10吨发酵罐物料衡算

10吨发酵罐物料衡算
10吨发酵罐物料衡算

10吨发酵罐产山东链霉素物料衡算

一、发酵罐底料的物料用量:

=2%×10000=200kg (7400/吨)

淀粉: m

01

豆粉: m

=0.4%×10000=40kg (3100/吨)

02

=0.05%×10000=5kg (3100/吨)

硫酸镁: m

03

氯化钠: m

=0.05%×10000=5kg (10000/吨)

04

=0.128%×10000=12.8kg (18000/吨)

磷酸氢二钾: m

05

=0.001%×10000=0.1kg (15000/吨)

硫酸亚铁: m

06

物料总价格= 200×7.4+40×3.1+5×3.1+5×10+12.8×18+0.1×15=1901.4元二、培养液连续灭菌用蒸汽量:

灭菌加热过程中用0.4MPa,I=2748.5KJ/kg,加热至120°C,冷却水由20°C 升到45°C。消毒灭菌用蒸汽量(D):

D=[10×2.01×(120-20)×1.07]/(2748.5-120×4.18)=0.95t

考虑到1吨种子罐用量约为0.1t

因此总蒸汽用量为1.05吨

2.01是糖液的比热容[kJ/(kg?K)]

因此总的耗煤量=(1050 ×2748.5 )/29307.6≈100kg

1公斤标煤=29307.6kJ/k

三、发酵罐空罐灭菌蒸汽量:

1、发酵罐体加热用蒸汽量

发酵罐公称容积10m3,材料为碳钢,发酵罐罐体重2.36t,比热容0.5kJ/(kg·℃),使用0.4MPa蒸汽(表压)灭菌,发酵罐罐压保持在0.15MPa(表压)下,由20℃升至127℃,维持1h。其蒸气用量为:

D=[2.36×1000×0.5×(127-20)]/(2748.5-535.4)=57.02kg

式中2748.5 ——0.4MPa(表压)蒸汽热焓,kJ/kg

535.4——0.15MPa,127℃时蒸汽凝结水热焓,kJ/kg

2、填充发酵罐空间所需蒸汽量

公称容积10m 3发酵罐的全容积为12m 3,其蒸气用量为:

D=12×1.39=16.68kg

式中 ρ——加热蒸汽的密度,ρ=1.39kg/m 3

发酵罐灭菌 (0.15MPa ,表压) 1h 。

3、灭菌过程的热损失

辐射与对流联合给热系数α,罐外壁温度60℃。

10m 3发酵罐的表面积为14.6m 2,消耗蒸汽量为:

D=[14.6×41.5×(60-20)]/(2748.5-535.5)=10.9kg

4、罐壁附着洗涤水升温所需蒸汽量

D=[14.6×0.001×1000×(127-20) ×4.18]/(2748.5-535.4)=2.97kg

000——水密度 (kg/m 3)

式中 0.001——附壁水平均厚度

总蒸汽消耗量

灭菌过程蒸汽渗漏,取总汽消耗量的30%,空罐灭菌蒸汽消耗量=(57+16.68+10.9+2.97)/(1-0.3)=125.1kg/h

每空罐灭菌1.5 h ,用蒸汽量:125.1×1.5=187.7(kg/罐)

1吨种子罐蒸汽用量约为发酵罐的0.12倍

因此总蒸汽用量=187.7×1.12=210.224

因此总的耗煤量=(210.224 × 2748.5 )/29307.6≈20kg

1公斤标煤=29307.6kJ/k

四、水用量

1、发酵液水用量≈10t

2、培养基冷却用水量:由120°C 热料通过与生料热交换,降至80°C,再用水冷却至32°C,冷却水由20°C 升至45°C,计算冷却水量(W ):

W=[10000×2.01×(80-32)]/[(45-20) ×4.18]=9.2t

)C h m /(kJ [5.41)2060(19.09.332???=-?+=α

3、发酵过程产生的热量及冷却用水量。

发酵过程的热量通过发酵液温度升高进行计算:关闭冷却水观察罐内发酵液

温度升高,计算Q

最大

根据经验山东链霉菌素的发酵热高峰值约18810 KJ/(m3·h)

10 m3发酵罐,冷却水进口温度10°C,出口温度20°C,冷却水用量(W):W=(10×18.81)/[4.18×(20-10)]=4.5t/h

共发酵6天总用水量=4.5×24×6=648t

4、清洗用水

根据经验约为1吨

总用水量=9.2+1+10+648=668.2t

五、发酵液浓缩

10吨发酵液浓缩为500kg,此时抗生素含量为2.6%,符合生产需要。

因此除去9.5吨水所需成本≈ [(9.5 × 2602.7)/(70%×80%×29307.6)] ×0.8=1506.6元

2602.7为水从20°C到100°C蒸汽的热焓

煤价0.8元/kg

干燥机出热效率80%

锅炉效率70%

干燥机耗电成本= 4.75 × (9500/678) ×0.6 = 40元

六、总成本

灭菌理论上共需价格=(100+20)÷0.7×0.8=137.2元

蒸汽锅炉按照70%效率,原煤折合为标准煤价格≈800元/吨

发酵罐搅拌耗电价格=24×6×22×0.6=1900元

发酵罐搅拌功率22kw

用水价格=668.2×3.6=2405.5元

培养基价格=1901.4元

干燥价格 = 40 + 1506.6 = 1546.6

因此总成本=1901.4 + 137.2 + 1900 + 2405.5 +1546.6 = 7890.7元

10吨发酵液共产生10 × 1.3 = 13 kg 抗生素

因此每kg抗生素成本 = 7890.7/13 = 607 元。

精馏塔中的物料衡算

3.4精馏塔的工艺条件及有关物性数据的计算 3.4.1操作温度的计算 1.)塔顶温度计算 查文献乙醇-水溶液中乙醇摩尔分数为0.70和0.80时,其沸点分别为78.7℃78.4℃塔顶温度为 D T ,则由内插法: 0.7078.7 0.800.7078.478.7D D x T --=--, 78.24D T ?=℃ 3.)塔釜的温度 查文献乙醇-水溶液中乙醇摩尔分数为0.00和0.05时,其沸点分别为100℃和90.6℃设塔顶温度为 W T ,则由内插法: 0.00100 0.050.0090.6100 W W x T --=--, 96.92W T ?=℃ 则 精馏段的平均温度: 278.2482.13 80.192 m T +==℃ 提馏段的平均温度: 196.9282.13 89.532 m T += =℃ 3.4.2操作压强 塔顶压强:P D =100 kpa 取每层塔板压降:ΔP=133.322 pa 则 进料板压力: 1000.77104.9F P kpa =+?= 塔釜 压力: 1000.77104.9W P kpa =+?= 则 精馏段的平均操作压强: 1100104.9 102.52 m P kpa +== 提馏段的平均操作压强: 2110.5104.9 107.72m P +== .)液相的平均密度 0.843 D x =0.013W x =

由 1 1 i i i n αρρ ==∑ 计算 (1.)对于塔顶 078.24D T C = 查文献 3741.83/A kg m ρ=,3972.9/B kg m ρ= 质量分率 ()0.84346.07 0.93210.84346.0710.84318.02 A α?= =?+-? 10.0679B A αα=-= 则 1A B D A B ααρρρ= +?A B A LB D 1L ρααρρ=+ D ρ31775.2/0.93210.0679 763.6972.9 m kg ==+ (2.)对于进料板 82.13F T C = 查文献 3739.6/A kg m ρ=,3970.50/B kg m ρ= 质量分率 ()0.215746.07 0.41270.215746.0710.215718.02 A α?= =?+-? 10.5102B A αα=-= 则 1A B F A B ααρρρ= +?A B A LB 1F L ρααρρ=+ F ρ31862.1/0.41270.5873 739.6970.5 m kg ==+ (3.)对于塔釜 096.92W T C = 160.009195x = 查文献 3721.2/A kg m ρ=,3955.1/B kg m ρ=

物料衡算与能量衡算

物料衡算与能量衡算 5.1概述 工艺通过甲苯和甲醇采用纳米ZSM-5分子筛催化下通过烷基化反应制得对二甲苯,得到了高纯度的对二甲苯,并且在工艺流程中实现了甲苯和甲醇的循环利用,达到了经济环保的要求。 设计过程中利用Aspen Plus 对全流程进行模拟,并在此基础上完成物料衡算、能量衡算。以工段为单位进行物流衡算,全流程分为甲苯甲醇烷基化反应工段、闪蒸——倾析工段、脱甲苯工段、对二甲苯提纯工段。 5.2物料衡算 5.2.1物料衡算基本原理 系统的物料衡算以质量守恒为理论基础,研究某一系统内进出物料量及组成的变化,即: 系统累计的质量=输入系统的质量-输入系统的质量+反应生成的质量-反应消耗的质量 假设系统无泄漏: R R O U T IN C G F F dt dF -+-=/ 当系统无化学反应发生时: O U T IN F F dt dF -=/ 在稳定状态下: 0/=-=O U T IN F F dt dF ,O U T IN F F = 注:IN F —进入系统的物料流率; OUT F —流出系统的物料流率; R G —反应产生物料速率; R C —反应消耗物料速率。

5.2.2 物料衡算任务 通过对系统整体以及部分主要单元的详细物料衡算,得到主、副产品的产量、原料的消耗量、“三废”的排放量以及最后产品的质量指标等关键经济技术指标,对所选工艺路线、设计流程进行定量评述,为后阶段的设计提供依据。 5.2.3系统物料衡算 详见附录,物料衡算一览表。 5.3能量衡算 5.3.1基本原理 系统的能量衡算以能量守恒为理论基础,研究某一系统内各类型的能量的变化,即: 输入系统的能量=输出系统的能量+系统积累的能量 对于连续系统: ∑∑-=+IN O U T H H W Q 注:Q —设备的热负荷; W —输入系统的机械能; ∑OUT H —离开设备的各物料焓之和; ∑IN H —进入设备的各物料焓之和。 本项目的能量衡算以单元设备为对象,计算由机械能转换、化学反应释放能量和单纯的物理变化带来的热量变化。 5.3.2能量衡算任务 (1) 、确定流程中机械所需的功率,为设备设计和选型提供依据。 (2) 、确定精馏各单元操作中所需的热量或冷量及传递速率,确定加热剂和冷剂的用量,为后续换热和公用工程的设计做准备。 (3) 、确定反应过程中的热交换量,指导反应器的设计和选型。

板式精馏塔项目设计方案

板式精馏塔设计方案 第三节精馏方案简介 (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 设计方案的确定及工艺流程的说明 原料液由泵从原料储罐中引岀,在预热器中预热至84 C后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽 流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25 C后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 第四节:精馏工艺流程草图及说明

、流程方案的选择

1. 生产流程方案的确定: 原料主要有三个组分:C2°、C3二、C3°,生产方案有两种:(见下图A , B )如 任务书规定: 图(A ) 为按挥发度递减顺序采出,图(B )为按挥发度递增顺序采出。在基本有机化工 生产过程中,按挥发度递减的顺序依次采出馏分的流程较常见。 因各组分采出之 前只需一次汽化和冷凝,即可得到产品。而图(B )所示方法中,除最难挥发组 分外。其它组分在采出前需经过多次汽化和冷凝才能得到产品, 能量(热量和冷 量)消耗大。并且,由于物料的循环增多,使物料处理量加大,塔径也相应加大, 再沸器、冷凝器的传热面积相应加大,设备投资费用大,公用工程消耗增多,故 应选用图(A )所示的是生产方案。 2. 工艺流程分离法的选择: 在工艺流程方面,主要有深冷分离和常温加压分离法。 脱乙烷塔,丙烯精制 塔采用常温加压分离法。因为 C2, C3在常压下沸点较低呈气态采用加压精馏沸 点可提高,这样就无须冷冻设备,可使用一般水为冷却介质,操作比较方便工艺 简单,而且就精馏过程而言,获得高压比获得低温在设备和能量消耗方面更为经 济一些,但高压会使釜温增加,引起重组分的聚合,使烃的相对挥发度降低,分 离难度加大。可是深冷分离法需采用制冷剂来得到低温, 采用闭式热泵流程,将 精馏塔和制冷循环结合起来,工艺流程复杂。综合考滤故选用常温加压分离法流 程。 1、 脱乙烷塔:根据原料组成及计算:精馏段只设四块浮伐 塔板,塔顶采用分 凝器、全回流操作 2、 丙烯精制塔:混合物借精馏法进行分离时它的难易程度取决 于混合 物的沸点差即取决于他们的相对挥发度丙烷一丙烯的 C2 C3 = C3 ° iC4 W% 5.00 73.20 20.80 0.52 0.48 100 工艺特点: 原料 C 工 C 。 (A ) (B )

物料衡算与热量衡算讲解

第4章物料衡算与热量衡算 4.1 物料衡算 物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11(法定节假日)=354×24=8496(小时) (2)设备大修 25天/年=600小时/年 (3)特殊情况停车 15天/年=360小时/年 (4)机头清理、换网过滤 6次/年 8小时/次 [354-(25+15)]×1/6次/天×8小时/次=396小时=16.5天=17天 (5)实际开车时间 365-11-25-15-17=297天 8496-600-360-396=7140小时 (6)设备利用系数 K=实际开车时间/年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段 物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材料量、废品量及消耗量的计算。 1 已知:PVC片材的年生产量为28500吨,其中物料自然消耗率为0.1%,产品合格率为94%,回收率为90%。每年生产297天,二班轮流全天24小时生产。物料衡算如下: 年需要物料量 M=合格产品量/合格率=28500/0.94≈30319.15t 1年车间进料量 M= M/(1-物料自然消耗率)=30319.15t /(1-0.1%)≈30349.50t 12年自然消耗量M=M-M=30349.50-30319.15=30.35t 132年废品量 M=M-合格产品量=30319.15-28500=1819.15t 14每小时车间处理物料量 M=30319.15/297/24h≈4.25t 5年回收物料量

第四章 物料衡算

第四章物料衡算 1.教学目的与要求 掌握化工过程物料衡算的基本方法,包括无化学反应的物料衡算、有化学反应的物料衡算。 2.主要教学内容 物料衡算式、物料衡算的基本方法、无化学反应的物料衡算、有化学反应的物料衡算以及物料衡算的计算机解题。 3.重点与难点: 重点:无化学反应及有化学反应的物料衡算方法 难点:具有循环、排放及旁路过程的物料衡算 4.学时分配: 8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。 通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另—些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在—个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,团为核反应能量变比非常大,此定律不适用)。

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,

物料衡算与热量衡算讲解

第 4 章物料衡算与热量衡算 4.1物料衡算物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11 (法定节假日)=354×24=8496(小 时) (2)设备大修25 天/ 年=600 小时/ 年 (3)特殊情况停车15 天/年=360 小时/ 年 (4)机头清理、换网过滤6次/年8 小时/次 [354-(25+15)] ×1/6 次/天×8 小时/次=396小时=16.5 天=17 天(5 )实际开车时间 365-11-25-15-17=297 天8496-600-360-396=7140 小 时 (6 )设备利用系数 K= 实际开车时间/ 年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材 料量、废品量及消耗量的计算

已知:PVC 片材的年生产量为28500 吨,其中物料自然消耗率为 0.1% ,产品合格率为94%,回收率为90% 。每年生产297 天,二班轮流全天24 小时生产。物料衡算如下: 年需要物料量 M 1=合格产品量/合格率=28500/0.94 ≈30319.15t 年车间进料量 M2= M 1/(1-物料自然消耗率)=30319.15t / (1-0.1% ) ≈30349.50t 年自然消耗量 M3=M 2-M 1=30349.50-30319.15=30.35t 年废品量 M4=M 1-合格产品量=30319.15-28500=1819.15t 每小时车间处理物料量M 5=30319.15/297/ 24h≈4.25t 年回收物料量 M6=M 4×回收率=1819.15 ×90%≈1637.23t 新料量 M7=M 2-M 6=30349.50-1637.23=28712.27t 2)造粒阶段 ① 确定各岗位物料损失率塑化造粒工段物料损耗系数

精馏段和提馏段操作线方程

《精馏段和提馏段操作线方程》教学设计

线方程可通过塔板间的物料衡算求得。 在连续精馏塔中,因原料液不断从塔的中部加入,致使精馏段和提馏段具有不同的操作关系,现分别予以讨论。 讲授新知讲述: 1、精馏段操作线方程 在图片虚线范围(包括精馏段的 第n+1层板以上塔段及冷凝器)内作 物料衡算,以单位时间为基准,可得: 总物料衡算:V=L+D 易挥发组分的物料衡算: V y n+1=Lx n+Dx D 式中: V——精馏段内每块塔板上升的蒸汽 摩尔流量,kmol/h; L——精馏段内每块塔板下降的液体 摩尔流量,kmol/h; y n+1——从精馏段第n+1板上升的蒸 汽组成,摩尔分率; x n——从精馏段第n板下降的液体组 成,摩尔分率。 聆听并看下图 学生书写记忆: D n n x D L D x D L L y + + + = +1 1 1 1+ + + = +R x x R R y D n n 分析归纳:(小组发言) 关于精馏段操作线方程的两点 讨论(1)该方程表示在一定操作条 件下,从任意板下降的液体组成x n 和 与其相邻的下一层板上升的蒸汽组 成y n+1 之间的关系。

将以上两式联立后,有: D n n x D L D x D L L y +++=+1 令R =L /D ,R 称为回流比,于是上式可写作: 111+++= +R x x R R y D n n 以上两式均称为精馏段操作线方程。 点评小组的发言:(略) (2)该方程为一直线方程,该直线过对角线上a (x D ,x D )点,以R /(R +1)为斜率,或在y 轴上的截距为 x D /(R +1)。 讲授新知 讲述: 2、 提馏段操作线方程 在图虚线范围(包括提馏段第m 层板以下塔段及再沸器)内作物料衡算,以单位时间为基准,可得: 总物料衡算:L’=V’+W 易挥发组分衡算:L’x m =V’y m+1+Wx W 式中: L ’——提馏段中每块塔板下降的液体流量,kmol/h ; V ’——提馏段中每块塔板上升的蒸汽流量,kmol/h ; x m ——提馏段第m 块塔板下降液体中 易挥发组分的摩尔分率; y m +1——提馏段第m +1块塔板上升蒸 聆听并看下图 学生书写记忆: W m m x W L W x W L L y ---= +''''' 1

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算 化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反” 即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守 恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡 算。正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程 学科的特点。为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、 能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。 物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料 之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的 基础。一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。 绘制流程图时应注意: 1.用简洁的长方形来表达一个单元,不必画蛇添足; 2.每一条物质流线代表一个真实的流质流动情况; 3.区别开放与封闭的物质流 4.区别连续操作与分批操作(间歇生产) 5.不必将太复杂的资料写在物质流线上 确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。 合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种: 1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。 2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb

等。 3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。 4.干湿基准:水分算在内和不算在内是有区别的,惯例如下: 烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基; 奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。 化肥、农药常指湿基,而硝酸、盐酸等则指干基。 选取基准后,就要确定着眼物料了。通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。对于有化学反应的过程,参加反应的组分不能被选作着眼物料。 列物料衡算方程式时计算中要注意单位一致。列方程时,要注意:物料平衡是关于质量的平衡,而不是关于体积或者摩尔数的平衡。只有密度相同时才可列关于体积的方程,根据元素守恒可列相应的关于摩尔数的方程。 物料衡算方程的基本形式为:(以下均为质量,若密度不变,也可用体积或体积流速) 输入+产生=输出+积累+消耗。 对于无反应的物理过程,没有产生和消耗,所以输入=输出+积累,如果是稳态过程,积累=0,则方程变为:输入=输出。以下分别对特定的单元操作讨论物料衡算关系。 1.输送:连续性方程,进管液体=出管液体;进泵液体=出泵液体 2.过滤:总平衡:输入的料浆=输出的滤液+输入的滤饼; 液体平衡:料浆中的液体=滤液中的液体+滤饼中的液体 3.蒸发:原料液=积累+母液+晶体+水蒸气 其他过程类似。值得注意的是,如果对于每个组分列物料衡算方程,则总衡算方程不用列出,因为其不独立。一般来说,对于无反应的物理过程,如果有n 个组分,就可以列出n个方程。 对于有化学反应的过程,物料衡算要更复杂一些,因为反应中原子重新组合,消耗旧物质,产生新物质,所以每一个物质的摩尔量和质量流速不平衡。此外,在化学反应中,还涉及化学反应速率、转化率、产物的收率等因素。为了有利于反应的进行,往往一种反应物要过量。因此在进行反应过程的物料衡算时,应考虑以上因素。对于不参加反应的惰性物质列衡算方程通常比较方便。通常来讲,总质量衡算和元素衡算用得较多,组分衡算对于有化学反应的过程不可以用。 有化学反应的过程物料衡算通常有以下几种方法:直接计算法、利用反应速率进行物料衡算、元素衡算法、化学平衡常数法、结点衡算法、联系组分衡算法等。

物料衡算

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,按正确的解题方法和步骤进行。尤其是对复杂的物料衡算题,更应如此,这样才能获得准确的计算结果。 4-3 画物料流程简图方法

求解物料衡算问题,首先应该根据给定的条件画出流程简图。图中用简单的方框表示过程中的设备,用线条和箭头表示每个流股的途径和流向。并标出每个流股的已知变量(如流量、组成)及单位。对一些未知的变量,可用符号表示。4—4 计算基准及其选择 进行物料、能虽衡算时,必须选择一个计算基准。从原则上说选择任何一种计算基准,都能得到正确的解答。但是,计算基准选择得恰当,可以使计算简化,避免错误。 对于不同化工过程,采用什么基准适宜,需视具体情况而定,不能什硬性规定。 根据不同过程的特点,选样计算基准时,应该注意以下几点: 1. 应选择已知变量数最多的流股作为计算基准。 2.对液体或固体的体系,常选取单位质量作基准。 3. 对连续流动体系,用单位时间作计算基准有时较方便。 4. 对于气体物料,如果环境条件(如温度、压力)已定,则可选取体积作基准。

物料衡算和热量衡算

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

化工原理(天大版)干燥过程的物料衡算与热量衡算

1 8.3干燥过程的物料衡算与热量衡算 干燥过程是热、质同时传递的过程。进行干燥计算,必须解决干燥中湿物料去除的水分量及所需的热空气量。湿物料中的水分量如何表征呢? 湿物料中的含水量有两种表示方法 1.湿基含水量w 湿物料总质量 湿物料中水分的质量= w kg 水/kg 湿料 2.干基含水量X 量 湿物料中绝干物料的质湿物料中水分的质量= X kg 水/kg 绝干物料 3.二者关系 X X w +=1w w X -=1 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。因此,用干基含 水量计算较为方便。 图8.7 物料衡算 符号说明: L :绝干空气流量,kg 干气/h ; G 1、G 2:进、出干燥器的湿物料量,kg 湿料/h ; G c :湿物料中绝干物料量,kg 干料/h 。 产品 G 2, w 2, (X 2), θ2 G 1, w 1, (X 1), θ1 L, t 2 , H 2

目的:通过干燥过程的物料衡算,可确定出将湿物料干燥到指定的含水量所需除去的水分量及所需的空气量。从而确定在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。 1.湿物料的水分蒸发量W[kg 水/h] 通过干燥器的湿空气中绝干空气量是不变的,又因为湿物料中蒸发出的水分被空气带 走,故湿物料中水分的减少量等于湿物料中水分汽化量等于湿空气中水分增加量。即: [])]([][)(1221221121H H L W X X G w G w G G G c -==-=-=- 所以:1212221 1 2111w w w G w w w G G G W --=--=-= 2.干空气用量L[kg 干气/h] 1212) (H H W L H H L W -=∴-=Θ 令121H H W L l -== [kg 干气/kg 水] l 称为比空气用量,即每汽化1kg 的水所需干空气的量。 因为空气在预热器中为等湿加热,所以H 0=H 1,0 21211H H H H l -=-=,因此l 只与空气的初、终湿度有关,而与路径无关,是状态函数。 湿空气用量:)1(0'H L L += kg 湿气/h 或)1(0'H l l += kg 湿气/kg 水 湿空气体积:H s L V υ= m 3湿气/h 或H s l V υ=' m 3湿气/kg 水 通过干燥器的热量衡算,可以确定物料干燥所消耗的热量或干燥器排出空气的状态。作为计算空气预热器和加热器的传热面积、加热剂的用量、干燥器的尺寸或热效率的依据。 1.流程图 温度为,湿度为H 0,焓为的新鲜空气,经加热后的状态为t 1、H 1、I 1,进入干燥器与湿物料接触,增湿降温,离开干燥器时状态为t 2、H 2、I 2,固体物料进、出干燥器的流量为G 1、G 2,温度为θ1、θ2,含水量为X 1、X 2。通过流程图可知,整个干燥过程需外加热量有两处,预热器内加入热量Q p ,干燥器内加入热量Q d 。外加总热量Q =Q p +Q d 。将Q 折合

精馏塔全塔物料衡算

一、精馏塔全塔物料衡算 )(:)(:)(:s kmol W s kmol D s kmol F 塔底残液流量塔顶产品流量进料量:塔底组成 :塔顶组成、下同):原料组成(摩尔分数x x x w D F a t F 4102.1?= 00F 46=x 00D 93=x 00W 1=x kmol kg 04.32=M 甲醇 kmol kg 02.18=M 水 原料甲醇组成: 00F 4.3202.18/5404.32/4604 .32/46=+= x 塔顶组成:00D 2.8802 .18/704.32/9304 .32/93=+=x 塔底组成:00W 6.002 .18/9904.32/104 .32/1=+=x 进料量: s kmol a t F 23 44 10205.23600 24300] 02.18/)324.01(04.32/324.0[10102.1102.1-?=??-+??=?= 物料衡算式为: x x x W D F W D W D F F +=+= 联立代入求解:3 108-?=D 2 10405.1-?=W 二、常压下甲醇—水气液平衡组成(摩尔)与温度关系 1、温度 C C C o o o t t t t t t t t t 2.99.......................... 06.0100 31.509.9210076.66 (100) 2.887 .6441.871009.667.6452.68....................67.74.323.9026.967.79.883.90W W W D D D F F F =--=--=--=--=--=--::: 精馏段平均温度: C o t t t 64.67276 .6652.682 D F 1=+= += 提馏段平均温度: C o t t t 86.832 76 .6652.682 W F 2 =+= +=

第二节精馏原理、第三节精馏塔物料衡算习

第二节精馏原理、第三节精馏塔物料衡算 复习 【学习目标】 1、理解精馏的原理,精馏过程及连续精馏的流程。 2、理解全塔物料方程、操作线方程,掌握有关的计算。 【学习过程】 一、简单蒸馏 1、简单蒸馏的定义: 2、简单蒸馏时一种、蒸馏操作。 3、简单蒸馏包含、和等设备。 4、随着蒸馏过程的进行,釜液中易挥发组分的含量不断,与之平衡的气相组成中易挥发组分的含量不断,釜中液体的泡点逐渐。 二、精馏原理 1、精馏过程就是将液相多次和将气相多次的过程,液体混合物经过 和后,便可以得到几乎完全的分离。 2、精馏装置的作用 ⑴塔板的作用 精馏塔塔板上气相中易挥发组分从上而下逐板;液相中难挥发组分从上而下逐渐;温度从上而下逐渐。 ⑵精馏段是指,其作用是 。 ⑶提馏段是指,其作用是 。 ⑷回流的作用 。⑸塔釜的作用 。 3、精馏连续进行的必要条件是。 4、精馏可以分为和。 三、精馏塔物料衡算的前提 1、为了简化精馏衡算,通常引入下列几种假设、、 和。 2、恒摩尔汽化是指 。 3、恒摩尔溢流是指 。 四、精馏塔物料衡算 1、精馏塔物料衡算包括、和。 2、全塔物料衡算的表达式为和。 3、精馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 4、提馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 5、精馏塔的进料状况包括(q )、(q )、 ( q )、(q )和(q )。 6、进料热状况参数表达式为,当进料状况为液体时,表达式为 。 7、进料状况方程(q线方程)的表达式为,代表提馏段操作线和精馏段操作线焦点轨迹方程。 8、精馏段操作线、提馏段操作线和进料状况操作线与对角线交点分别为、 和。 【基础练习】 1、在精馏塔内自上而下,气相中易挥发组分的含量逐板( ) A、增多 B、减少 C、不变 D、先减少后增多 2、在精馏操作中自上而下,精馏塔内温度的变化情况( )

啤酒糖化车间物料衡算与热量衡算

# 30000t/a12°淡色啤酒糖化车间物料衡算与热量衡算) 二次煮出糖化法是啤酒生产常用的糖化工艺,下面就以此工艺为基准进行糖化车间的热量衡算。由于没有物料数量等基础数据,因此,从物料计算开始。 已知物料定额的基础数据如表,绝对谷物的比热容为1.55Kj/kg*K, 12°麦汁在20℃时的相对密度为1.084,100℃时热麦汁的体积是20℃时的1.04倍;煮沸温度下(常压100℃)水的气化潜热为I=2257.2 Kj/kg,加热过程热损失取15%,0.3MPa的饱和水蒸气I=2725.2 Kj/kg,相应冷凝水的焓为561.47 Kj/kg,蒸汽热效率为0.95, I物料衡算 啤酒厂糖化车间的物料衡算主要项目为原料(麦芽、大米)和酒花用量,热麦汁和冷麦汁量,废渣量(糖化糟和酒花糟)等。 1.糖化车间工艺流程示意图 2.工艺技术指标及基础数据 我国啤酒生产现况决定了相应的指标,有关生产原料的配比、工艺指标及生产过程的损失等数据如上表所示。 根据基础数据,首先进行100kg原料生产12°淡色啤酒的物料计算,然后进行100L12°淡色啤酒的物料衡算,最后进行30000t/a啤酒厂糖化车间的物料平衡计算。 3. 100kg原料(75%麦芽,25%大米)生产12°淡色啤酒的物料计算 (1)热麦汁量 麦芽收率为:0.75(100-6)÷100=70.5% 大米受率为:0.92(100-13)÷100=80.04% 混合原料受得率为: (0.75×70.5%+0.25×80.04%)98.5%=71.79% 由此可得100kg混合原料可制得的12°热麦汁量为: (71.79÷12)×100=598.3kg 12°麦汁在20℃时的相对密度为1.084,而100℃热麦汁的体积是20℃时的1.04倍,故热麦汁(100℃)的体积为: (598.3÷1.084)×1.04=574 (L) (2)冷麦汁量为 574×(1-0.075)=531 (L) (3)发酵液量为: 531×(1-0.016)=522.5 (L) (4)过滤酒量为:

乙醇-水连续精馏塔的设计

化工原理课程设计任务书一 一、设计题目:乙醇精馏塔 二、设计任务及条件 (1)、进料含乙醇38.2%,其余为水(均为质量分率,下同) (2)、产品乙醇含量不低于93.1%; (3)、釜残液中乙醇含量不高于0.01%; (4)、生产能力5000T/Y乙醇产品,年开工7200小时 (5)、操作条件: ①间接蒸汽加热;②塔顶压强:1. 03 atm(绝对压强) ③进料热状况:泡点进料;④回流比:R=5 ⑤单板压降:75mm液柱 三、设计内容 (1)、流程的确定与说明; (2)、塔板和塔径计算; (3)、塔盘结构设计: i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。(4)、其它:i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量 四、设计成果 (1)设计说明书一份; (2)A4设计图纸包括:流程图、精馏塔工艺条件图。 化工原理课程设计任务书(6) (一) 设计题目 乙醇-水连续精馏塔的设计 (二) 设计任务及操作条件 1) 进精馏塔的料液含乙醇25%(质量分数,下同),其余为水; 2) 产品的乙醇含量不得低于94%; 3) 残液中乙醇含量不得高于0.1%; 4) 生产能力为日产(24小时)吨94%的乙醇产品; 5) 操作条件 a) 塔顶压力 4kPa(表压) b) 进料热状态自选 c) 回流比自选 d) 加热蒸气压力 0.5MPa(表压) e) 单板压降≤0.7kPa。 (三) 塔板类型

浮阀塔。 (四) 厂址 厂址为武汉地区。 (五) 设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算; 9) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求: 1) 绘制生产工艺流程图(A2号图纸); 2) 绘制精馏塔设计条件图(A2号图纸)。 3.4 浮阀精馏塔设计实例 3.4.1 化工原理课程设计任务书 1 设计题目:分离乙醇-水混合液的浮阀精馏塔设计 2 原始数据及条件 生产能力:年处理乙醇-水混合液14.0万吨(开工率300天/年)原料:乙醇含量为20%(质量百分比,下同)的常温液体 分离要求:塔顶乙醇含量不低于95%

物料衡算和热量衡算

物料衡算和热量衡算 以下计算部分将对石灰石-石膏法的脱硫工艺进行物料衡算、热量衡算、反应器的设计和换热器的设计等具体的步骤 物料衡算简化运算条件:物料衡算主要针对脱硫装置系统(即喷淋塔)和制浆系统(石灰石浆液)来进行的,两个系统之间来联系的纽带是在脱硫塔内进行的脱硫反应,即钙硫比(Ca/S)(选择为1.02,下面将详细论述)。以下条件在计算方法中被简化 (1)不包括吸收塔的损失 (2)假设烟气带入的粉尘为零 (3)假设工艺水和石灰石不含杂质 (4)假设原烟气和净烟气没有夹带物代入和带出系统 (5)假设没有除雾器冲洗水 (6)假设没有泵的密封水 (7)假设工艺系统是封闭的,没有环境物质的进入和流出 3.1吸收系统物料衡算和相关配置 喷淋塔内主要进行脱硫反应,由锅炉引风压机引来的烟气,经过增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从吸收塔顶部侧向离开吸收塔,塔的下部为浆液池。 前面已经详细地介绍了脱硫反应的机理,由此可知反应的物料比例为 CaCO3s Ca s 1.02S s 1.02SO2 1.02 : 1.02 : 1 : 1 设原来烟气二氧化硫SO2质量浓度为 a (mg/m3),根据理想气体状态方程 PV二nRT 可得:7700mg/m3273K amg/m3(273 145)K 求得: 4 4 a=1.18X 104mg/m4 而原来烟气的流量(145C时)为20X 104(m3/h)换算成标准状态时(设为V a) 200000m3/h (145 273)K V a273K 求得 V a=1.31 X 105 m3/h=36.30 m3/s 故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为

浮阀精馏塔设计 -讲解

课程设计题目 浮阀精馏塔连续回收乙醇与水混合物中的乙醇设计 姓名:黄同月 学号:3212003902(30号) 班级:121103班 指导老师:罗儒显 完成时间:2014年9月18日

目录 一.板式精馏塔工艺设计内容及任务 (3) 1.1设计背景 (3) 1.2设计目的 (4) 1.3设计题目 (4) 1.4设计的要求 (4) 1.5设计条件及操作条件 (4) 1.6 浮阀塔及筛板塔的特性 (5) 1.6.1 浮阀塔的特性 1.6.2筛板塔的特性 二. 精馏塔工艺的设计 (6) 2.1精馏塔全塔物料衡算 (6) 2.2 理论塔板的计算 (7) 2.2.1最小回流比及操作回流比 2.2.2精馏段操作曲线 2.2.3提馏段操作曲线 2.2.4作直角阶梯图求理论塔板 2.3实际塔板数计算 (9) 2.4常用数据一览表 (9) 三.精馏塔尺寸计算 (9) 3.1塔径的初步设计 (10) 3.1.1塔径 3.1.2总塔高 3.2塔板主要工艺尺寸 (13) 3.2.1溢流装置 3.2.2降液管宽度W d 与降液管面积A f 3.2.3降液管底隙高度h 3.2.4筛板的布置 3.2.5开孔区面积 3.3浮阀数目及排列 (16) 3.3.1浮阀数目N 3.3.2阀孔排列 3.4各接管尺寸的确定 (17) 3.4.1进料管 3.4.2塔釜残夜出料管 3.4.3回流管 3.4.4塔顶上升蒸汽管

3.4.5水蒸气进口管 3.5精馏塔主要附属设备 (19) 3.5.1冷凝器 3.5.2再沸器 3.5.3除沫器 3.5.4法兰 3.5.5视镜 3.5.6塔体壁厚 3.5.7筒体与封头 四.流体力学验算 (21) 4.1气体通过浮阀塔版的压力降(单板压降) (21) 4.1.1干板阻力h c 4.1.2板上充气液阻力h 1 4.1.3由表面张力引起的阻力 4.2漏液验算 (21) 4.3液泛验算 (21) 4.4雾沫夹带验算 (22) 五.操作性能负荷图 (22) 5.1气相负荷下限线(又称漏液线),记为线1 (24) 5.2过量雾沫夹带线(又称为气相负荷上限线),记为线2 (24) 5.3液相负荷下限线,记为线3 (24) 5.4液相负荷上限线,记为线4 (25) 5.5液泛线,记为线5 (25) 六.浮阀塔板工艺设计结果一览表 (26) 七.参考文献 (27) 八.设计心得 (28) 一.板式精馏塔工艺设计内容及任务 1.1设计背景 随着世界石油资源的减少,作为生物燃料的无水乙醇在今后的动力燃料中可能占一席之地,而无水乙醇与汽油混合(俗称汽油醇) 可作为内燃机的燃料就成为

干燥过程的物料衡算和热量衡算

第三节 干燥过程的物料衡算和热量衡算 对干燥流程的设计中,物料衡算解决的问题: (1)物料气化的水分量W (或称为空气带走的水分量); (2)空气的消耗量(包括绝干气消耗量L 和新鲜空气消耗量L 0)。 而热量衡算的目的,是计算干燥流程的热能耗用量及各项热量分配(即预热器换热量 p Q ,干燥器供热量D Q 及干燥器热损失L Q )。 一、湿物料中含水率表示法 湿物料=水分+绝干物料 (一)湿基含水量w %100?= 总质量 水 m m w (8-12) 工业上常用这种方法表示湿物料的含水量。 (二)干基含水量X X =湿物料中水分质量/湿物料中绝干料质量 (8-13) 式中 X ――湿物料的干基含水量,kg 水分.(kg 绝干料)-1。 两者关系: X X w += 1 (8-14) 或 w w X -= 1 (8-15)

二、干燥器的物料衡算 图8-7 各流股进、出逆流干燥器的示意图 图8-7中,G ――绝干物料流量,kg 绝干料.s -1; L ――绝干空气消耗量,kg 绝干气.s -1; H 1 ,H 2――分别为湿空气进、出干燥器时的湿度,kg.(kg 绝干气)-1; G 1 ,G 2――分别为湿物料进、出干燥器时的流量,kg 湿物料.s -1; X 1 ,X 2――分别为湿物料进、出干燥器时的干基含水量,kg 水分.(kg 绝干料)-1。 (一)水分蒸发量W )()(122121H H L G G X X G W -=-=-= (8-16) 其中 )1()1(2211w G w G G -=-= (8-17) (二)空气消耗量L 对干燥器作水分物料衡算:2211GX LH GX LH +=+ 则: ()121221H H W H H X X G L -= --= (8-18) 若设: 121 H H W L l -= = (8-19) 式中 l ――每蒸发1kg 水分消耗的绝干空气量,称为单位空气消耗量,kg 绝干 气.(kg 水分)-1; L ――单位时间内消耗的绝干空气量,kg 绝干气.s -1。

相关文档
最新文档