生活史对策

合集下载

生态学-5-生活史对策

生态学-5-生活史对策
原因:能量的限制导致必须进行能量的权衡。 有机体在一定时间内所获得的能量是有限的,不可能 同时和等量地用于生长、生殖、维持消耗、存储、修 复、抵抗等各种生命过程。
2.能量分配与权衡
➢进化与原则:自然选择必然有利于形成这样的生活史 对策:其能量分配合理,各个生命过程协调最佳,并使 物种的繁殖和存活效益或适合度达到最大。 ➢适合度:适合度是衡量遗传物质在进化过程中传递能 力的尺度,适合度包括繁殖和存活能力。各种生活史对 策的价值,就决定于这一生活史对策对于生存和繁衍后 代所作的贡献的大小,即适合度的值。 ➢能量的限制导致必须进行能量的权衡 ➢能量分配
个体大小与世代周期的关系(正相关)
个体大小与内禀增长率(负相关)
3.生殖对策
3.1两种相反的生殖进化对策 Lack(1954)研究鸟类生殖进化时发现:鸟类生殖时有 保证其幼鸟存活率最大为目标的倾向。成鸟大小相似的 物种,如果产大卵,其生育力就低;如果产小卵,其生 育力就高。即鸟类在生殖率的进化中,有两种相反方向 可供选择,一种是低生育力的,亲体有良好的保护下代 的育幼行为;另一种是高生育力的,没有亲代关怀的行 为。
✓单次生殖或多次生殖 ✓大量小型后代或少量大型后代
生长与繁殖的权衡:花旗松生长率与繁殖率负相关。
花旗松Pseudotsuga menziesii
不繁殖的雌鼠妇比繁殖的生长能高三倍。 繁殖与生存的权衡: 产奶雌马鹿死亡率明种个体体型大小与其寿命有很强的正相关 关系,并与内禀增长率有同样强的负相关关系。 解释: ➢Southwood(1976)认为随着生物个体体型变小,使 其单位重量的代谢率升高,能耗大,所以寿命缩短。反过来 生命周期的缩短,必将导致生殖时期的不足,从而只有提高 内禀增长率来加以补偿。 ➢从生存角度看,体型大、寿命长的个体在异质环境中更有 可能保持它的调节功能不变,种内和种间竞争力会更强。而 小个体物种由于寿命短,世代更新快,可产生更多的遗传异 质性后代,增大生态适应幅度,使进化速度更快。

生活史对策 进化心理学

生活史对策 进化心理学

生活史对策进化心理学进化心理学是一门研究人类心理特征如何适应环境的学科。

人类作为智慧生物,其心理特征的形成是经过漫长的进化过程。

生活史对策是进化心理学中的一个重要概念,指的是个体在面临不同环境压力时,选择适应性策略以提高自己的生存和繁殖成功率。

本文将从进化心理学的角度,探讨生活史对策对人类行为和心理的影响。

一、生活史对策的概念生活史对策是指个体在面临环境压力时,选择适应性策略以提高自身生存和繁殖的成功率。

生活史对策与个体的资源分配有关,资源包括时间、能量和投资。

个体会根据自身情况和环境条件,选择不同的生活史对策,例如早熟、晚熟、快繁殖、慢繁殖等。

这些对策的选择会影响个体的行为和心理特征。

二、生活史对策与行为生活史对策对个体的行为有着重要的影响。

在资源丰富的环境中,个体更倾向于采取快繁殖策略,追求短期的利益和高风险的行为,以增加自己的生存和繁殖机会。

而在资源稀缺的环境中,个体则更倾向于采取慢繁殖策略,追求长期的利益和低风险的行为,以保证自己的生存和繁衍。

生活史对策还会影响个体的社交行为。

在资源丰富的环境中,个体更容易表现出自我竞争和攀比的行为,以争夺更多的资源。

而在资源稀缺的环境中,个体更倾向于合作和共享资源,以确保群体的生存和繁衍。

三、生活史对策与心理特征生活史对策也会对个体的心理特征产生影响。

在资源丰富的环境中,个体更容易表现出冒险和探索的心理特征,以寻求更多的机会和利益。

而在资源稀缺的环境中,个体更倾向于保守和稳定的心理特征,以减少风险和损失。

生活史对策还会对个体的性格产生影响。

在资源丰富的环境中,个体更容易表现出外向和自信的性格特征,以增加社交和竞争的机会。

而在资源稀缺的环境中,个体更倾向于内向和谨慎的性格特征,以保护自己的利益和生存。

四、生活史对策的适应性生活史对策的选择是基于个体与环境的匹配度,因此具有一定的适应性。

在资源丰富的环境中,快繁殖和冒险的生活史对策更容易带来成功。

而在资源稀缺的环境中,慢繁殖和保守的生活史对策更容易保证个体的生存和繁殖。

生活史对策概述

生活史对策概述

生活史对策概述大气基地贺园园1111700026生活史与生活史对策:生活史(life history)意为生物从其出生到死亡所经历的全部过程,也叫生活周期(life cycle)。

生活史性状包括出生时个体大小;生长形式;成熟年龄;成熟时个体大小;后代的数量、大小、性比;特定年龄和大小的繁殖投入;特定年龄和大小的死亡规律;寿命等。

生活史对策(life history strategy)是指生物在生存斗争中获得的生存对策,也称生态对策(bionomic strategy )或进化对策,例如生殖对策、取食对策、迁移对策、体型大小对策等主要内容:任何生物做出的任何一种生活史对策,都意味着能量的合理分配,并通过这种能量使用的协调,来促进自身的有效生存和繁殖。

每个生物具有生长、维持生存和繁殖三大基本功能,生物必须采取一定的策略配置能够获得的有限资源,其核心主要强调在特定环境中提高生殖、生存和生长能力的组合方式.1)生长对策●生长速度早期演替种:早期迅速生长,具开拓对策(白桦)后期演替种:早期生长缓慢,具保守对策(红松)●生长方式以温带木本植物为例,其顶枝形成有两种主要方式:①有限生长类型:顶枝在冬季完全定型,冬芽形成时就决定了叶子数目。

②无限生长类型:冬芽只含有少量叶原基,在下一个生长季,顶枝尖端在生长季内还能产生新的叶子和节间。

●根冠比率—物质分配2)生殖对策生殖对策实际就包括两个方面的问题:第一是生殖者存活的问题,也即生殖的代价问题,生物生殖必然带来变化的生理压力和个体危险,因此,也就必然会影响到生物的生存;第二是生殖的效率问题,生物选择的对策,都旨在提高生殖的效率,这一点可从植物的生殖行为中证实。

1)体型效应物种个体的大小与其寿命有很强的正相关关系。

2)成体的存活与繁殖成熟个体存活率低,生物繁殖越早,投资于繁殖的能量越多;成熟个体存活率越高,生物的繁殖期越晚(个体较大),分配于繁殖的能量就越少。

3)当前繁殖与未来繁殖如果未来生命期望低,分配给当前繁殖的能量应该高,而如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低。

生态学第6章生活史对策

生态学第6章生活史对策

生殖价和生殖效率
• 所有生物都不得不在分配给当前繁殖(Current reproduction)的能量和分配给存活的能量之间进行 权衡,后者匀未来的繁殖(future reproduction)相 关联。 • 生殖价(reproduction value)是该个体马上要生产 的后代数量加上那些预期的其在以后的生命过程中 要生产的后代数量。进化预期使个体传递给下一世 代的总后代数量最大,换句话说,使个体出生时的 生殖价最大。如果未来生命期望低,分配给当前繁 殖的能量应该高,而如果剩下的预期寿命很长,分 配给当前繁殖的能量应该较低。
繁殖格局
一、一次繁殖和多次繁殖: 一次繁殖和多次繁殖: 一次性繁殖生物:大多数昆虫; 1. 一次性繁殖生物:大多数昆虫;一年生草 本植物;多年生植物(例竹类植物); 本植物;多年生植物(例竹类植物); 多次性繁殖生物:多年生植物; 2. 多次性繁殖生物:多年生植物;大型动物 特别是哺乳类动物); (特别是哺乳类动物); 一年生植物是适应恶劣环境的一种进化; 3. 一年生植物是适应恶劣环境的一种进化;
繁殖格局
二、生活年限与繁殖: 生活年限与繁殖: 植物:一年生植物;二年生植物; 1. 植物:一年生植物;二年生植物;多年生 植物; 植物; 动物:短命型;中等寿命型;长寿型; 2. 动物:短命型;中等寿命型;长寿型; 动植物的繁殖类型与环境条件有密切关系; 3. 动植物的繁殖类型与环境条件有密切关系;
能量分配与权衡
A.生物不可能使其生活史的每一组分都达到最 生物不可能使其生活史的每一组分都达到最 而必须在不同生活史组分间进行“ 大,而必须在不同生活史组分间进行“权 衡”。 B.在繁殖中,生物可以选择能量分配方式。 在繁殖中, 在繁殖中 生物可以选择能量分配方式。 C.资源或许分配给一次大批繁殖 单次生殖, 资源或许分配给一次大批繁殖----单次生殖 资源或许分配给一次大批繁殖 单次生殖, 或更均匀地随时间分开分配----多次生殖 多次生殖。 或更均匀地随时间分开分配 多次生殖。 D.同样的能量分配,可产生或者许多小型后代, 同样的能量分配, 同样的能量分配 可产生或者许多小型后代, 或者少量大型的后代。 或者少量大型的后代。

生态学:第6章 生活史对策

生态学:第6章  生活史对策
如果增加某一环节的能量分配,就必然要以减少其它环节能量分配为代价。
Growth
Competition Reproduction
6.2 体型效应 ✓ 生物个体大小差异非常悬殊,主要是由其遗传特征决定的。 ✓ 生物个体大小与其生长发育、繁殖、行为、进化、生态适应性等密切相关。
生物个体大小示意图
✓ 个体大小与生活史周期(寿命)的长短有很好的正相关性,即随着物种个体的增 大,寿命有增长的趋势(左图);但个体大小与内禀增长率之间呈显著的负相关 关系(右图)。
✓ 缓步动物也因此被认为是生命力最强的动物。在隐生的情况下,可以在高温 (151 ℃)、接近绝对零度(-272.8 ℃)、高辐射、真空或高压的环境下生存数 分钟至数日不等。曾经有缓步动物隐生超过120年的记录。
缓步动物门:是动物界的一个门,主要生活 在淡水的沉渣、潮湿土壤以及苔藓植物的水 膜中,少数种类生活在海水的潮间带。有记 录的大约有750余种。
stress
6.3.4 机遇、平衡、周期性生活史对策 Winemiller & Rose(1992)对鱼类生活史对策的研究表明,与种群动态相关的参数, 如:繁殖力(产生的后代数量)、幼体成活率和性成熟年龄之间存在权衡,在这三 维空间中,鱼类的生态对策被划分为三种。
Байду номын сангаас
繁 ①机遇对策:繁殖力低、 殖 幼体成活率低、性成熟 力
✓ 动物界的休眠大致有两种类型: ① 一类是严冬季节来临时(低温和缺少食物)进行的冬眠,如青蛙、刺猬; ② 一类是酷暑、干旱季节的夏眠,如非洲肺鱼、黄鼠。
✓ 休眠是动物界较为常见的现象,如:两栖动物、爬行动物、部分无脊椎动物、少 数的鸟类和哺乳动物。
滞育(diapause):
✓ 昆虫和其他节肢动物长期适应不良环境而形成的种的遗传性。自然情况下,个体 发育到一定阶段,在不良环境到来之前,其生理上已经有所准备,由某些季节信 号(如光周期变化)的诱导而引起的形态发生停顿、生理活动降低等静止现象。

生活史对策

生活史对策


体型大小与寿命
Southwood(1976)的解释: 随着生物个体体型变小,使 其单位质量的代谢率升高, 能耗大,所以寿命缩短。
个体大小与世代周期的关系
• 体型大小与内禀增长率
Southwood(1976)的解释: 随着生物个体体型变小,使 其单位质量的代谢率升高, 能耗大,所以寿命缩短。 生命周期的缩短,导致生殖 时期的不足,从而提高内禀 增长率加以补偿。
第六章 生活史对策
01
能量分配与权衡
02
体型效应
03
生殖对策
04 滞育和休眠、迁移
05
复杂的生活周期
06
衰老
什 么 是 生 活 史
生活史(life history):生物从其出生到死亡 所经历的全部过程。 生活史的关键组分:身体大小、生长率、繁殖、 寿命
什 么 是 生 活 史
•亚洲象
体长5 - 7m; 寿命70 - 80年; 孕期约为600 - 640天,5 - 6年产一胎,每胎产1仔。
低繁殖能量分配和长的世代时间。
r-选择 和 K-选择相关特征的比较
r-选择
气候
死亡 存活 种群大小 种内、种间竞 争 选择倾向
K-选择
稳定、可预测、较确定
比较有规律、受密度制约 存活曲线Ⅰ、Ⅱ型,幼体存 活率高 时间上稳定,密度临近环境 容纳量K值。 经常保持紧张
多变,难以预测、不确定
常是灾难性的、无规律、非密 度制约 存活曲线Ⅲ型,幼体存活率低 时间上变动大,不稳定,通常 低于环境容纳量K值。 多变,通常不紧张
表达的则不能被去除而持久地保持在种群中 拮抗性多效模型 部分基因对早期繁殖有利对生命晚 期有害
第六章 生活史对策

6生活史对策

6生活史对策

环境
生物进化方向
6.3.2 生殖价和生殖效率
所有生物都不得不在分配给当前繁殖 ( Current
reproduction)的能量和分配给存活的能量之间进行权
衡,后者与未来的繁殖(future reproduction)相关联。 生殖价(reproduction value)是该个体马上要生 产的后代数量加上那些预期的其在以后的生命过程中要 生产的后代数量。进化预期使个体传递给下一世代的总 如果未来生命期望低,分配给当前繁殖的能量应该高, 而如果剩下的预期寿命很长,分配给当前繁殖的能量应 该较低。
第三部分:种群生态学
三 、 生 活 史 对 策
• 1、能量分配与权衡 • 2、体型效应 • 3、生殖对策 • 4、滞育和休眠 • 5、迁移 • 6、复杂的生活周期
• 7、衰老
生活史(life history):指生物从出生到死
亡所经历的全部过程。
生活史的关键组分包括身体大小(body size)、生长率(growth rate)、繁殖 (reproduction)和寿命(longevity)。 生态对策(bionomic strategy)或生活史对策 ( life history strategy ):生物在生存斗争中 获得的生存对策,如生殖对策、取食对策、 迁移对策 避敌对策、体型大小对策、r对策和K对策等。
2、体型效应
2.1 体型大小与寿命
体型大小是生物体最明显的表面性状, 是生物的遗传特征,它强烈影响到生物 的生活史对策。
一般来说,物种个体体型大小与其寿 命有很强的正相关关系。
图片:体型效应
体 型 效 应
2.2 体型大小与内禀ቤተ መጻሕፍቲ ባይዱ长率
物种个体体型大小与内禀增长率有很强的负相关关 系。

第六章生活史对策解析

第六章生活史对策解析
A. 生物不可能使其生活史的每一组分都达到最大,而必须在不同生活 史组分间进行“权衡”。
B. 在繁殖中,生物可以选择能量分配方式。 C. 资源或许分配给一次大批繁殖----单次生殖,或更均匀地随时间分
开分配----多次生殖。 D. 同样的能量分配,可产生或者许多小型后代,或者少量大型的后代。
6.2 能量分配与权衡
6.3 体型效应
目前世界上恐龙脊椎化石最高高度为1.5米,而亚洲至今已 发现的恐龙脊椎化石还没有超过1.1米的。宁夏灵武发掘出 亚洲最大个体恐龙部分骨架 。据专家凭借其中一根高达
1.1米的脊椎判断,这是世界级的恐龙化石。
6.4 生殖对策
6.4.1 r-选择和K-选择
r-选择(r-strategy):生活在条件 严酷和不稳定的环境中,种群内 的个体常把较多的能量用于生殖, 力争使种群增长率达到最大化的 选择。 r-选择( r-selection)者 :采取r对策的生物称r-选择者。
6.5
生境分类 不同繁殖付出生境的物种: 高繁殖付出(高CR)生境物种:推迟繁殖后代, 竞争激烈; 低-CR生境物种:提前繁殖后代,竞争弱.
“两面下注”理论:
多次生殖:成体死亡率与幼体死亡率相比较 为稳定(在很长时期内产生后代);
单次生殖:幼体死亡率低于成体死亡率(分 配给繁殖的能量高,后代一次全部产出)
竞争对策(C-选择):在资源丰富的可预测生 增中的选择,主要将资源分配给生长。
胁迫-忍耐对策(S-选择):在资源胁迫的生境 中的选择,主要将资源分配给维持。
6.6 滞育和休眠
如果当前环境苛刻,而未来环境预期会更好,生物可能进入发育暂时 延缓的休眠状态。休眠(dormancy)亦称“蛰伏”。为适应不利的环 境条件,动物的生命活动处于极度降低的状态。 昆虫的休眠称做滞育,是比较常见的现象。 如果环境条件不适宜,种子可能就会作为种子库的一部分而留在土中 一段时间。有些种子如睡莲的种子可在库中存活成百上千年。 另外,缓步类动物,在发育的任何阶段都可以发生一种叫做潜生现象 的休眠,动物可以在这种状态下存活许多年。 这种蛰伏可作为日周期的一部分发生,如发生在蜂鸟、蝙蝠和鼠中的 那样,也可能持续较长时间 。 响应冷环境的深度蛰伏叫冬眠(hibernation) ,冬眠通常特征是心率 和总代谢降低、核心体温降低于10°C。 一些种类的鸟和哺乳动物,可以通过类似于冬眠的夏季休眠来度过沙 漠长期的高温和类似的生境,这种休眠叫做夏眠(estivation) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4),生殖价和生殖效率
x龄个体的生殖价(reproductive value)(RVx)是该个体马上 要生产的后代数量(当前繁殖输出),加上那些预期的以后 的生命过程中要生产的后代数量(未来繁殖输出)。
特点:
• 如果未来生命期望低,分配给当前繁殖的能量应该高,而 如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低。 • 个体的生殖价必然会在出生后升高,并随年龄老化降低。
生殖效率也是生殖对策的一个主要 问题。
生物是通过提高后代的质量与 投入能量的比值来达到提高生殖效 率的目的的。
大型和小型小天蓝绣球(Phlox drummondi) 生殖价随年龄的变化
5),生境分类 Grime的 植物生活史对策的分类——Grime的 CSR三角形
Grime(1979)认为有四种类型:
以短的寿命,高的相对生长率,高的种子产量为特征。在资源匮乏时,能 压缩营养部分的分配,增加生殖部分的分配,保证大量种子的产生。
• 极端对策(extreme strategy)
指在严重压迫和干扰下,不能发育(产生种子)的对策。
6),滞育和休眠 7),迁移 争对策(competitive strategy)
有利的环境中,常成为群落中的优势种,不利条件下,可通过营养器官的调 节来适应生境的变化。
• 耐逆境对策(stress-tolerant strategy)
多属于寿命长,生长慢,营养物质循环慢,开花既不繁多又不规则的常绿植物。
• 杂草对策(ruderal strategy)
第六章 生活史对策
1,生活史的概念
生活史(life history):生物从其出生到死亡所经历的 全部过程。
生活史的关键组分——身体大小、生长率、繁殖、寿命 生态对策(bionomic strategy):生物在生存斗争中获得的生存
对策。也称为生活史对策(life history strategy)
2,生活史对策的类型
1),能量分配与权衡
3),生殖对策
不同植物种的个体寿命(τ)和 生境中有利于该种一个世代生存 繁殖的时间长度(H)之比,可 表示生境持续稳定性。
τ/H
• r-选择 特点:快速发育,小型成体, 数量多而个体小的后代,高的 繁殖能量分配和短的世代周期。
• K-选择
特点:慢速发育,大型成体, 数量少但体型大的后代,低繁 殖能量分配和长的世代周期。
相关文档
最新文档