第3章最优滤波3

合集下载

第8章模拟滤波器的设计

第8章模拟滤波器的设计

h(t) F 1 H () 1 e jtD e jtD d
2
1
2
cos(t
tD)
j sin (t
tD )d
1
0
cos
(t
tD
)d
1
C 0
cos
(t
t
D
)d
C sin C (t tD ) C (t tD )
第15页/共65页
8.3.2 滤波器的理想特性与实际特性
(8-24)
H(
j)
2
A(2 )
1
1 C
2n
巴特沃思滤波器的MATLAB调用函数为:[Z,P,K]=buttap(n)
n:阶数
z,p,k: 滤波器零点、极点和增益。其幅度平方函数随Ω
变化的曲线如下图所示 :
第24页/共65页
8.4.2 模拟滤波器的设计
由上图可知,巴特沃思滤波器的幅度平方函数具有下列特点:
第17页/共65页
8.4 模拟滤波器的设计
8.4.1 模拟滤波器的一般设计方法 :
• 根据设计的技术指标即滤波器的幅频特性,确定滤波器的传递

函数H(S);
• 设计实际网络(通常为电网络)实现这一传递函数.
第18页/共65页
8.4 模拟滤波器的设计
幅度特性函数|H(Ω)|的确定:
由于
而 则 又 那么 从而
第8页/共65页
8.2 模拟和数字滤波器的基本概念
模拟滤波器的重要用途: 模拟滤波器是现代控制系统中的重要部件。最常见的应用例子,是传感器输出
信号中混有噪声干扰的情况,在传感器及测试电路中,可以在工艺上使布线尽量合理, 元件布局合理,并采用屏蔽技术等措施来防止噪声进入系统,但信号中仍可能含有不可 忽略的噪声,此时常采用模拟滤波器抑制这些噪声,使有用信号能通过而输出。

现代信号分析与处理技术_第2讲_最优滤波方法

现代信号分析与处理技术_第2讲_最优滤波方法

{
}
p −1 ⎧⎡ ⎤ ∗ ⎫ = E ⎨ ⎢ d (n) − ∑ w(l ) x(n − l ) ⎥ d (n) ⎬ l =0 ⎦ ⎩⎣ ⎭
即:
ξ min = rd (0) − ∑ w(l )r (l )
l =0
∗ dx
p −1
或:
H ξ min = rd (0) − rdx w
或:
H -1 ξ min = rd (0) − rdx Rx rdx
k =0
因此最优线性预测器的Wiener-Hopf方程为:
⎡ rx (0) rx∗ (1) rx∗ (2) ⎢ rx (1) rx (0) rx∗ (1) ⎢ rx (2) rx (1) rx (0) ⎢ ⎢ r ( p − 1) rx ( p − 2) rx ( p − 3) ⎣x rx ( p − 2) ⎥ ⎢ w(1) ⎥ ⎢ rx (2) ⎥ ∗ rx ( p − 3) ⎥ ⎢ w(2) ⎥ = ⎢ rx (3) ⎥ ⎥⎢ ⎥ ⎥ ⎢ ⎥ ⎢ w( p − 1) ⎥ ⎢ r ( p ) ⎥ rx (0) ⎦ ⎣ ⎦ ⎣x ⎦
信息科学与工程学院 杨绿溪
• 维纳滤波
FIR维纳滤波 应用:滤波、线性预测、噪声抑制、反卷积MMSE均衡器 IIR维纳滤波
• 线性离散卡尔曼滤波器
- - -高斯假设下的序贯贝叶斯滤波 • 非线性最优滤波-序贯MC贝叶斯滤波
• 基本的粒子滤波器应用实例
参考书和参考文献
• 杨绿溪,现代数字信号处理,科学出版社,2007年11月。 • 张贤达,现代信号处理,清华大学出版社,2002年10月。 • T.Kailath, A innovations approach to LS estimation, IEEE T-AC, Vo.13, 1968, pp.641-655. • M.S.Arulampalam, S.Maskell, N.Gordon, T.Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, Vol.50, No.2, pp.174-188, 2002. 专辑 • Z.Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond. Adaptive system lab., Macmaster Univ., Canada. [online]. http://soma.crl.mamaster.ca/zhechen /download. 另有2004-03, P-IEEE专辑

现代信号课件第4章最小二乘滤波

现代信号课件第4章最小二乘滤波

归一化均方误差性能评估
NMSE越小,说明滤波器的性能越好,信号处理的效 果越接近原始信号。
归一化均方误差(NMSE)是另一种衡量滤波器性能的 指标,它表示信号经过滤波器处理后的误差相对于原始 信号的均方误差的比例。
NMSE的计算公式为:$NMSE = frac{MSE}{MSE_{total}}$,其中$MSE_{total}$为原始 信号的均方误差。
加权最小二乘滤波
加权最小二乘滤波是在线性最小二乘滤波的基础上引入了权重因子,以调整误差的 权重。
通过给不同的误差项赋予不同的权重,加权最小二乘滤波能够更好地适应不同的噪 声分布和信号特性。
加权最小二乘滤波在处理具有不同特性的信号和噪声时能够获得更好的滤波效果。
03
最小二乘滤波的算法实 现
递归最小二乘滤波
04
在控制系统中,最小二 乘滤波用于系统辨识和 参数估计等。
02
最小二乘滤波的数学模 型
线性最小二乘滤波
线性最小二乘滤波是一种常用的 信号处理方法,通过最小化误差 的平方和来估计信号中的未知参
数。
它假设信号和噪声之间存在线性 关系,通过解线性方程组来得到
最优估计值。
线性最小二乘滤波具有简单、稳 定和快速收敛等优点,适用于多
THANKS FOR WATCHING
感谢您的观看
信噪比性能评估
信噪比(SNR)是衡量滤波器在噪声干扰下性能的重要指标,它表示信 号与噪声的功率比值。
SNR越大,说明滤波器对噪声的抑制能力越强,信号处理的效果越好。
SNR的计算公式为:$SNR = 10log_{10}frac{P_s}{P_n}$,其中$P_s$为 信号功率,$P_n$为噪声功率。
自适应滤波算法优化

第四部分自适应信号处理教学课件

第四部分自适应信号处理教学课件

❖ 算法原理
• 基本方程
4)最小代价函数
对于前向预测:
Emf
(n)
u(n)
a Tm
(n)u
* m
(n)
对于后向预测:
E
b m
(n)
v(n)
b
T m
(n)
v
* m
(n)
自适应格-梯型滤波器
❖ 算法原理
• 基本方程
5)W-H方程与Wiener解 a)对于前向预测:
Rm (n 1)am (n) um (n)
(11)
k
自适应格型滤波器
❖ 格型自适应滤波原理
• 格型自适应算法(续)
利用
Em (n) 0
* m
可得n时刻发射系数
w(n
k)
f m1 (k )g
* m1
(k
1)
m (n)
k
w(n k ) f m1 (k ) 2 (1 ) g m1 (k 1) 2
且有
k
m (n) 1
步骤6 令m m 1 ,重做步骤2-5, 直到预测误差功率很小为止.
内容
❖ 最优滤波理论与Wiener滤波器 ❖ 梯度下降算法 ❖ 横向LMS自适应滤波器 ❖ 横向RLS自适应滤波器 ❖ Kalman滤波器 ❖ 自适应格型滤波器 ❖ 自适应格-梯型滤波器 ❖ 无限脉冲响应自适应滤波器 ❖ 盲自适应滤波器 ❖ 自适应滤波器的应用
i0
m
m
gm (n) bm (i)x(n i) am* (m i)x(n i)
i0
i0
(8a) (8b)
自适应格型滤波器
❖ 格型自适应滤波原理
• 格型滤波器设计准则
定义前、后向滤波器的残差能量

第7章 线性预测和最优线性滤波器

第7章 线性预测和最优线性滤波器

7.4 预测器与格型滤波器关系
7.5 最优化正规方程解法
7.6 用于滤波和预测维纳滤波器
7.2 前向线性预测
前向线性预测 后向线性预测 格形滤波器



7.2 前向线性预测
已知n时刻以前的p个信号数据 x(n p), x(n p 1), , x(n 1) ,用这p个数据来线性预测 n时刻信号 x( n) 的值,如图所示,预测值为
第七章 线性预测和最优线性滤波器
7.1 线性预测的依据和特点
7.2 前向线性预测 7.3 后向线性预测
7.4 预测器与格型滤波器关系
7.5 最优化正规方程解法
7.6 用于滤波和预测维纳滤波器
7.1 线性预测的依据和特点
• 信号之间的关联性 • 系统的惯性 • 随机信号预测特点


7.1 线性预测的依据和特点
F0 ( z ) G0 ( z ) X ( z ) Fm ( z ) Fm1 ( z ) K m z 1Gm 1 ( z ), m 1, 2,
* Gm (n) K m Fm1 ( z ) z 1Gm 1 ( z ), m 1, 2,
,p ,p
把它们都除以X(z)得到
Fm ( z ) Fm1 ( z ) K m z 1Gm 1 ( z ), m 1, 2,
* Gm (n) K m Fm1 ( z ) z 1Gm 1 ( z ), m 1, 2,

,p ,p

7.4 预测器与格形滤波器关系
3. 格型滤波器的Z域表示
它们z变换的表达式为
——前向线性预测的Wiener-Hopf方程 解此方程则得p阶线性预测器的最佳参数 ap (k ) f E 及 P 。

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。

我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。

另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。

自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。

自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。

自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。

其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。

线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。

其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。

本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。

我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。

通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。

1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。

(完整word版)自适应滤波LMS算法及RLS算法及其仿真

(完整word版)自适应滤波LMS算法及RLS算法及其仿真

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。

相应的装置称为滤波器。

实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。

滤波器可分为线性滤波器和非线性滤波器两种。

当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。

自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。

1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。

自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。

1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。

并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。

基于这~准则的最佳滤波器称为维纳滤波器。

20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。

中文第三章自适应滤波器

中文第三章自适应滤波器
内容
• 1. 自适应滤波器原理 • 2. 自适应线性组合器 • 3. 均方误差性能曲面 • 4. 最陡下降算法 • 5. LMS算法 • 6. RLS算法 • 7. 典型应用:噪声消除
理论分析 自适应算法
1。 自适应滤波原理
1. 学习和跟踪(时变信号) 2. 带有可调参数的最优线性滤波器
两输入两输出Two inputs and two outputs; FIR,IIR, and 格形(Lattice) 最小均方误差和最小平方误差准则
Tmse mse N
1 fs
,
sec
where mse iteration number
N (data samples for each iteration)
fs (sample frequency)
注意
• 最陡下降法具有更多的理论分析意义, 实际操作时我们必须对其做很多近似。
5. LMS 方法
1


0.5

0
-0.5 0 20 40 60 80 100 120 140 160 180 200
1.5
1
LMS 0.5 单次 0
-0.5 0 20 40 60 80 100 120 140 160 180 200
1.5
最1 陡 下 0.5 降0
-0.5 0 20 40 60 80 100 120 140 160 180 200
确性 (7) 鲁棒性:对噪声干扰不敏感,小能量干扰只能造成小估
计误差
本章主要讨论自适应线性组合器(其分析和实现简单,在大多数 自适应滤波系统中广泛应用)。
2。 自适应线性组合器
一类具有自适应参数的FIR数字滤波器。--》一般形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kalman滤波
标量随机过程的递推MMSE估计
新息序列的特性:
矢量Kalman滤波
目标:离散时间线性动力系统状态估计 模型:Kalman滤波的模型如图所示
v1(n) x(n+1)
Z-1I
x(n)
C(n)
y(n)
F(n+1,n)
v2(n)
状态方程 y(n) 卡尔曼滤波 ˆ x (i | Yn )
例:一个AR(p)过程
x ( n) a k x ( n k ) v ( n)
k 1
p

x(n p) x ( n p 1) x (n 1) x ( n 1)
得到状态方程
1, 0 0 x(n p) 0 x(n p 1) 0, 0, 1, 0, 0 x(n p 1) 0 x(n p 2) 0, v ( n ) 0, 1 x(n 1) 0, 0 a , a a1 x(n 1) 1 x ( n) p 1 p
nk nk
由这个模型出发,得到一组简化的Kalman方程,它在数学上 与自适应滤波器的RLS算法一一对应, 由此,建立了Kalman 滤波与RLS之间的联系,任河一种Kalman滤波的有效算法都可 以对应得到一种RLS的实现,由此借助Kalman滤波领域的研究 成果,得到一组快速自适应滤波算法. (Sayed , Kailath, 1994) 最优滤波的评述 Wiener滤波、Kalman滤波的最优性限制 高斯、非高斯问题 序列蒙特卡罗方法,粒子滤波等
x (n 1)
H
1 / 2
x ( n)
F (n 1, n) Q1 (n) 0
1 / 2
I
y ( n) u ( n) x ( n) v ( n)
C ( n) u ( n)
H
Q2 (n) 1
1 E v ( n )v ( k ) 0



x(n 1) Ax(n) v1 (n)
Kalman滤波器推导
ห้องสมุดไป่ตู้
2.几个常用不相关公
5.Kalman增益
6.Riccati方程(K(n,n-1)的递推公式)
Kalman预测的跟踪性能
增益的变化曲线
Kalman滤波器的一些推广简述
4.特殊结构(无激励动力系统)
相关文档
最新文档