高压变频器培训讲义
变频器理论培训讲课内容

共模电压和谐波引起 轴电流
四象限运行
转向 正常 运行 转矩 X 反转 制动
X
变频器自身的保护功能
输出过载 输出过流 电网过电压 电网欠电压 电网失电 直流母线过电压 直流母线欠电压 变压器过热 缺相 控制电源掉电 驱动故障 功率器件过热 散热风机故障 DCS给定掉线 接地故障 光纤故障 整流失败(电流源) 逆变失败(内反馈)
交直交电流源型
以电感为储能元件 直接控制电机电流 输入功率因数低,有高次谐波 电感损耗大 控制与电机参数有关 可回馈能量到电网 不允许运行中直接跳高压 抑制电源过电压能力弱 抗电网扰动能力弱
小结
交交变频由于调速范围有限,谐波大,已趋于淘汰; 交直交变频调速直接控制电机的输入电压和电流, 变频器和电机系统效率高,调速范围宽,是最直接 和彻底的调速解决方案
功率单元旁路时的电压输出能力
以7级串联为例,旁路一级后,系统电压下降1/7,即 电压为86%;系统可补偿5%,系统电压为90%,如 86% 5% 90% 果调速范围在90%以内,则不受影响。
关心电压谐波还是电流谐波
相对于电网容量,变频器容量一般较小,不会对电 网电压造成太大影响。 所以,应该关心电流谐波,它具有累加效应,谐波 设备容量到达一定数量时,会对电网造成污染。 国际上对于谐波的限制,是考察电流谐波。
内反馈调速(保定北方、哈九州) 三电平高中型(ABB) 三电平高中高型(西门子) 电流源型(AB) 单元串联多电平型
(Robicon、利德华福、东方凯奇、东芝)
用户关心的几个问题(1)
整流脉冲数 电平数和dv/dt 功率单元旁路时的电压输出能力 关心电压谐波还是电流谐波 如何消除谐波 功率因数的定义 效率的测量方法和误差;损耗的构成 变频器对电机的保护 手动旁路和自动旁路
高压变频器培训ppt课件

高压变频器在电力、钢铁、有色金属、采矿、石油、化工、制药等领域得到广泛 应用。例如,在电力行业,高压变频器用于火电厂的引风机和送风机的节能调速 ;在钢铁行业,用于高炉鼓风机和炼钢厂的除尘风机等设备的调速控制。
高压变频器的发展历程与趋势
要点一
总结词
要点二
详细描述
概述高压变频器的发展历程,并预测未来的发展趋势。
逆变器采用绝缘栅双极晶体管(IGBT )作为开关器件,通过控制开关的通 断来改变输出电压的幅值和频率。
整流器采用大电容滤波,使输入的工 频电流得到平滑,达到直流电的效果 。
高压变频器的性能特点
01
02
03
04
调速范围广
高压变频器的输出频率可以从 0到50Hz,甚至更高,因此可 以满足各种不同的调速需求。
节能效果显著
高压变频器可以根据实际需要 调整电机转速,从而减少不必
要的能源浪费。
启动平稳
高压变频器具有软启动功能, 可以减小电机启动时的冲击电
流,延长设备使用寿命。
自动化控制
高压变频器可以与PLC等控制 系统配合使用,实现自动化控
制,提高生产效率。
高压变频器与其他调速方式的比较
与传统挡板调节方式相比,高压 变频器具有更高的调节精度和响 应速度,同时还可以实现远程控
按拓扑结构分类
可分为交-直-交型和交-交型高压变频器。其中交 -直-交型高压变频器应用较为广泛。
按输出电压调制方式分类
可分为脉冲宽度调制(PWM)和空间矢量调制( SVM)等类型的高压变频器。PWM调制方式较 为常用,而SVM调制方式具有更好的电压输出波 形和更高的输出电压。
常见高压变频器品牌与型号
考虑负载特性
高压变频器培训讲义

安装环境要求:避免阳光 直射、高温、潮湿等恶劣 环境
安装注意事项
安装空间要求:确保设备 有足够的空间,方便操作 和维护
电缆连接要求:电缆连接 要牢固、可靠,避免松动 或短路
安全防护要求:安装过程 中要注意安全,防止意外 事故发生
调试要求:安装完成后要 进行调试,确保设备正常 运行
调试流程与步骤
行业政策法规影响及政策建议
行业政策法规概 述
政策法规对高压 变频器市场的影 响
政策建议:促进 高压变频器市场 发展
未来政策走向预 测
汇报人:
Hale Waihona Puke 安全事故应急处理流程立即切断电源,停 止设备运行
疏散人员,确保安 全
报告相关部门,启 动应急预案
配合专业人员进行 现场处置和救援
市场现状及竞争格局分析
市场规模及增长趋势
主要竞争者分析
市场份额分布情况
行业发展趋势预测
技术发展趋势预测及创新方向探讨
技术发展趋势:高压变频器技术将不断向高效、节能、环保方向发展 创新方向探讨:未来高压变频器将更加注重智能化、网络化、模块化等方面的创新 市场需求预测:随着工业自动化水平的提高,高压变频器市场需求将持续增长 行业竞争格局:高压变频器市场竞争激烈,企业需要加强技术研发和市场拓展
维护保养计划与内容
定期检查: 对高压变频 器进行定期 检查,包括 外观、接线、 散热系统等
清洁保养: 定期对高压 变频器进行 清洁保养, 保持设备清 洁干燥
紧固件检查: 对高压变频 器的紧固件 进行检查, 确保其紧固 可靠
更换易损件: 定期更换高 压变频器的 易损件,如 风扇、滤清 器等
参数设置与 调整:根据 实际运行情 况对高压变 频器的参数 进行设置和 调整,确保 其正常运行
高压变频器原理及维护培训PPT课件

4.11 用带塑料吸嘴的吸尘器彻底清洁柜内外,保证设备无尘,保 证散热;
4.12 检验接地是否良好。
五、变频器的故障查询及处理方法
5.1故障的分类
SH-HVF系列高压变频器故障按照保护等级不同分为消息、报警、 故障。
4.3 变频器正常运行时,应注意经常对变频器室温度进行巡视,保证变 频器的环境温度不高于40℃。
4. 变频器的日常维护
4.4 门窗通风散热是否良好; 4.5 变频器进风口、变频器房间进风口是否因积尘过多而堵塞; 4.6 变频器运行参数是否正常,有无报警; 4.7 柜内冷却风机运转是否正常; 4.8 变频器内是否有振动或异常声音等; 4.9 变频器滤网拆卸步骤图。变频器滤网安装步骤与滤网拆卸步骤
6KV 异步电动机
(2)功率单元
所有的功率模块均为智能化设计,具有强大的自诊断指导能力, 一旦有故障发生时,功率模块将故障信息迅速返回到主控单元 中,主控单元及时将主要功率元件IGBT关断,保护主电路;同 时在中文人机界面上精确定位显示故障位置、类别。在设计时 已将一定功率范围内的单元模块进行了标准化考虑,以此保证 了单元模块在结构、功能上的一致性。当模块出现故障时,在 得到报警器报警通知后,可在几分钟内更换同等功能的备用模 块,减少停机时间。
移相变压器实物图
移相 变压器
6KV交流 输入
功率单元 A1
功率单元 A2
功率单元 A3
功率单元 A4
功率单元 A5
功率单元 A6
功率单元 B1
功率单元 B2
功率单元 B3
功率单元 B4
功率单元 B5
功率单元 B6
高压变频器培训资料课件

04
高压变频器的安装与调试
安装注意事项
空间要求
确保高压变频器周围有 足够的空间,以便进行
安装和维护。
环境条件
选择干燥、通风良好、 无腐蚀性气体的环境, 以延长设备使用寿命。
电源配置
确保电源电压稳定,并 配备相应的断路器和保
护措施。
接地处理
确保设备接地良好,以 保障操作安全。
调试步骤与方法
01
02
保护电路
保护电路介绍
保护电路用于在高压变频器出现 异常情况时,及时切断电源或采 取其他保护措施,防止设备损坏
和事故发生。
组成部件
保护电路主要由输入滤波器、熔断 器、过流保护器和过压保护器等部 分组成。
工作原理
当变频器出现短路、过载或过压等 异常情况时,保护电路会立即切断 电源或采取其他保护措施,防止设 备损坏和事故发生。
高压变频器培训资料课件
目录
• 高压变频器概述 • 高压变频器的基本结构与组件 • 高压变频器的控制策略与调速原理 • 高压变频器的安装与调试 • 高压变频器的维护与保养 • 高压变频器的应用案例与效果分析
01
高压变频器概述
高压变频器的定义与工作原理
总结词:深入理解
详细描述:高压变频器是一种能够将输入的工频电源转换为高压、可调频率电源 的设备。其工作原理主要基于电力电子技术和控制理论,通过改变电源的频率来 实现电机的调速。
常见故障的预防措施
预防过载
合理设置高压变频器的负载,避免过载运行,导 致设备损坏。
预防电压波动
确保输入电压稳定,避免电压波动对高压变频器 造成影响。
预防短路
定期检查高压变频器的电路,确保无短路现象, 防止设备损坏。
高压变频器原理及维护培训PPT课件

国家政策
解读国家关于节能环保、智能制 造等相关政策对高压变频器行业
的影响及要求。
行业标准
介绍国内高压变频器行业的标准 体系,包括产品标准、试验标准
、安全标准等。
2024/1/25
33
面临挑战和机遇分析
01
02
03
技术挑战
分析高压变频器在提高效 率、降低成本、增强可靠 性等方面面临的技术挑战 。
故障定位
根据故障现象和诊断结果,确定故障部位
部件更换
将损坏的部件更换为新的部件,注意选用合 适的型号和规格
2024/1/25
功能测试
在更换部件后,对变频器进行功能测试,确 保故障排除
26
实例分析:典型故障排除过程
2024/1/25
案例一
01
过电压故障排除
故障现象
02
变频器报过电压故障
诊断结果
03
输入电压过高
控制精度
根据工艺要求选择相应的控制 精度。
9
典型应用场景举例
电力行业
冶金行业
石油化工
市政建设
风机、水泵、压缩机等 辅机的节能改造。
高炉鼓风机、除尘风机 等设备的变频调速。
输油泵、注水泵、压缩 机等设备的变频控制。
供水、供暖、污水处理 等领域的节能改造。
2024/1/25
10
行业应用现状及趋势
应用现状
先进控制算法
研究模型预测控制、无差拍控制等 先进控制算法在高压变频器中的应 用,提高系统动态性能和稳态精度 。
智能化技术
探讨人工智能、大数据等技术在高 压变频器中的应用,实现故障诊断 、寿命预测等智能化功能。
32
行业标准和政策法规解读
高压变频培训课件

2023-11-07•高压变频器概述•高压变频器系统组成及主要部件•高压变频器的控制策略与性能优化•高压变频器的调试与维护•高压变频技术的发展趋势与展望目•案例分析与应用实践录01高压变频器概述高压变频器是一种用于电力转换的设备,它可以将输入的电源电压进行调节,从而输出不同频率的电源。
高压变频器通常由输入变压器、功率单元、控制单元和输出变压器等组成。
高压变频器的定义高压变频器广泛应用于电力、冶金、化工、建材等领域,用于驱动电动机,实现电机的节能和调速。
特别是在电力领域,高压变频器被广泛应用于风力发电、水力发电、火力发电等场景。
高压变频器的应用场景高压变频器的工作原理高压变频器通过控制功率单元的开关状态,将输入的电源电压进行调制,从而输出不同频率的电源。
高压变频器的控制单元采用数字信号处理器(DSP)进行控制,可以实现高精度的调节和稳定的运行。
高压变频器采用直接高压变频技术,将输入的电源电压直接进行调节,无需进行DC/DC转换。
02高压变频器系统组成及主要部件高压变频器系统组成控制单元对整个系统进行控制和调节,保证系统的稳定运行。
逆变器将直流电源转化为交流电源,实现电机所需电压和频率的调节。
中间直流环节连接输入和输出,起到稳定直流电压的作用,为逆变器提供稳定的直流电源。
输入变压器提供初级电源的电压变换,同时实现电气隔离,保护系统安全。
功率单元高压变频器的核心组成部分,实现电压的变换和功率的传递。
整流器逆变器滤波器将直流电逆变为交流电,实现电压和频率的调节。
滤除输出电流中的高次谐波,保证输出电流的纯净。
03功率单元02 01将输入的交流电整流为直流电。
控制器根据输入信号和设定值,控制整流器和逆变器的运行,实现电压和频率的调节。
传感器监测系统的运行状态,将信号反馈给控制器,实现系统的自动控制。
控制单元冷却系统散热器将功率单元产生的热量散发到空气中,防止设备过热损坏。
风扇将散热器表面的热量吹走,加速空气流通,提高散热效果。
卧龙-3300V高压变频器客户培训资料共36页

2-3 功率单元
➢H桥结构中,功率单元主要 由整流模块、电容滤波模块、 逆变模块构成。 ➢滤波电容器能够稳定直流电 压,吸收变压器原边高压开关 产生的脉动电流。
功率单元
无须高压,在低压时也能进行测试功能,属国内外少有 不同功率等级的单元外形结构设计统一,互换性强。
1-2 功率因数
卧龙高压变频器
输入功率因数 大于0.9能指标之三
输出波形质量
1-3 输出波形
质量
变频器输出波形质量
包括输出谐波、dv/dt、共模电压、转矩脉动等指标。变频 器输出谐波与变频器逆变器的结构密切相关。
变频器输出波形对电机的影响:
变频器输出谐波会引起的电机附加发热和转矩脉动,噪音 增加,输出dv/dt和共模电压会影响电机的绝缘。
目录
1 2 变频器性能指标 3 新一代高压变频器
变频器特殊功能
高压变频器的性能指标
1
变频器系统
1-1 输入谐波
高压大功率的性能指标一
输入谐波
1-1 输入谐波
输入谐波的标准
IEEE519-1992国际标准 GB/T14549-93国家标准
1-1 输入谐波
GB/T14549-93国家标准
对电压而言,就6KV和10KV电网要求电压总谐波不超过4% 对电流而言,在基准短路容量为100MVA的条件下,对每次 谐波电流的幅值提出了具体的要求,对6KV电网:
2次谐波电流小于43A 3次谐波电流小于34A 4次谐波电流小于21A 5次谐波电流小于34A 6次谐波电流小于14A
将各次谐波换算成百分比,也为4%左右。
1-1 输入谐波
二极管六脉冲整流电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•
•
变频器结构图
(三相输入单相输出)
C1
Q1
+ 1 Q3
IGBTQ1-Q4
A
2 + 3 Q2 Q4
T2
B
Power Output of Cell
T1
整流部分
直流环节 逆变部分
IGBT工作原理
Uc1
T0
t UAB i Q1 Q4
UAB
Q1
Q4
ห้องสมุดไป่ตู้
t
t
T
Q2 Q3
Q2
Q3
当Q1、Q4同时闭合时,电机上的电压为A点高,B 点低;Q2、Q3同时闭合时,则电机上的电压为A 点低B点高。这样和连续不断地交替开合,在电机 两端就形成了一交变电压,也就是交流电。
NXG 控制硬件CPU 板前视图
芯片组: Intel ® 430 TX
VGA 以太网口 User I/O
Intel Pentium ® MMX CPU 266 MHz
键盘
NXG 控制硬件CPU板后视图
CompactFlash™ 模块
SDRAM 模块 64MB
CPU 板
• CPU: Intel Pentium ® MMX CPU 266 MHz • 系统内存: 两个 144-pin SODIMM RAM 插槽 支持 8M256MSDRAM 内存
接受并处理来自CPU板的电压指令,使输出波形平滑。
可为多达24个单元提供移相式PWM控制, 并且PWM频率可 调 (IGBT 开关) 频率范围: 200 - 1200Hz
采样频率: 3.0 - 6.0kHz (根据开关频率及单元数目自动调节)
在板电池后备 RAM (60KB). 用于存储历史记录,故障记录 ,累计耗电量,及其他需要在电源丢失后保持的变量。
处理电源故障及硬件过流故障。
NXG 控制硬件光纤接口板
单元光纤接口
数字调制板 接口
NXG 控制硬件光纤接口板
每块板能提供多达12个单元的接口 通过一个60芯扁平电缆与数字调制板连接 输入/输出信号经过缓冲处理 ISA 总线金手指仅提供+-5V电源
光纤收/发器最高工作频率高达 20MHz
新型系统接口板正面
新型系统接口板反面
NXG 控制硬件数字调制板
调制器 FPGA’s
旁路控制 FPGA 中压旁路板接 口 (光纤)
至光纤接口板
ISA总线
系统接口板插座
数字调制板
基于EPLD 芯片– 结构灵活 与功率单元的通讯速率达到10us 故障处理及单元通讯管理 旁路控制
NXG 控制硬件
NXG 控制基于PC结构
所有电路板插入一个ISA总线底板上:
CPU板 模/数转换板 通讯板 系统接口板 调制板 光纤接口板
插件箱外部:
信号调理板, 用户输入/输出板
中压旁路板
电源 (DCR控制, WAGO, and Hall Effect)
风机部分
变压器及输 入/输出柜
功率单元 及控制柜
用户控制线和控制电 源部分
控制部分及与单 元部分的接口
完美无谐波变频器变压器部分
变压器
变压器部分的安装接头和主要器件
用户输入/输出部分
用户输入/输出接线
单元和控制部分
单元部分
控制部分 (后面)
Pwr only
Fiber Optic Boar d (2nd) Channels 13-24
旁路控制 FPGA
连接到每个单 元的旁路接触 器线圈
至数字调制器 的光纤接口
NXG控制硬件中压旁路板
• 该板能控制多达18个单元旁路接触器
• 通过光纤接口与数字调制板通讯 • 由功率单元柜中的专用电源供电 • 内置故障安全保护 • 该板在所有完美无谐波变频器中通用
NXG 控制硬件旁路电源板
NXG 控制硬件旁路电源板
12 BiDir Fiber Optic Channels
Cells 13-24
60 Pin Ribbon Cable Modulator Board
Bypass Fiber Optic
Bus Intfc.
Bypass F.O. Out Sys. Interupt, IOC, Pwr & HE Fail
功率单元输出波形图
罗宾康完美无谐波变频器原理及 结构
第二部分罗宾康高压变频器原理
该变频器为单元串联,移相式PWM,电压源 型高压变频器,36脉波整流,13电平输出 (相电压,对6KV变频器而言)
功率单元 A1 功率单元 B1
完美无谐波3KV高压变频器组成结构 18脉冲整流结构
功率单元结构
功率单元 C1
电机调速分类
• • 改变电机的极对数 改变电机的转差率
1. 2. 3. 4.
•
转子串电阻调速 定子调压调速 电磁转差离合器调速 转子串级调速
改变电机的供电频率,即变频调速
三 保持磁通恒定的必要性
• 电机在额定速度下都应保持磁通恒定 • 磁通太强-电机励磁电流过大
• 磁通太弱-电机铁芯利用不充分,输出力矩 下降。
Interface to Analog I/O Board Interface to Signal Conditioning Board
Interface to Digital Modulator Board
NXG 控制硬件系统接口板
为所有模拟量提供信号调理。
检测电机实际电压
检测电机实际电流 检测变频器输入电压 (线电压)
50 Pin Ribbon Cable IP Carrier Board (Analog I/O)
Bus Intfc.
IP C Analog In
IP B
IP A
WAG O Single Bo ard Computer
CompactFlash Disk Comm 1 RS232 (WAGO) Fieldbus Module (I/O System) I/O
系统接口板插 头
使能继电器 120V and 24VDC
输入/输出电流
隔离CT 电压/电流检测 信号接线端子
NXG 控制硬件信号调理板
标准DIN卡轨安装
120VAC or 24VDC 使能继电器输入
输入/输出电流备有二次隔离CT
备有接线端子用于检测信号及负载电阻接线
NXG 控制硬件中压旁路板
•
Compact Flash™ IDE接口盘 用于存储:
变频器控制软件 系统程序 配置文件, 内置以太网控制器: Intel ® SB82558/SB82559, RTL-8139;
10/100 Mbps
NXG 控制硬件A/D转换板
ISA Carrier Board
A/D转换模 块
MV Bypass Board
60 Pin Ribbon Cable Pwr only Fiber Optic Boar d (1st) Channels 1-12 12 BiDir Fiber Optic Channels SOP download cable & Debug port Input & Output Voltage & Current Feedback, HE Burden resistors & Pwr, CR3, future Cells 1-12
检测变频器输入电流 (线电流)
变频器硬件过流设定 电源故障监视
提供所有电压/电流的测试点
与ISA总线无通讯联系,仅从ISA获取电源(+-12V)
集成A/D板与SIB的新型系统接口板
罗宾康完美无谐波变频器最新产品采用了 数字A/D板与SIB合二为一的新型系统接口 板,该板集成了A/D板与SIB的所有功能.
NXG控制硬件 A/D转换板
ISA 总线基板能插入最多3块A/D转换板。 模块 #1:
未定义
模块 #2:
脉冲编码器板,用于闭环矢量控制。
模块 #3 ADC:
40 路通道, 12 bit, 10Sec 转换时间, 同时5路采样 输入/输出电流检测 输入/输出电压检测
NXG 控制硬件系统接口板
f
通用变频器的基本结构
• 整流器 • 中间直流环节
• 逆变器
• 控制电路
AC DC AC
整流器
直流环节
逆变器
电动机
控制电路
整流器
• 三相全波半控整流: 效率略低,可省去充电限幅电路。 • 斩控式整流器(PWM整流器): 效率高,功率因素可调,能量可回馈电网 • 三相全波桥式二极管整流: 效率高,成本低,控制简单
• 器件为全控型(GTR,GTO,IGBT,IGCT等)
D1 U1 D2
D3 C1 D4
K1 A M
K3 B
k2
k4
通用变频器的分类
• 按主回路结构形式: 1. 电流源型 2. 电压源型 按控制方式分: 1. U/f控制 2. 转差频率控制 3. 矢量控制 4. 直接转矩控制 按输出电压调节方式分类 1. PAM(脉冲幅值调制方式) 2. PWM(脉冲宽度调制方式) 按采用的功率器件分类 1. BJT(双极晶体管) 2. GTO(门极可关断晶闸管) 3. IGBT(绝缘栅双极晶体管) 4. 其他
Communications Board Bus Intfc. RS232 UCS #1 UCS #2 RS485 Modbus
10 Pin Ribbon Cable
37 Pin Cable Signal Conditioning Board (Isolation)