北美地区典型页岩气盆地成藏条件解剖

合集下载

美国密歇根盆地安特里姆页岩气区带成藏特征

美国密歇根盆地安特里姆页岩气区带成藏特征

美国密歇根盆地安特里姆页岩气区带成藏特征
李茗;吴洁
【期刊名称】《新疆石油地质》
【年(卷),期】2014(035)004
【摘要】安特里姆页岩广泛覆盖在北美古大陆的中下泥盆统之上,其中,生物成因的天然气富集于埋深浅、欠压实、富含有机质的页岩储集层内,气体多被有机质和黏土吸附.诺伍德段和拉钦段有机质含量最高,为区带内最主要的页岩气勘探层.对密歇根盆地的安特里姆页岩气区带的烃源岩及其厚度、物性特征、矿物含量以及裂缝系统和成藏作用进行了探讨,并对区带的勘探潜力进行了评价.该区安特里姆页岩经历较深的埋深后又被抬升遭受大气淡水淋滤,在适宜的条件下生成生物气并成藏.安特里姆页岩气成藏特征的研究将会对中国页岩气勘探有所裨益.
【总页数】4页(P491-494)
【作者】李茗;吴洁
【作者单位】中国石化勘探开发研究院,北京100083;中国石化勘探开发研究院,北京100083
【正文语种】中文
【中图分类】TE112.43
【相关文献】
1.美国安特里姆页岩气区带成藏主控因素研究 [J], 李茗;吴洁
2.富县探区深盆气成藏特征与有利区评价 [J], 张新建;刘新刚;唐文忠;罗周亮
3.渝东南盆缘转换带常压页岩气勘探实践 [J], 何希鹏; 王运海; 王彦祺; 张龙胜; 汪凯明; 高玉巧; 刘明
4.川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用 [J], 冯动军;胡宗全;李双建;杜伟;师源
5.盆腹区张扭断裂带与盆缘造山带成因关系及油气成藏控制——以准噶尔盆地盆1井西凹陷东环带侏罗系为例 [J], 梁舒艺;洪扬;崔立杰
因版权原因,仅展示原文概要,查看原文内容请购买。

页岩气成藏条件综述

页岩气成藏条件综述

页岩气成藏条件综述【摘要】以美国典型页岩气盆地的页岩气成藏条件为基础,结合国内学者讨论,归纳出页岩气成藏条件包括:生烃条件(沉积环境、有机质类型、丰度、成熟度、单层厚度)、储集条件(孔隙度、渗透率、裂缝发育程度、矿物成分)、盖层及保存条件(构造运动强度、地层水条件)以及地层压力和埋深等,有利的页岩气成藏指标的下限【关键词】页岩气;成藏条件;有机质含量;成熟度0.引言页岩气是指天然气在富有机质泥页岩中生成之后,在层内以吸附或游离状就近富集,表现为“原地成藏”特征[1]。

页岩气勘探、开发始于美国,1821年在纽约Chautauqua县泥盆系Dunkirk页岩中钻下第一口页岩气井,产出可照明天然气[2]。

近年来,国内学者对页岩气成藏条件也进行了一些讨论[3-4],但不够全面。

本文通过对美国典型页岩气盆地的页岩气成藏条件进行分析,结合国内学者讨论,总结页岩气成藏条件、成藏控制因素及下限指标。

1.烃源条件1.1沉积环境沉积环境从根本上控制和决定了页岩发育的厚度、有机质类型和丰度,所以我们应该把它作为分析页岩烃源条件的前提。

通常安静、缺氧还原的水体对有机质的保存有利,例如,在海相中,浅海陆棚环境最适合富有机质泥页岩的形成,四川盆地的寒武系筇竹寺组及志留系龙马溪组页岩均属深水陆棚相沉积[5],已发现大量页岩气资源。

1.2有机质类型裂缝不仅可作为页岩气的聚集场所,还可作为页岩气的运移渠道。

裂缝有助于吸附气的解析,增加游离气的含量[2]。

李登华(2009)认为真正对页岩储层起到改善作用的是微裂缝,而不是宏观裂缝[3]。

对热成因型的页岩气藏而言,宏观裂缝会导致页岩气的逸散,对其保存不利;对于生物成因气藏而言,断裂越多,地层水活动性越强,生成的生物气量反而越大[3]。

2.2岩石学特征当页岩中脆性矿物含量越高时,越易形成天然裂缝和人工诱导裂缝。

北美主要页岩气产层的石英含量一般在20%~75%之间(表1),对于具有商业开发价值页岩而言,脆性矿物含量一般高于40%,石英含量大于30%[8]。

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征加拿大西加盆地位于加拿大西部,是北美洲最大的页岩气储层之一。

西加盆地泥盆系页岩气储层具有独特的地质特征,对于了解页岩气储层的形成和储集规律具有重要意义。

本文将对加拿大西加盆地泥盆系页岩气储层的特征进行详细介绍。

一、地质背景加拿大西加盆地是一个广阔的盆地,地质演化历史悠久。

泥盆系页岩气主要分布在艾伯塔、萨斯喀彻温和曼尼托巴省。

泥盆系形成于距今约4.19亿年前至距今3.42亿年前,是地质历史上的重要时期。

西加盆地泥盆系地层包括上泥盆统、中泥盆统和下泥盆统,其中上泥盆统是页岩气主要分布的地层。

二、岩石组成西加盆地泥盆系页岩气储层的主要岩石为页岩和粘土岩。

页岩是一种沉积岩,主要由粘土矿物、石英、碳酸盐矿物和有机质组成。

粘土岩中富含有机质,是页岩气的主要赋存岩石。

粘土岩的厚度、含量和孔隙度对页岩气的储集和产能具有重要影响。

三、孔隙结构泥盆系页岩气储层的孔隙结构主要包括微观孔隙、裂缝孔隙和有机质孔隙。

微观孔隙主要是指岩石内部微小的孔隙和矿物颗粒间的孔隙,对页岩气的储集和运移起着重要作用。

裂缝孔隙是指岩石中发育的裂缝和节理,是页岩气的主要储集空间。

有机质孔隙是指有机质颗粒内部的孔隙,对页岩气的储集和释放具有重要作用。

四、有机质类型泥盆系页岩气储层的有机质主要包括干酪根、胶质质和藻质藻。

干酪根是页岩气的主要有机质类型,其含量和成熟度对页岩气的产能和品质具有重要影响。

胶质质和藻质藻在泥盆系页岩气储层中也有一定的分布,但其对页岩气储集和产能的影响相对较小。

五、富集规律泥盆系页岩气富集的规律主要包括构造控制、沉积控制和成岩作用控制。

构造控制主要指构造变形对页岩气富集的影响,包括构造的发育和演化对页岩气赋存空间的形成和分布的影响。

沉积控制主要指沉积环境、沉积相和垂向沉积体系的影响,对页岩气的分布和产能有重要影响。

成岩作用控制主要指岩石的成岩作用对页岩气的储集和产能的影响,包括岩石的成岩类型、成熟度和孔隙度等因素。

北美典型页岩气藏岩石学特征_沉积环境和沉积模式及启示

北美典型页岩气藏岩石学特征_沉积环境和沉积模式及启示

第29卷 第6期2010年11月地质科技情报Geolog ical Science and Technolog y InformationVol.29 No.6Nov.2010北美典型页岩气藏岩石学特征、沉积环境和收稿日期:2010 04 27 编辑:杨 勇基金项目:国家自然科学重点基金(石油化工联合基金)项目(40839910);中国石油化工股份有限公司科研项目(J 1407 09 KK 0157)作者简介:杨振恒(1979 ),男,工程师,主要从事石油地质综合研究工作。

E mail:yan gzhen hen g2010@沉积模式及启示杨振恒,李志明,王果寿,腾格尔,申宝剑(中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151)摘 要:北美典型页岩气藏赋存的泥页岩主要为细颗粒沉积,呈暗色或黑色薄层状或块状产出。

页岩气储层无机矿物成分中硅质含量较高,含有黄铁矿、磷酸盐矿物(磷灰石)、钙质和黏土矿物。

具有相对高有机质质量分数,代表了富有机质的缺氧的沉积环境。

不含或者含较少的陆源碎屑输入。

有机质类型以 和!型干酪根较为常见。

生物化石碎片在页岩层中比较常见,化石碎屑的类型多样化。

重点剖析了福特沃斯盆地Barnett 页岩的沉积发育模式,福特沃斯盆地是一狭长的前陆盆地,主要沉积区离物源区较远,Barnett 页岩沉积于较深的静水缺氧环境,沉积速度缓慢(饥饿性沉积),最终形成富含有机质的Barnett 页岩。

常见生物化石碎片,但缺少生物扰动遗迹,推测盆地中大部分的生物化石为外部输入的结果。

上升流作用致使磷酸盐矿物(磷灰石)发育。

北美典型页岩气藏的岩石学特征、沉积环境和福特沃斯盆地Barnett 页岩沉积发育模式可以用来指导我国页岩气勘探,黔南坳陷下寒武统黑色高碳质页岩系、二叠系吴家坪组和四川广元 绵竹地区下寒武统泥页岩具有和北美典型页岩气藏可类比的岩石学特征、沉积环境和沉积模式,可作为页岩气勘探的优选区域。

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征加拿大西加盆地是世界上重要的页岩气产区之一,其泥盆系页岩气储层特征备受研究者和工程师们的关注。

本文将通过对西加盆地泥盆系页岩气储层的特征进行分析和总结,以期为相关领域的研究和开发提供参考。

一、地质特征西加盆地的泥盆系页岩气储层主要分布于艾伯塔、萨斯喀彻温和曼尼托巴等省份,其地质构造主要为盆地中的古元古代基岩和泥盆纪的地层序列。

盆地中分布有丰富的页岩气资源,特别是位于布尔根组、古大陆坡湖组和费尔金潘组等泥盆系地层中,页岩气资源储量极为可观。

二、储层特征1. 岩性特征西加盆地泥盆系页岩气储层以均质粘土质页岩为主,具有致密、均质的特点。

一般具有较高的有机质含量,有机质类型主要以干酪根Ⅰ型和Ⅱ型为主,同时伴随着少量的岩屑和矿物颗粒。

2. 孔隙结构由于页岩岩性的特点,西加盆地泥盆系页岩气储层的孔隙结构极为微细,其孔隙类型主要包括微孔隙、裂缝孔隙和溶孔隙。

裂缝孔隙是页岩气储层中最重要的储集空间类型,对页岩气的渗透能力有着重要影响。

3. 孔隙连通性由于页岩气储层的致密性,孔隙连通性较差,因此需要通过水平井、压裂等技术手段来改善孔隙连通性,提高气体的开采效率。

4. 物性参数西加盆地泥盆系页岩气储层的物性参数主要包括孔隙度、渗透率、孔隙结构系数、岩石力学参数等。

这些参数对于页岩气的勘探、开发和评价具有重要的意义。

三、地质条件1. 沉积环境西加盆地泥盆系页岩气储层的沉积环境多样,包括古大陆坡湖相、海相和湖相等,沉积环境对储层物性和地质构造有着重要影响。

2. 地层伴生矿物泥盆系页岩储层中常常伴生着石英、长石、云母、钠长石等矿物,这些矿物的存在对页岩气的形成和储集具有一定的影响。

3. 构造特征西加盆地泥盆系页岩气储层的构造特征主要包括构造构型、构造应力等,这些特征对页岩气的形成和分布具有一定的控制作用。

四、开发技术1. 水平井开发由于西加盆地泥盆系页岩气储层的致密性,水平井是开发页岩气的重要手段之一,能够有效提高气体的产能和开采效率。

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征
加拿大西加盆地是世界著名的页岩气资源丰富地区之一,该地区的泥盆系页岩储层具有以下特征。

泥盆系页岩气储层埋藏较深。

加拿大西加盆地地质构造复杂,包括了大量的断层、褶皱和圈闭等。

泥盆系页岩储层一般埋藏在3000-4000米的深度,有些甚至超过5000米,这使得开发该区域的页岩气需要采用深井钻探和水平井技术。

泥盆系页岩气储层厚度较大。

加拿大西加盆地的泥盆系页岩气储层厚度一般在60-100米之间,有些地方的厚度甚至超过了150米。

这种厚度的储层为大规模开发提供了可靠的保证,有利于页岩气的提取和生产。

泥盆系页岩气储层孔隙度较低。

由于其岩石特性和埋藏深度的影响,泥盆系页岩气储层的孔隙度一般较低,通常在1-5%之间,甚至更低。

这种低孔隙度给页岩气的储集和释放带来了一定的困难,需要采用流体压裂等增透措施来提高气体的渗流性。

泥盆系页岩气储层渗透率较低。

在加拿大西加盆地,泥盆系页岩气储层的渗透率普遍较低,通常在0.001-0.1mD之间。

这种较低的渗透率给页岩气的开发带来了一定的挑战,需要通过水平井、长岩性井等多井组合技术来提高产能。

加拿大西加盆地的泥盆系页岩气储层具有埋藏较深、厚度较大、孔隙度较低和渗透率较低的特征。

对于该地区的页岩气开发,需要采用先进的钻井和压裂技术,以提高储层的可采性和经济效益。

北美典型克拉通盆地页岩气成藏特征、模式及启示

北美典型克拉通盆地页岩气成藏特征、模式及启示

北美典型克拉通盆地页岩气成藏特征、模式及启示杨振恒;韩志艳;李志明;聂海宽【期刊名称】《石油与天然气地质》【年(卷),期】2013(000)004【摘要】北美含页岩气克拉通盆地主要以密执安盆地、伊利诺斯盆地和德拉华盆地为代表。

对上述盆地的岩性特征、有机质类型、生气方式、埋深、热成熟度、吸附气含量、裂缝对页岩气成藏的作用进行了探讨,梳理了北美克拉通盆地页岩气的两种成藏模式,分别以密执安盆地Antrim页岩气成藏模式( A型模式)和德拉华盆地Barnett 页岩气成藏模式( B型模式)为代表。

A型模式主要特征为:从盆地周缘较浅至较深部位赋存着具有生物成因和热成因的“二元”成因结构的天然气,依次从生物气过渡到混合气,最后为热成因气。

B型模式主要特征为:页岩气生气方式为热成因天然气“原地”生成聚集,在不同成熟度的区域,产出不同热成因类型的天然气。

结合我国克拉通盆地油气地质特征认为,德拉华盆地Barnett 页岩气成藏模式( B型模式)对我国页岩气勘探更有意义,密执安盆地Antrim页岩气成藏模式( A型模式)对我国页岩气勘探的意义不能忽视。

【总页数】8页(P463-470)【作者】杨振恒;韩志艳;李志明;聂海宽【作者单位】中国石化油气成藏重点实验室,江苏无锡214151;中国石化油气成藏重点实验室,江苏无锡214151;中国石化油气成藏重点实验室,江苏无锡214151;中国石化石油勘探开发研究院,北京100083【正文语种】中文【中图分类】TE121.1【相关文献】1.南华北盆地中牟凹陷太原组-山西组页岩气成藏特征——以河南中牟区块ZDY2井为例 [J], 冯辉;邱庆伦;汪超;刘红亮2.鄂尔多斯盆地东部山西组页岩气成藏特征及勘探对策 [J], 刘洪林; 王怀厂; 张辉; 赵伟波; 刘燕; 刘德勋3.四川盆地绵竹—长宁克拉通内裂陷东侧震旦系灯影组四段台缘丘滩体成藏特征与勘探前景 [J], 杨威;武赛军;魏国齐;谢武仁;金惠;曾富英;苏楠;孙爱;马石玉;沈珏红4.四川盆地西南缘山地复杂构造区页岩气富集模式及勘探启示:一个页岩气新区 [J], 杨平;余谦;牟传龙;汪正江;刘伟;赵瞻;刘家洪;熊国庆;邓奇5.北美典型页岩气藏岩石学特征、沉积环境和沉积模式及启示 [J], 杨振恒;李志明;王果寿;腾格尔;申宝剑因版权原因,仅展示原文概要,查看原文内容请购买。

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征

加拿大西加盆地泥盆系页岩气储层特征加拿大西加盆地是一个富含石油和天然气资源的地区,其中泥盆系页岩气储层的特征备受关注。

泥盆系页岩气储层是指储层岩石由泥岩组成,其中富含天然气的石层。

这些储层广泛分布在西加盆地的各个区域,具有重要的经济价值。

本文将详细探讨加拿大西加盆地泥盆系页岩气储层的特征,包括成因、分布、储层类型、孔隙结构、气体成分等方面的内容。

一、成因泥盆系页岩气储层的形成与古地理环境、沉积作用、成岩作用等密切相关。

在泥盆系地层时期,受到海平面变化、构造运动等因素的影响,页岩层的沉积环境发生了较大的变化。

区域沉积作用导致了泥盆系页岩气储层的形成,而成岩作用则对其孔隙结构和气体储存特征产生了影响。

二、分布在加拿大西加盆地,泥盆系页岩气储层广泛分布于不同的地质构造单元中,主要包括阿尔伯塔盆地、萨斯喀彻温盆地、马尼托巴盆地等。

这些地区不仅有丰富的页岩气资源,而且具有较好的勘探开发前景。

三、储层类型泥盆系页岩气储层的类型主要包括致密页岩气、板状页岩气、泥质页岩气等。

这些类型的储层在地质特征、气体产能、常规勘探方法等方面存在差异,需要采用不同的勘探开发技术。

四、孔隙结构泥盆系页岩气储层的孔隙结构主要包括裂缝孔隙、孔隙隙缝、溶洞孔隙等。

这些孔隙结构对于气体的储集和运移具有重要的影响,而且通常对勘探开发工作具有一定的挑战。

五、气体成分泥盆系页岩气储层富含丰富的天然气资源,气体组成主要包括甲烷、乙烷、丙烷、丁烷等。

其中甲烷是主要成分,占比较高,而其他烃类气体的含量也较为丰富。

通过对加拿大西加盆地泥盆系页岩气储层特征的分析,我们可以得出以下结论:泥盆系页岩气储层广泛分布于西加盆地各个地质构造单元中,成因复杂,储层类型多样,气体成分丰富。

加拿大西加盆地的泥盆系页岩气资源具有重要的经济价值和开发潜力,相关的勘探开发工作具有重要的意义。

需要加强对页岩气储层的地质特征和气体储集规律研究,以指导勘探开发工作,提高资源勘探开发的效率和成效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北美地区典型页岩气盆地成藏条件解剖1、阿巴拉契亚盆地俄亥俄页岩系统(1)概况阿巴拉契亚盆地(Appalachian)位于美国的东部,面积280000平方公里,包括New York西部、Pennsylvania、West Virginia、Ohio、Kentucky和Tennessee 州等,是美国发现页岩气最早的地方。

俄亥俄(Ohio)页岩发育在阿巴拉契压盆地西部,分布在肯塔州东北部和俄亥俄州,是该盆地的主要页岩区(图2)。

该区古生代沉积岩是个巨大的楔形体,总体上是富含有机质页岩、碎屑岩和碳酸盐岩构成的旋回沉积体。

图1 美国含页岩气盆地分布图1953年,Hunter和Young对Ohio页岩气3400口井统计,只有6%的井具有较高自然产能(平均无阻流量为2.98万m2/d),主要原因是这些井的页岩中天然裂缝网络比较。

其余94%的井平均产量为1726m3/d,经爆破或压裂改造后产量达8063m3/d,提高产量4倍多。

1988年前,美国页岩气主要来自Ohio页岩气系统。

截止1999年末,该盆地钻了多达21000口页岩井。

年产量将近34亿m3。

天然气资源量58332—566337亿m3,技术性可采收资源量4106~7787亿m3。

每口井的成本$200000-$300000,完井成本$25~$50。

(2)构造及沉积特征阿巴拉契亚盆地东临Appalachian山脉,西濒中部平原,构造上属于北美地台和阿巴拉契亚褶皱带间的山前坳陷。

伴随Laurentian古陆经历了由被动边缘型向前陆盆地的演化过程。

盆地以前寒武纪结晶岩为基底,古生代沉积岩呈巨大的楔形体(最大厚度12 000 m)埋藏于不对称的、向东变深的前陆盆地中。

寒武系和志留一密西西比系为碎屑岩夹碳酸盐岩,奥陶系为碳酸盐岩夹页岩,宾夕法尼亚系为碎屑岩夹石灰岩及煤层。

总体上由富有机质泥页岩(主要为碳质页岩)、粉砂质页岩、粉砂岩、砂岩和碳酸盐岩等形成3~4个沉积旋回构成,每个旋回底部通常为富有机质页岩,上部为碳酸盐岩。

泥盆系黑色页岩处于第3个旋回之中,分布于泥盆纪Acadian 造山运动下形成的碎屑岩楔形体内(James,2000)。

该页岩层可再分成由碳质页岩和较粗粒碎屑岩互层组成的五个次级旋迥(Ettensohn ,1985)。

它们是在阿卡德造山运动的动力作用下和Catskill 三角洲的向西进积中沉积下来的。

(3)页岩气成烃条件分析①页岩分布特征阿巴拉契亚盆地中南部最老的泥盆纪页岩层系属于晚泥盆世。

Antrim 页岩和NewAlbany 大致为Chattanooga 页岩和Ohio 页岩的横向同位层系(Matthews,1993)。

在俄亥俄东边和南边,Huron 段分岔。

有的地区已经被插入的灰色页岩和粉砂岩分成两个层。

俄亥俄页岩系统,覆盖于Java 组之上(图3)。

由三个岩性段组成:下部 Huron 段为放射性黑色页岩,中部Three Lick 层为灰色与黑色互层的薄单元,上部Cleveland段为放射性黑色页岩。

俄亥俄页岩矿物组成包括:石英、粘土、白云岩、重金属矿(黄铁矿)、有机物。

图2是西弗吉尼亚中部和西部产气区泥盆纪页岩层的地层剖面。

中上泥盆统的分布面积约128,000mi 2(331,520km 2),它们沿盆地边缘出露地表。

页岩埋藏深度为610~1520m ,页岩厚度一般在100-400ft(30—120m),泥盆系黑色页岩最大厚度在宾夕尼亚州的中北部(图3)(deWitt 等,1993)。

②页岩地球化学特征图4表示Ohio 页岩下Huron 段烃源岩有机碳等值线图。

从镜质体反射率特征来图2 阿巴拉契亚盆地西部中泥盆统-下密西西比系剖面 (据Moody 等,1987)看,下Huron段所有的有机质基本上都是热成熟的。

有机质类型以Ⅱ型干酪根为主,利于生成液态和气态烃(Curtis和Faure,1997,1999)。

总有机碳等值线所圈定的大部分产气区包括西弗吉尼亚、东肯塔基和南俄亥俄(GRI,2000)。

在西弗吉尼亚的Calhoun郡,下Huron段的下伏页岩地层产气,其放射性测井曲线读数最大,这与其下伏泥页岩层段有机碳含量较高(达2%)相一致。

由图4可见,黑色页岩所占比例、总有机碳含量和产气率均向西增加,在靠近西弗吉尼亚边界附近Kentucky郡的Big Sandy气田处达到最大值。

该气田自1921年开始生产页岩气以来一直是阿巴拉契亚盆地产量最高的页岩气田。

图3 中上泥盆统放射性黑色页岩的总有效厚度图(据deWitt等。

1993)图4 Ohio页岩Huron段下部的总有机碳分布(据Curtis和Faure1997年资料修改)俄亥俄页岩有机质以开阔海相成因及Tasmanites来源为主。

即干酪根类型以Ⅱ型和Ⅰ型为主。

古海藻Tasmanites是黑色页岩的重要的来源,其极度繁盛而且多期出现,排除了水柱透光带中的其它类型的生物群。

Curtis和Faure(1997,1999)认为,在塔康、阿卡德和阿勒格尼造山运动中,Rome地堑的边界断裂发生活化,在晚泥盆世浅内陆海的洋底形成了许多地貌凹陷,与这些地貌凹陷相关的断陷次盆地对Ohio页岩下Huron 段和West Falls群的Rhinestreet页岩段中藻类有机质的保存有明显的控制作用(图4)。

这些断陷次盆地可能由于其水循环条件差而限制了氧的补给。

有机质的保存条件也因为盆地上方水体中Tasmanites等藻类的周期性繁殖而变好。

这些藻类的繁殖由于消耗分子氧使有机质大量富集,从而保存了藻类物质。

Algeo(2008)提出Appalachian盆地中部泥盆系一密西西比系页岩是前陆盆地局限深水沉积产物。

泥盆系Ohio页岩沉积期,构造运动导致相对海平面下降,局限程度增强,晚泥盆纪一早石炭纪之交最大,使Appalachian海处于耗氧状态,而且稳定的分层水体确保生物有机质得以保存,TOC较高,形成New York 几百米厚黑色页岩,Kentucky东北部减薄为50~90m。

Zeilinki和McIver(1982)运用TAI值描绘了阿巴拉契亚盆地上泥盆统的热成熟度范围,指出盆地西部的岩石对于原油的生成是未成熟的,因此生成的数量比较有限。

大多数地区的黑色页岩层序是过成熟的,因而基本上没有生成液态烃类的可能。

盆地的中间部位既有高质量的源岩又有适当的热成熟度,因而具有页岩气商业性开采潜力。

总的来看,该页岩系统的Ro值介于0.4~1.3%(表1)。

表1 阿巴拉契亚盆地俄亥俄页岩地质、地球化学和储量参数表③页岩岩石矿物学及储层特征Ohio页岩矿物组成中,碳酸盐岩含量较低,小于25%;石英、长石和黄铁矿含量20~80%,粘土含量在20~80%之间,与Barnett页岩相比,Ohio页岩粘土矿物含量较高,而石英、长石及黄铁矿含量较低(图5)。

图5 页岩储层岩石矿物组成三角图(李新景等,2009)Big Sandy气田以Ohio组Huron段为主力产层,高产井多沿北东方向分布,与高角度多组裂缝发育紧密相关,裂缝不发育地区往往低产。

裂缝网络的形成主要受地质时期地壳应力作用强度和方向影响,尤其是Rome断槽形成中伴生的断裂作用。

West Virginia州Jackson县Cottageville气田研究揭示埋深1127.8m的Ohio组页岩Huron段,虽然裂缝局部充填白云石,但残余孔洞常具有连通性,渗透率较高。

因此众多研究认为,这一地区页岩气产量主要控制因素是有机质含量、热成熟度、天然裂缝展布以及黑色页岩与灰色页岩空间分布关系。

(4)页岩气的生产情况根据Hunter等(1953)的早期研究,3400口井中只有6%的井未采用增产措施完井。

这些井可能发育天然裂缝网络,其平均无阻日产量为1,055×103ft3。

其余94%的井完井后无可观产量,平均日产量仅61×103 ft3。

这些井后来用早期的油田射孔技术进行了增产处理,气井采取增产措施后,其平均日产量约285×103立方英尺,比采取增产措施前提高了4倍多,认为射孔提高了裂缝孔隙度和渗透率,因而能产出有商业价值的天然气。

目前,气井通常用液态氮泡沫和砂支撑剂进行压裂(Milici,1993)。

Big Sandy气田是阿巴拉契盆地页岩气历史累计产量最高地区。

绝大多数来自上泥盆系页岩气,现今储层还包括中泥盆统Marcellus页岩,上泥盆统Rhinestreet页岩、Cleveland页岩以及密西西比系Sunbury含气页岩,埋藏深度510~1800m,测井孔隙度1.5~11%,平均4.4%。

1996年该区估算原始地质储量5660×108m3,可采储量962×108m3,剩余可采储量255×108m3,估计单井极限可采储量14×104~2260×104m,平均250×104m3。

1994年以前,美国页岩气主要产自Ohio页岩,直到密歇根盆地钻探工作的迅速发展使Antrim 页岩的气产量位居全美之首时为止。

2、福特沃斯盆地巴尼特页岩系统(1)概况福特沃斯(Fort Worth)盆地是得克萨斯中北部地区的一个南北向延伸的浅的地堑,面积大约为15000mi2(38100km2)。

该盆地密西西比系巴尼特(Barnett)页岩为一个页岩气系统,由层状硅质泥岩、层状泥质灰泥岩以及骨架泥质泥粒灰岩混合组成。

早在20世纪50年代,美国Fort Worth盆地密西西比系Barnett页岩就见到良好气显示;1981年,Mitchell 能源公司大胆地对Barnett页岩段进行了氮气泡沫压裂改造,从而发现了Barnett页岩气田。

随着钻完井技术的不断改进,气田的面积不断扩大,产量飞速增长。

2007年,Fort Worth 盆地近8500口Barnett页岩气生产井的年产量为305.6×108m3,自1982年投产以来累计产气1018.8×108m3。

(2)构造及沉积特征福特沃斯盆地是晚古生代沃希托(Quachita)造山运动形成的几个弧后前陆盆地之一,沃希托造山运动是由泛古大陆变形引起的板块碰撞(北美板块和南美板块)形成逆冲断层的主要事件(Thompson et al,1988)。

盆地东部边界为沃希托逆冲褶皱带,北部边界是基底边界断层控制的红河背斜(Red River Arch)和曼斯特背斜(Muenster Arch),西部边界为本德背斜(Bend Arch)、东部陆棚等一系列坡度较缓的正向构造,南部边界为大草原隆起(Llano uplift)。

盆地的轴大致与组成盆地北部—东北部边界的Muenster穹隆平行,然后向南弯曲与Quachita构造带前缘平行(图6)。

相关文档
最新文档