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10m 。
2.阿伏加德罗常数:N A =6.02×1023_mol -1。
3.两种分子模型 分子 模型意义分子大小或分子间的平 均距离图例球形 模型固体和液体可看成是由一个个紧挨着的球形分子排列而成的,忽略分子间的空隙d =36V 0π(分子大小)立方体 模型 (气体)气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的大小d =3V 0 (分子间平 均距离)设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式:(1)一个分子的质量:m 0=MN A=ρV 0。
(2)一个分子的体积:V 0=V N A =MρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间体积)。
(3)一摩尔物质的体积:V =Mρ。
(4)单位质量中所含分子数:n =N A M 。
(5)单位体积中所含分子数:n ′=N AV 。
(6)气体分子间的平均距离:d = 3VN A 。
(7)固体、液体分子的球形模型分子直径:d =36V πN A ;气体分子的立方体模型分子间距:d = 3VN A。
第二节 分子的热运动一、扩散现象1.定义:不同物质能够彼此进入对方的现象。
2.产生原因:物质分子的无规则运动。
3.意义:反映分子在做永不停息的无规则运动。
二、布朗运动1.概念:悬浮微粒在液体(或气体)中的无规则运动。
2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。
3.影响因素:微粒越小、温度越高,布朗运动越激烈。
4.意义:间接反映了液体(或气体)分子运动的无规则性。
高中物理选修3-3知识复习提纲:第九章 物态变化(人教版)

高中物理选修3-3知识点总结:第九章物态变化(人教版)第九章:物态变化物体是由分子组成的,分子无时无刻在做无规则的运动,他们之间存在着相互作用力,这种因素决定了物质的不同聚集形态(固体、液体、气体),本章内容相对比较简单,大所属于记忆性的内容。
考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。
Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。
要求Ⅰ:固体的微观结构、晶体、非晶体、液晶的微观结构、液体的表面张力、饱和蒸汽、未饱和蒸汽、饱和蒸汽压、相对湿度等有关的内容。
要求Ⅱ:这一章基本没有这一项的要求。
知识网络:内容详解:一、固体●晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。
●非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。
●单晶体:如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。
●多晶体:如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
●各向异性:沿不同方向的导热与导电性等不同或是光学性质不同的晶体的这种性质称为各向异性。
●各项同性:非晶体一般沿各个方向的物理性质是一样的,这种属性称之为各项同性。
二、液体●表面张力:当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。
如露珠。
●液晶:分子排列有序,各向异性,可自由移动,位置无序,具有流动性。
●浸润:一种液体会润湿一些固体并且附着在固体的表面,这种现象称之为浸润。
●毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象称为毛细现象。
高中物理选修3-3 知识点梳理和总结

选修3-3 热学一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子直径:数量级是10-10m ; ②分子质量:数量级是10-26kg ;③测量方法:油膜法.(2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023 mol -1. (3)微观量:分子体积V 0、分子直径d 、分子质量m 0.(4)宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ. (5)关系:①分子的质量:m 0=M N A =ρV mN A②分子的体积:V 0=V m N A =MρN A③物体所含的分子数:N =V V m ·N A =m ρV m ·N A 或N =m M ·N A =ρV M·N A (6)两种模型:①球体模型直径为:d =36V 0π②立方体模型边长为:d =3V 02.分子热运动:一切物质的分子都在永不停息地做无规则运动.(1)扩散现象:相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行.(2)布朗运动:①定义:悬浮在液体(或气体)中的小颗粒的永不停息地无规则运动. ②实质:布朗运动反映了液体分子的无规则运动.③决定因素:颗粒越小,运动越明显;温度越高,运动越剧烈. (3)气体分子运动速率的统计分布:①同一温度下,大多数分子具有中等的速率;随温度升高,占总数比例最大的那些分子速率增大.②气体分子运动速率的“三个特点”某个分子的运动是无规则的,但大量分子的运动速率呈现统计规律,如图所示:横轴表示分子速率,纵轴表示各速率的分子数占总分子数的百分比,图像有三个特点:(1)“中间多,两头少”:同一温度下,特大或特小速率的分子数比例都较小,大多数分子具有中等的速率.(2)“图像向右偏移”:速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大,但速率分布规律不变.(3)“面积不变”:图线与横轴所围面积都等于1,不随温度改变.二、内能1.分子动能(1)分子动能:分子热运动所具有的动能;(2)分子平均动能:所有分子动能的平均值.温度是分子平均动能的标志.2.分子势能:由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能(1)内能:物体中所有分子的热运动动能与分子势能的总和.(2)决定因素:温度、体积和物质的量.4.分子力(1)分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.(2)分子力、分子势能与分子间距离的关系分子力曲线与分子势能曲线:分子力F、分子势能E p与分子间距离r的关系图线如图所示(取无穷远处分子势能E p=0):(3)分子力、分子势能与分子间距离的关系①当r>r0时,分子力为引力,当r增大时,分子力做负功,分子势能增加.②)当r<r0时,分子力为斥力,当r减小时,分子力做负功,分子势能增加.③当r=r0时,分子势能最小.5.内能和热量的比较6.分析物体的内能问题应当明确以下四点(1)内能是对物体的大量分子而言的,不存在某个分子内能的说法.(2)决定内能大小的因素为温度、体积、分子数,还与物态有关系.(3)通过做功或热传递可以改变物体的内能.(4)温度是分子平均动能的标志,温度相同的任何物体,分子的平均动能相同.三、温度1.温度的意义(1)宏观上,温度表示物体的冷热程度.(2)微观上,温度是分子平均动能的标志.2.两种温标(1)摄氏温标t:单位℃,把1个标准大气压下,水的冰点作为0 ℃,沸点为100 ℃.(2)热力学温标T:单位K,把-273.15 ℃作为0 K.0 K是绝对零度,低温极限,只能接近不能达到,所以热力学温度无负值.(3)两种温标的关系:T=273.15+t ΔT=Δt第二节固体、液体和气体一、固体1.分类:固体分为晶体和非晶体两类.晶体分单晶体和多晶体.2.晶体与非晶体的比较3.判断晶体与非晶体的“五个要点”(1)只要具有确定熔点的物质必定是晶体,否则为非晶体.(2)只要具有各向异性的物质必定是单晶体,否则为多晶体或非晶体.(3)单晶体只是在某一种物理性质上表现出各向异性.(4)同一物质可能成为不同的晶体或非晶体.(5)晶体与非晶体在一定条件下可以相互转化.二、液体1.液体的表面张力(1)产生原因:表面层中分子间的距离比液体内部分子间的距离大,分子力表现为引力.(2)作用效果:液体的表面张力使液面具有收缩的趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.(3)作用方向:表面张力跟液面相切,跟这部分液面的分界线垂直.(4)影响因素:液体的密度越大,表面张力越大;温度越高,表面张力越小;液体中溶有杂质时,表面张力变小.2.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向上看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.(4)液晶的特点:液晶既不是液体也不是晶体.液晶既有液体的流动性,又有晶体的物理性质各向异性.三、饱和汽湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.2.饱和汽压(1)定义:饱和汽所具有的压强.(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.湿度(1)绝对湿度:空气中所含水蒸气的压强.(2)相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比.(3)相对湿度公式相对湿度=水蒸气的实际压强同温度水的饱和汽压⎝⎛⎭⎫B =p p s ×100%(4)对相对湿度的理解人对空气湿度的感觉是由相对湿度决定的.当绝对湿度相同时,温度越高,离饱和状态越远,体表水分越容易蒸发,感觉越干燥;气温越低,越接近饱和状态,感觉越潮湿.第三讲 气体一、气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.2.决定因素(1)宏观上:决定于气体的温度和体积.(2)微观上:决定于分子的平均动能和分子的密集程度. 3.压强单位:国际单位,帕斯卡(P a )常用单位:标准大气压(a tm );厘米汞柱(cmHg ).换算关系:1a tm =76cmHg≈1.0×105 Pa . 4.平衡状态下气体压强的求法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.5.加速运动系统中封闭气体压强的求法:选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解. 二、理想气体状态方程1.理想气体(1)宏观上讲,理想气体是指在任何温度、任何压强下始终遵从气体实验定律的气体.实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体的分子间除碰撞外无其他作用力(因此不计分子势能),分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.2.理想气体的状态方程(1)内容:一定质量的某种理想气体发生状态变化时,压强跟体积的乘积与热力学温度的比值保持不变. (2)公式:p 1V 1T 1=p 2V 2T 2或pV T =C (C 是与p 、V 、T 无关的常量)3.理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2⎩⎪⎨⎪⎧温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T2( 盖—吕萨克定律)4.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT(2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+……(理想气体状态方程的分态公式)5.体状态变化的图象问题第三节 热力学定律与能量守恒一、热力学第一定律和能量守恒定律 1.改变物体内能的两种方式(1)做功; (2)热传递. 2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和. (2)表达式:ΔU =Q +W 3.对公式ΔU =Q +W 符号的规定4.几种特殊情况(1)若过程是绝热的,则Q =0,W =ΔU ,外界对物体做的功等于物体内能的增加量. (2)若过程中不做功,即W =0,则Q =ΔU ,物体吸收的热量等于物体内能的增加量.(3)若过程的始末状态物体的内能不变,即ΔU =0,则W +Q =0或W =-Q .外界对物体做的功等于物体放出的热量.(4)气体压力做功:体积变化量V P W∆=:做功与热传递在改变内能的效果上是相同的,但是从运动形式、能量转化的角度上看是不同的:做功是其他形式的运动和热运动的转化,是其他形式的能与内能之间的转化;而热传递则是热运动的转移,是内能的转移.5.能的转化和守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)第一类永动机:违背能量守恒定律的机器被称为第一类永动机.它是不可能制成的.二、热力学第二定律1.常见的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.2.第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机.这类永动机不违背能量守恒定律,但它违背了热力学第二定律,也是不可能制成的.3.在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.4.热力学第二定律的实质:热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能也可以全部转化为机械能,如气体的等温膨胀过程.5.两类永动机的比较1.下列有关扩散现象与布朗运动的叙述中,正确的是()A.扩散现象与布朗运动都能说明分子在做永不停息的无规则运动B.扩散现象与布朗运动没有本质的区别C.扩散现象突出说明了物质的迁移规律,布朗运动突出说明了分子运动的无规则性规律D.扩散现象和布朗运动都与温度有关E.布朗运动是扩散的形成原因,扩散是布朗运动的宏观表现[解析]扩散现象与布朗运动都能说明分子做永不停息的无规则运动,故A正确;扩散是物质分子的迁移,布朗运动是宏观颗粒的运动,是两种完全不同的运动,故B错误;两个实验现象说明了分子运动的两个不同规律,则C正确;两种运动随温度的升高而加剧,所以都与温度有关,D正确;布朗运动与扩散的成因均是分子的无规则运动,两者之间不具有因果关系,故E错误.[答案]ACD2.分子间的相互作用力由引力与斥力共同产生,并随着分子间距的变化而变化,则下列说法正确的是()A.分子间引力随分子间距的增大而减小B.分子间斥力随分子间距的减小而增大C.分子间相互作用力随分子间距的增大而减小D.当r<r0时,分子间作用力随分子间距的减小而增大E.当r>r0时,分子间作用力随分子间距的增大而减小[解析]分子力和分子间距离的关系图象如图所示,根据该图象可判断分子间引力随分子间距的增大而减小,分子间斥力随分子间距的减小而增大,A、B正确;当r<r0时分子力(图中实线)随分子间距的减小而增大,故D 正确;当r>r0时,分子力随分子间距的增大先增大后减小,故E错误.[答案]ABD3.两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变[解析]分子力F与分子间距r的关系是:当r<r0时F为斥力;当r=r0时,F=0;当r>r0时F为引力.综上可知,当两分子由相距较远逐渐达到最近过程中分子力是先变大再变小又变大,A项错误;分子力为引力时做正功,分子势能减小,分子力为斥力时做负功,分子势能增大,故B项正确、D项错误;因仅有分子力作用,故只有分子动能与分子势能之间发生转化,即分子势能减小时分子动能增大,分子势能增大时分子动能减小,其总和不变,C、E项均正确.[答案]BCE4.下列说法正确的是()A.内能不同的物体,温度可能相同B.温度低的物体内能一定小C.同温度、同质量的氢气和氧气,氢气的分子动能大D.一定质量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加E.物体机械能增大时,其内能一定增大[解析]物体的内能大小是由温度、体积、分子数共同决定的,内能不同,物体的温度可能相同,故A正确;温度低的物体,分子平均动能小,但分子数可能很多,故B错误;同温度、同质量的氢气与氧气分子平均动能相等,但氢气分子数多,故总分子动能氢气的大,故C正确;当分子平均距离r≥r0,物体膨胀时分子势能增大,故D正确;机械能增大,若物体的温度、体积不变,内能则不变,故E错误.[答案]ACD5.下列说法正确的是()A.内能大的物体含有的热量多B.温度高的物体含有的热量多C.水结成冰的过程中,放出热量,内能减小D.物体放热,温度不一定降低E.物体放热,内能不一定减小[解析]热量是过程量,故A、B错误;水结成冰,分子动能不变,分子势能减小,即内能减小,放出热量,故C正确;晶体凝固时,放出热量,温度不变,故D正确;改变物体的内能有做功和热传递两种方式,故E正确.[答案]CDE6.(2015·高考全国卷℃)下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变[解析]将一块晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.熔化过程中,晶体的温度不变,但内能改变,故选项E错误.[答案]BCD7.下列说法不正确的是()A.把一枚针轻放在水面上,它会浮在水面上.这是由于水表面存在表面张力的缘故B .在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力C .将玻璃管道裂口放在火上烧,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故D .漂浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体呈各向同性的缘故E .当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故[解析] 水的表面张力托起针,A 正确;B 、D 两项也是表面张力原因,故B 、D 均错误,C 项正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E 错误.[答案]BDE8.(2014·高考福建卷)如图为一定质量理想气体的压强p 与体积V 关系图象,它由状态A 经等容过程到状态B ,再经等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是( )A .T A <TB ,T B <T CB .T A >T B ,T B =TC C .T A >T B ,T B <T CD .T A =T B ,T B >T C[解析] 根据理想气体状态方程pV T=k 可知,从A 到B ,温度降低,故A 、D 错误;从B 到C ,温度升高,故B 错误、C 正确.[答案]C9.一定质量的理想气体的状态经历了如图所示的a →b 、b →c 、c →d 、d →a 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( )A .a →b 过程中不断增加B .b →c 过程中保持不变C .c →d 过程中不断增加D .d →a 过程中保持不变E .d →a 过程中不断增大[解析] 由题图可知a →b 温度不变,压强减小,所以体积增大,b →c 是等容变化,体积不变,因此A 、B 正确;c →d 体积不断减小,d →a 体积不断增大,故C 、D 错误,E 正确.[答案]ABE10.如图,一定量的理想气体从状态a 沿直线变化到状态b ,在此过程中,其压强( )A .逐渐增大B .逐渐增小C .始终不变D .先增大后减小[解析] 法一:由题图可知,气体从状态a 变到状态b ,体积逐渐减小,温度逐渐升高,由pV T=C 可知,压强逐渐增大,故A 正确.法二:由pV T =C 得:V =C p T ,从a 到b ,ab 段上各点与O 点连线的斜率逐渐减小,即1p逐渐减小,p 逐渐增大,故A 正确.[答案]A11.关于热力学定律,下列说法正确的是( )A .为了增加物体的内能,必须对物体做功或向它传递热量B .对某物体做功,必定会使该物体的内能增加C .可以从单一热源吸收热量,使之完全变为功D .不可能使热量从低温物体传向高温物体E .功转变为热的实际宏观过程是不可逆过程[解析] 内能的改变可以通过做功或热传递进行,故A 正确;对某物体做功,物体的内能不一定增加,B 错误;在引起其他变化的情况下,可以从单一热源吸收热量,将其全部变为功,C 正确;在有外界影响的情况下,可以使热量从低温物体传向高温物体,D 错误;涉及热现象的宏观过程都具有方向性,故E 正确.[答案]ACE热力学第一定律说明发生的任何过程中能量必定守恒,热力学第二定律说明并非所有能量守恒的过程都能实现.1.高温物体热量Q 能自发传给热量Q 不能自发传给低温物体2.功能自发地完全转化为不能自发地完全转化为热量3.气体体积V 1能自发膨胀到不能自发收缩到气体体积V 2(较大)4.不同气体A 和B 能自发混合成不能自发分离成混合气体AB12.根据你学过的热学中的有关知识,判断下列说法中正确的是( )A .机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能B .凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C .尽管技术不断进步,热机的效率仍不能达到100%D .制冷机在制冷过程中,从室内吸收的热量少于向室外放出的热量E .第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来解析:选ACD.机械能可以全部转化为内能,而内能在引起其他变化时也可以全部转化为机械能,A正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,B错误;尽管科技不断进步,热机的效率仍不能达到100%,C正确;由能量守恒知,制冷过程中,从室内吸收的热量与压缩机做的功之和等于向室外放出的热量,故D正确;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,而是违背了热力学第二定律,第二类永动机不可能制造出来,E错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理选修3-3知识点总结一.分子动理论1.物质是由大量分子组成的(1)分子很小:①直径数量级为10-10m 。
(液体分子用油膜法估测分子大小)②质量数量级为10-26kg 。
(2)分子数目特别大:1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)微观量与宏观量:①微观量:分子体积V 0、分子直径d 、分子质量m 0.②宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ.③关系分子的质量:m 0=M N A =ρV mN A.分子的体积:V 0=V m N A =M ρN A.物体所含的分子数:N=VV m·N A=mρV m·N A或N=mM·N A=ρVM·N A.(4)分子的两种模型①球体模型直径d=36Vπ.(常用于固体和液体)②立方体模型边长d=3V0.(常用于气体)(5)常识性的数据:①室温可取27℃②标准状况下:大气压p0=76cmHg、温度T=273K、摩尔体积V=22.4L。
2.分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了分子的无规则运动。
布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3.分子间的相互作用力与分子势能分子力F分子势能E p随分子间距的变化图象随分子间距的变化情况r<r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引<F斥,F表现为斥力r增大,分子力做正功,分子势能减小;r减小,分子力做负功,分子势能增加r>r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引>F斥,F表现为引力r增大,分子力做负功,分子势能增加;r减小,分子力做正功,分子势能减小r=r0F引=F斥,F=0分子势能最小,但不为零r>10r0(10-9m)F引和F斥都已十分微弱,可以认为F=0分子势能为零注:若果只有分子力做功,则分子动能和分子势能之和不变。
4.温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
热力学温度与摄氏温度的关系:273.15T t K=+5.内能(1)分子势能:分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。
分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。
(r r=时分子势能最小)特别提醒:物体的体积越大,分子势能不一定就越大,如0℃的水结成0℃的冰后体积变大,但分子势能却减小了.(2)分子动能①分子动能是分子热运动所具有的动能。
②分子热运动的平均动能是所有分子热运动的动能的平均值,温度是分子热运动的平均动能的标志。
③分子热运动的总动能是物体内所有分子热运动动能的总和。
(3)物体的内能物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。
(理想气体的内能只取决于温度)(4)改变内能的方式二.气体6.分子热运动速率的统计分布规律(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间。
(2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律分布。
(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变。
(4)速率为零的分子是不存在的。
(5)纵坐标表示各速率区间的分子数占总分子的百分比,曲线下方的面积为“1”。
7.气体实验定律玻意耳定律查理定律盖—吕萨克定律内容一定质量的某种气体,在温度不变的情况下,压强与体积成反比一定质量的某种气体,在体积不变的情况下,压强与热力学温度成正比一定质量的某种气体,在压强不变的情况下,体积与热力学温度成正比表达式p 1V 1=p 2V 2p 1T 1=p 2T 2或p 1p 2=T 1T 2V 1T 1=V 2T 2或V 1V 2=T1T 28.理想气体状态方程(1)理想气体①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体。
①微观上讲,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间。
③理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在(2)理想气体的状态方程一定质量的理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pVT=C (3)重要推论①查理定律的推论:Δp =p1T 1ΔT②盖—吕萨克定律的推论:ΔV =V1T 1ΔT③理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+……(4)气体状态变化的图象类别图线特点举例p VpV =CT (其中C 为恒量),即pV 之积越大的等温线,温度越高,线离原点越远p 1Vp =CT 1V ,斜率k =CT ,即斜率越大,温度越高p Tp =C V T ,斜率k =CV ,即斜率越大,体积越小V TV =C p T ,斜率k =Cp,即斜率越大,压强越小9.气体压强的微观解释大量分子频繁的撞击器壁的结果影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)三.固体、液体和物态变化10.晶体与非晶体分类比较晶体非晶体单晶体多晶体外形规则不规则熔点确定不确定物理性质各向异性各向同性原子排列有规则,但多晶体每个晶体间的排列无规则无规则形成与转化有的物质在不同条件下能够形成不同的形态,同一物质可能以晶体和非晶体两种不同的形态出现,有些非晶体在一定条件下也可转化为晶体典型物质石英、云母、食盐、硫酸铜玻璃、蜂蜡、松香(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性。
(2)只要是具有各向异性的物体必定是晶体,且是单晶体。
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体。
(4)晶体和非晶体在一定条件下可以相互转化。
11.晶体的微观结构(1)晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列。
(2)用晶体的微观结构解释晶体的特点现象原因单晶体有规则的外形由于内部微粒有规则的排列由于内部从任一结点出发在不同方向的相同距离上的单晶体各向异性微粒数不同晶体的多形性由于组成晶体的微粒可以形成不同的空间点阵12.液晶(1)液晶分子既保持排列有序而显示各向异性,又可以自由移动位置,保持了液体的流动性。
(2)液晶分子的位置无序使它像液体,排列有序使它像晶体。
(3)液晶分子的排列从某个方向看比较整齐,而从另外一个方向看则是杂乱无章的。
(4)液晶的物理性质很容易在外界的影响下发生改变。
13.表面张力(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力。
(2)表面特性:表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜,分子势能大于液体内部的分子势能。
(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线。
(4)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小。
(5)表面张力的大小:跟边界线的长度、液体的种类、温度都有关系。
14.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽。
(2)未饱和汽:没有达到饱和状态的蒸汽。
15.饱和汽压(1)定义:饱和汽所具有的压强。
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
16.空气的湿度(1)定义:空气的干湿程度。
(2)描述温度的物理量①绝对湿度:空气中所含水蒸气的压强.②相对湿度:空气中水蒸气的压强与同一温度时水的饱和汽压之比。
即:相对湿度=水蒸气的实际压强同温度水的饱和汽压。
注意:人对潮湿程度的感觉取决于相对湿度而非绝对湿度。
四.热力学定律与能量守恒17.改变系统内能的两种方式:做功和热传递(1)热传递有三种不同的方式:热传导、热对流和热辐射(2)这两种方式改变系统的内能是等效的(3)区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移18.热力学第一定律表达式;u W Q∆=+19.热力学第二定律(1)常见的两种表述:①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到_高温物体。
②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。
a.“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助。
b.“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等。
(2)热力学第二定律的实质:热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
热力学过程方向性实例:符号WQu∆+外界对系统做功系统从外界吸热系统内能增加系统对外界做功系统向外界放热系统内能减少特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程。
20.熵增加原理熵是分子热运动无序程度的定量量度。
在任何自然过程中,一个孤立系统的总熵不会减少。
21.能量守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变第一类永动机不可制成是因为其违背了热力学第一定律第二类永动机(即效率为100%的热机)不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)22.能量耗散系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用,能量耗散过程就是能量品质降低的过程。
五.其他结论1.在任何状态下,一切物质的分子都在永不停息的做无规则的热运动。