基于单片机的温度控制系统硬件的设计方案

合集下载

基于STM32单片机的温度控制系统设计

基于STM32单片机的温度控制系统设计

基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。

我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。

STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。

通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。

本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。

在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。

随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。

在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。

我们将对系统进行测试,以验证其性能和稳定性。

通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。

本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。

二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。

系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。

在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。

这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。

温度采集模块是系统的感知层,负责实时采集环境温度数据。

我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。

基于单片机的pid温度控制系统设计

基于单片机的pid温度控制系统设计

一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。

在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。

PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。

本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。

二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。

比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。

PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。

2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。

常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。

在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。

三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。

在设计单片机PID温度控制系统时,需要选择合适的单片机。

常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。

2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。

常见的温度传感器接口有模拟接口和数字接口两种。

模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。

3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。

在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。

四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。

常见的PID算法包括位置式PID和增量式PID。

在设计时需要考虑控制周期、控制精度等因素。

2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。

《2024年基于51单片机的温度控制系统设计与实现》范文

《2024年基于51单片机的温度控制系统设计与实现》范文

《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。

为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。

该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。

二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。

硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。

其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。

2. 软件设计软件部分主要包括单片机程序与上位机监控软件。

单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。

上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。

三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。

具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。

连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。

2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。

程序采用C语言编写,易于阅读与维护。

同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。

3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。

首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。

其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。

最后,对整个系统进行联调,测试其在实际应用中的性能表现。

四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。

基于单片机的水温控制器设计

基于单片机的水温控制器设计

基于单片机的水温控制器设计引言水温控制在很多领域中都具有重要的应用价值,例如温室、鱼缸、热水器等。

基于单片机的水温控制器能够自动调控水温,提高水温的稳定性和准确性。

本文将介绍如何设计一个基于单片机的水温控制器,以实现对水温的精确控制。

一、硬件设计1.单片机选择选择一个合适的单片机对于设计一个稳定可靠的水温控制器至关重要。

常用的单片机有STC89C52、AT89C52等。

在选择时应考虑单片机的性能、功耗、接口等因素。

2.温度传感器温度传感器用于检测水温,常用的有NTC热敏电阻和DS18B20数字温度传感器。

NTC热敏电阻价格便宜,但精度较低,DS18B20精度高,但价格相对较贵。

3.加热装置加热装置用于根据温度控制器的输出信号进行加热或制冷。

可以选择加热丝、加热管或半导体制冷片等。

4.驱动电路驱动电路用于将单片机的输出信号转换为合适的电流或电压,驱动加热装置。

可以选择晶体管或继电器等。

5.显示模块可以选择液晶显示屏或LED数码管等显示水温的数值。

二、软件设计1.初始化设置首先,对单片机进行初始化设置,包括引脚配置、定时器设置等。

然后,设置温度传感器和加热装置的引脚。

最后,设置温度范围,以便根据实际需求进行调整。

2.温度检测使用温度传感器检测水温,并将读取到的温度值转换为数字形式,以便进行比较和控制。

可以使用ADC(模拟-数字转换)模块转换模拟信号为数字信号。

3.控制算法本设计中可以采用PID控制算法进行水温控制。

PID(Proportional-Integral-Derivative)控制算法根据设定值和反馈值之间的差异来计算控制信号。

可以根据需求进行参数调整,以获得更好的控制效果。

4.显示和报警使用显示模块显示当前水温的数值,并在温度超出设定值时触发报警功能。

报警可以采用声音、灯光等形式。

5.控制输出根据PID算法计算出的控制信号,控制驱动电路,驱动加热装置或制冷装置,以实现水温的调节。

总结基于单片机的水温控制器能够实现对水温的精确控制。

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计引言:随着科技的不断进步,温度控制系统在我们的生活中扮演着越来越重要的角色。

特别是在一些需要精确控制温度的场合,如实验室、医疗设备和工业生产等领域,温度控制系统的设计和应用具有重要意义。

本文将以基于51单片机的温度控制系统设计为主题,探讨其原理、设计要点和实现方法。

一、温度控制系统的原理温度控制系统的基本原理是通过传感器感知环境温度,然后将温度值与设定值进行比较,根据比较结果控制执行器实现温度的调节。

基于51单片机的温度控制系统可以分为三个主要模块:温度传感器模块、控制模块和执行器模块。

1. 温度传感器模块温度传感器模块主要用于感知环境的温度,并将温度值转换成电信号。

常用的温度传感器有热敏电阻、热敏电偶和数字温度传感器等,其中热敏电阻是最常用的一种。

2. 控制模块控制模块是整个温度控制系统的核心,它负责接收传感器传来的温度信号,并与设定值进行比较。

根据比较结果,控制模块会输出相应的控制信号,控制执行器的工作状态。

51单片机作为一种常用的嵌入式控制器,可以实现控制模块的功能。

3. 执行器模块执行器模块根据控制模块输出的控制信号,控制相关设备的工作状态,以实现对温度的调节。

常用的执行器有继电器、电磁阀和电动机等。

二、温度控制系统的设计要点在设计基于51单片机的温度控制系统时,需要考虑以下几个要点:1. 温度传感器的选择根据具体的应用场景和要求,选择合适的温度传感器。

考虑传感器的测量范围、精度、响应时间等因素,并确保传感器与控制模块的兼容性。

2. 控制算法的设计根据温度控制系统的具体要求,设计合适的控制算法。

常用的控制算法有比例控制、比例积分控制和模糊控制等,可以根据实际情况选择适合的算法。

3. 控制信号的输出根据控制算法的结果,设计合适的控制信号输出电路。

控制信号的输出电路需要考虑到执行器的工作电压、电流等参数,确保信号能够正常控制执行器的工作状态。

4. 系统的稳定性和鲁棒性在设计过程中,需要考虑系统的稳定性和鲁棒性。

基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用温度控制系统是一种常见的自动控制系统,用于维持设定温度范围内的温度稳定。

本文将介绍基于单片机的温度控制系统的设计与应用。

一、系统设计1.功能需求:(1)温度检测:获取环境温度数据。

(2)温度显示:将检测到的温度数据以数字方式显示。

(3)温度控制:通过控制输出信号,自动调节温度以维持设定温度范围内的稳定温度。

2.硬件设计:(1)单片机:选择适合的单片机,如51系列、AVR系列等,具有较强的计算和控制能力。

(2)温度传感器:选择适当的温度传感器,如DS18B20、LM35等,能够准确检测环境温度。

(3)显示屏:选择适当的数字显示屏,如LCD显示屏、数码管等,用于显示温度数据。

(4)执行机构:根据具体需求选择合适的执行机构,如继电器、风扇等,用于控制温度。

3.软件设计:(1)温度检测:通过单片机采集温度传感器的模拟信号,并通过数字转换获得温度数据。

(2)温度显示:将获取到的温度数据进行处理,通过数字显示屏显示。

(3)温度控制:通过控制执行机构,如继电器等,根据温度数据的变化进行调节,将温度维持在设定范围内。

二、系统应用1.家居温控系统:家庭中的空调、暖气等设备可以通过单片机温度控制系统实现智能控制。

通过温度传感器检测室内温度,并将温度数据显示在数字显示屏上。

通过设定温度阈值,当室内温度超出设定范围时,系统控制空调或暖气进行启停,从而实现室内温度的调节和稳定。

这不仅提高了居住舒适度,还能节约能源。

2.工业过程控制:在工业生产过程中,一些特定的应用需要严格控制温度,以确保产品质量或生产过程的稳定。

通过单片机温度控制系统,可以实时检测并控制生产环境的温度。

当温度超过或低于设定的阈值时,系统可以自动调整控制设备,如加热器、冷却器等,以实现温度的控制和稳定。

3.温室农业:温室农业需要确定性的环境温度来保证作物的生长。

通过单片机温度控制系统,可以监测温室内的温度,并根据预设的温度范围,自动启停加热或降温设备,以维持温室内的稳定温度。

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介一、引言本文将介绍基于51单片机的温度控制设计,其中包括硬件设计和软件设计两个部分。

温度控制是工业自动化中非常重要的一部分,其应用范围非常广泛,如冷库、温室、恒温水槽等。

本文所介绍的温度控制设计可广泛应用于各种场合。

二、硬件设计1.传感器部分本设计采用DS18B20数字温度传感器,其具有精度高、抗干扰能力强等优点。

传感器的输出信号为数字信号,与51单片机通信采用单总线方式。

2.控制部分本设计采用继电器控制加热器的开关,继电器的控制信号由51单片机输出。

同时,为了保证控制精度,本设计采用PID控制算法,其中P、I、D系数均可根据实际情况进行调整。

3.显示部分本设计采用LCD1602液晶显示屏,可显示当前温度和设定温度。

4.电源部分本设计采用12V直流电源供电,其中需要注意的是,由于继电器的电流较大,因此需要采用稳压电源。

三、软件设计1.初始化在程序开始运行时,需要对各个模块进行初始化,包括DS18B20传感器、LCD1602液晶显示屏和PID控制器等。

2.采集温度程序需要不断地采集温度,通过DS18B20传感器获取当前温度值,并将其显示在LCD1602液晶显示屏上。

3.控制加热器根据当前温度和设定温度的差值,通过PID控制算法计算出控制信号,控制继电器的开关,从而控制加热器的加热功率。

4.调整PID参数为了保证控制精度,需要不断地调整PID控制算法中的P、I、D系数,以达到最优控制效果。

四、总结基于51单片机的温度控制设计,可以实现对温度的精确控制,具有应用广泛、控制精度高等优点。

本文所介绍的硬件设计和软件设计,可供读者参考和借鉴,同时也需要根据实际情况进行调整和改进。

单片机温度控制系统设计及实现

单片机温度控制系统设计及实现

单片机温度控制系统设计及实现温度控制是很多自动化系统中的重要部分,可以应用于许多场景,如家用空调系统、工业加热系统等。

本文将介绍如何利用单片机设计和实现一个简单的温度控制系统。

一、系统设计1. 硬件设计首先,我们需要选择合适的硬件来搭建我们的温度控制系统。

一个基本的温度控制系统由以下几个组件组成:- 传感器:用于检测环境的温度。

常见的温度传感器有热敏电阻和温度传感器。

- 控制器:我们选择的是单片机,可以根据传感器的读数进行逻辑判断,并控制输出的信号。

- 执行器:用于根据控制器的指令执行具体的动作,例如开启或关闭空调。

2. 软件设计温度控制系统的软件部分主要包括,传感器读取、温度控制逻辑和执行器控制。

我们可以使用C语言来编写单片机的软件。

- 传感器读取:通过串口或者模拟输入端口来读取传感器的数据,可以利用类似的库函数或者自己编写读取传感器数据的函数。

- 温度控制逻辑:根据读取到的温度值,判断当前环境是否需要进行温度调节,并生成相应的控制信号。

- 执行器控制:将控制信号发送到执行器上,实现对温度的调节。

二、系统实施1. 硬件连接首先,将传感器连接到单片机的输入端口,这样单片机就可以读取传感器的数据。

然后,将执行器连接到单片机的输出端口,单片机可以通过控制输出端口的电平来控制执行器的开关。

2. 软件实现编写单片机的软件程序,根据前面设计的软件逻辑,实现温度的读取和控制。

首先,读取传感器的数据,可以定义一个函数来读取传感器的数据并返回温度值。

其次,根据读取到的温度值,编写逻辑判断代码,判断当前环境是否需要进行温度调节。

如果需要进行温度调节,可以根据温度的高低来控制执行器的开关。

最后,循环执行上述代码,实现实时的温度检测和控制。

三、系统测试和优化完成软硬件的实施之后,需要对温度控制系统进行测试和优化。

1. 测试通过模拟不同的温度情况,并观察控制器的输出是否能够正确地控制执行器的开关。

可以使用温度模拟器或者改变环境温度来进行测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的温度控制系统硬件设计【摘要】随着国民经济的发展,温度控制系统已经被广泛的应用于社会生活的各个领域,如工农业、医疗、家庭、远程控制、环境测控等都需要用到温控系统。

其中多采用功能强、体积小、可靠性高、造价低的89C51系列单片机进行温度控制。

本系统是基于MCS-51单片机的空调压缩机的温度控制系统,采用STC89C51作为温控系统的主控芯片,AD590作为温度传感器,外围采用模/数转换器ADC0809,空调压缩机相应电路来完成温控系统的设计。

该系统采用多个AD590温度传感器同时对多点温度采样,再将温度信号转换成数字信号送入单片机,最后将得到的温度的平均温度通过LED显示出来。

系统实现了空调压缩机的多点温度采样、温度设定、LED显示及温度门限报警的功能。

【关键词】温度控制STC89C51 AD590 ADC0809 多点采样LED显示Design of Temperature Control System Based on SCM【Abstract】Along With the development of the national economy, temperature control system has been widely used in various areas of social life, such as agricultural and industrial, medical, family, remote control, environmental control, and so on . They are all requiring temperature control system. Where make the use of strong functions, small size, high reliability, low cost of 89C51 series MCU temperature control.This system is based on MCS air-conditioning compressor with temperature control system, using STC89C51 as a temperature control system for the master chip, the AD590 as the temperature sensor, the perimeter with die/number converter ADC0809, air conditioning compressor corresponding circuit to complete temperature control system design. The system uses multiple AD590 temperature sensors at the same time-to-multipoint sample temperature, temperature signals into digital signals into a single chip, with the average temperature of temperature through the LED display. The system enables the air conditioning compressor temperature sampling, temperature setting, led display and temperature threshold alarm functionality.【Key words】Temperature control STC89C51 AD590 ADC0809 multi-sampling LED display目录1. 绪论 (6)1.1 课题研究的目的和意义 (6)1.2 温度控制的国内外现状 (6)1.3 论文研究的主要内容 (7)2. 设计方案选择 (7)2.1 温度控制系统的功能 (7)2.2 温度传感器的选择 (8)2.3 A/D转换器的选择 (8)2.4 主控芯片的选择 (9)2.5 系统设计的总体框图 (9)3. 系统硬件电路的设计 (10)3.1 STC89C51与ADC0809接口设计 (11)3.2 硬件设计各单元电路 (11)3.2.1 STC89C51与外围电路 (11)3.2.2 AD590温度传感器电路 (11)3.2.3 显示电路 (12)3.2.4 报警电路 (13)3.2.5 四分频电路 (14)3.2.6 A/D转换电路 (14)3.2.7 电磁继电器电路 (15)3.2.8 晶振控制电路 (16)3.2.9 电源电路 (17)3.2.10 复位电路 (17)3.2.11 键盘电路 (18)3.3 单片机STC89C51介绍 (18)3.3.1 STC89C51单片机简介 (18)3.3.2 单片机主要功能参数 (18)3.3.3 单片机引脚介绍 (19)3.4 AD590温度传感器介绍 (20)3.4.1 AD590主要特性 (20)3.4.2 AD590内部结构 (21)3.4.3 AD590工作原理及应用 (21)4. 结束语 (22)参考文献 (23)附录一 (24)附录二 (25)致谢 (26)1. 绪论1.1 课题研究的目的和意义温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。

在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

随着单片机计算的迅速发展,其稳定、安全、高效、经济等优点十分突出,所以其应用也十分广泛。

当今单片机已经无处不在,它与我们生活的环境息息相关,并已渗透到生活的方法面面。

采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,为自动化和各个测控领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。

所采用的加热方式,燃料,控制方案也有所不同。

无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。

自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。

在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。

1.2 温度控制的国内外现状通过上网查询,翻阅资料了解到虽然温度控制已经广泛应用于社会生活的各个领域,但我国的温度控制技术还不够成熟,目前还不能赶超美、日、德等发达国家。

但我国也正在加大科研力度。

向着温度控制的智能化、多功能化、自适应化发展。

相信在不久的将来我国在这一技术领域便能取得卓越的成就。

目前国内外市场出现的温度控制系统成品,在系统组成、技术指标、功能要求上极具代表性的产品列举如下几种:1、虚拟仪器温室大棚温度测控系统虚拟仪器温室大棚温度测控系统在农业应用方面是一种比较智能,经济的方案,适于大力推广,该系统能够对大棚内的温度进行采集并进行比较,通过比较对大棚内的温度是否超过温度限制进行分析,如果超过温度限制,温度报警系统将自动报警,来通知管理人员大棚内的温度超过限制,必须立即采取措施方能有利于农作物的生长,提高产量。

本系统一个最大的优点是在一台电脑上可以完成多个大棚的温度监测控制。

2、电烤箱温度控制系统该方案采用美国TI公司生产的FLASH型超低功耗16位单片机MSP430F123为核心器件,通过热电偶检测系统温度,用集成温度传感器AD590作为温度测量器件,利用该芯片内置的比较器完成高精度AD信号采样,根据温度的变化情况,通过单片机编写闭环算法,从而成功的实现了对温度的测量和自动控制功能。

其测温范围较低,大概在0-250℃之间,具有精度高,相应速度快等特点。

3、空调压缩机温度控制系统空调压缩机是在空调制冷剂回路中起压缩驱动制冷剂的作用。

压缩机一般装在室外中,压缩机把制冷剂从低压区抽取出来经压缩后送到高压区冷却凝结,通过散热片散发出热量到空气中,使得周围环境的空气温度上升,当周围温度上到某一临界温度时就自动报警,继电器1关闭。

并打开继电器2,使制冷剂再从高压区流向低压区,通过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量,使其周围环境温度降低,当温度降低当某个临界温度是,蜂鸣器报警,继电器2关闭,而继电器1打开。

这样机器不断循环工作,通过吸收和散发热量到空气中,起到温度制冷和制热的自动调节控制。

使用多个温度传感器对周围环境多点采样求平均值,并通过LED数码管显示平均温度。

从而很方便的利用单片机控制继电器1和继电器2对温度的控制和显示。

该温度控制系统也是本论文的研究方向。

1.3 论文研究的主要内容本论文旨在设计一种空调压缩机的温度控制系统。

完成一种低成本、低价格、功能较齐全,并具有温度多点采样、显示、温度门限报警及温度控制为一体的单片机温度控制系统的硬件电路设计。

设计工作主要包括以下步骤:1、了解空调压缩机的温度控制原理,结构组成及其发展现状。

2、研究温度控制的两个核心模块:主控芯片和温度传感器。

4、通过对所用芯片的了解完成单片机温度控制系统的总体设计及电路原理图。

2. 设计方案的选择2.1. 温度控制系统的功能1、用多个温度传感器AD590对空调压缩机周围环境温度进行温度采样,温度多点采样求得平均值,同时用三位数码管显示。

2、温度设定范围:5℃~40℃,区分温度范围为±2℃(系统允许在超过报警温度上下限2℃范围内不报警),当温度不在设定范围之内时,蜂鸣器自动报警,同时用三位LED数码管显示度数,读数精确到十分位。

3、系统根据设定的温度实现制热或制冷处理。

2.2. 温度传感器的选择为了确保对温度进行精确的测量,需要考虑到温度传感器的诸多因素:(1)测温范围的大小及精度要求,(2)测温元件大小是否适当,(3)高效性和灵敏性,(4)价格如何,使用是否方便。

相关文档
最新文档