牛顿运动定律常用解题方法

合集下载

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。

各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。

所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。

故选B。

2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。

若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。

高中物理【牛顿运动定律的应用】复习课件

高中物理【牛顿运动定律的应用】复习课件

2
g
上述结论可推导出以下两个推论: ①质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示; ②两个竖直圆环相切且两环的竖直直径均过切点,质点沿过切点的不同的光滑弦由静止开 始滑到下端所用时间相等,如图丙所示。
处理等时圆问题的解题思路:
定点 2 | 连接体问题 1.连接体及其特点
典例 如图所示, 传送带与水平地面间的夹角θ=37°,传送带顶端A到底端B的长度L=23.2 m,传 送带始终以v0=8 m/s的速度逆时针转动【1】。在传送带顶端A轻放【2】一质量m=0.5 kg的煤块, 已知煤块与传送带间的动摩擦因数μ=0.5【3】,取sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2, 求:煤块从传送带顶端A运动到底端B所需的时间t。
牛顿运动定律的应用
必备知识 清单破
知识点 1 | 牛顿第二定律的作用 牛顿第二定律确定了运动和力的关系,把物体的运动情况与受力情况联系起来。
知识点 2 | 从受力确定运动情况 1.问题概述
已知物体受力情况确定运动情况,指的是在受力情况已知的条件下,判断出物体的运动状 态或求出物体运动相关参量。
2.解题思路 (1)分析对象→确定研究对象,进行受力分析和运动分析,并画出物体的受力示意图。 (2)求合外力→根据力的合成与分解,求出物体所受的合外力的大小和方向。 (3)求加速度→根据牛顿第二定律列方程,求出物体的加速度。 (4)求运动量→结合给定物体运动的初始条件,选择运动学公式,求出运动参量。
质点从竖直圆环上沿不同的光滑弦由静止开始下滑到环的最低点所用时间相等,如图
甲所示。证明如下:质点沿竖直直径下滑时,做自由落体运动,有2R= 1 gt2,则运动时间为t=2

牛顿运动定律常用解题方法

牛顿运动定律常用解题方法

三、牛顿运动定律常用解题方法1.合成法与分解法【例1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g mF a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N=12.5 N 点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.2. 正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有,有的情况下分解加速度比分解力更简单。

例3. 质量为m 的物体放在倾角为的斜面上斜面固定在地面上,物体和斜面间的动摩擦因数为,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,如图2的所示,则F 的大小为多少?图2解析:物体受力分析如图2(a)所示,以加速度方向即沿斜面向上为x轴正向,分解F和mg,建立方程并求解:图2(a)x方向:y方向:又因为联立以上三式求解得例4. 如图3所示,电梯与水平面夹角为30°,当电梯加速向上运动时,人对梯面压力是其重力的,则人与梯面间的摩擦力是其重力的多少倍?图3解析:此题为分解加速度较简单的典型例题,对人受力分析如图3(a)所示,取水平向右为x轴正方向,此时只需分解加速度,建立方程并求解:图3(a)x方向:y方向:解得3. 假设法在分析物理现象时,常常出现似乎是这又似乎是那,不能一下子就很直观地判断的情况,通常采用假设法。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

利用牛顿定律解题

利用牛顿定律解题
v2 30o 45o n
挡后,又以 20 m/s 的速率飞
出。设两速度在垂直于板面 的同一平面内,且它们与板 面法线的夹角分别为 45o 和
v1
30o,求:(1)乒乓球得到
的冲量;(2)若撞击时间
为0.01s,求板施于球的平均 冲力的大小和方向。
14
解:取挡板和球为研究对象,由 于作用时间很短,忽略重力影响。 设挡板对球的冲力为
R
ω
10
R
ω
N
对给定的ω、R和θ,μ不能小于此值 否则最大静摩擦力不足以维持m在 斜面上不动。
fs
y x
mg
11
讨论:由μ>0,可得:gcosθ-ω 2 Rsinθ>0 所以: 当 时,物体不可能在 锥面上静止不动
例4、顶角为2的直圆锥体,底面固定在水平面上, 如图所示。质量为m的小球系在绳的一端,绳的另 一端系在圆锥的顶点,绳长为l,且不能伸长,质量 不计。圆柱面是光滑的,今使小球在圆锥面上以角 速度绕OH轴匀速转动,求:
dp F dt
dp Fdt
微分式
32

t
0
Fdt p p0
积分式
解题时常用分量式
计算冲量有两种方法:
(1)已知力与时间的关系,利用定义式。 (2)已知合力作用前后动量的增量,由动量定理的 积分式表示。 3、动量守恒定律: 当质点组不受外力作用或所受合外力为零时, 质点组的总动量保持不变。
0
θ
38
3. 光滑的水平桌面上有一环带,环带与小物体 的摩擦系数 ,在外力作用下小物体(质量 m ) 以速率 v做匀速圆周运动,求转一周摩擦力做 的功。
解:小物体对环带压力
r

牛顿运动定律解题技巧

牛顿运动定律解题技巧

牛顿运动定律的解题技巧常用的方法:一、整体法★★:整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法.二、隔离法★★:隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.注:整体与隔离具有共同的加速度,根据牛二定律,分别建立关系式,再联合求解。

三、等效法:在一些物理问题中,一个过程的发展,一个状态的确定,往往是由多个因素决定的,若某量的作用与另一些量的作用相同,则它们可以互相替换,经过替换使原来不明显的规律变得明显简单。

这种用一些量代替另一些量的方法叫等效法,如分力与合力可以互相代替。

运用等效法的前提是等效。

四、极限法极限法是把某个物理量推向极端,即极大或极小,极左或极右,并依此做出科学的推理分析,从而给出判断或一般结论。

极限法在进行某些物理过程的分析时,具有独特作用,恰当运用极限法能提高解题效率,使问题化难为易,化繁为简思路灵活,判断准确。

五、作图法作图法是根据题意把抽象的复杂的物理过程有针对性的表示成物理图示或示意图,将物理问题化成一个几何问题,通过几何知识求解。

作图法的优点是直观形象,便于定性分析,也可定量计算。

六、图象法图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间关系变为几何关系求解。

对某些问题有独特的优势。

动力学的常见问题:TB TA B A 2解之得g m M m M a A 42sin +-=α,g m M m M a B 42sin 2+-=α 讨论:(1)当m M 2sin >α时,0>A a ,其方向与假设的正方向相同;(2)当m M 2sin =α时,0==B A a a ,两物体处于平衡状态;(3)当m M 2sin <α时,0<A a ,0<B a ,其方向与假设的正方向相反,即A 物体的加速度方向沿斜面向上,B 物体的加速度方向竖直向下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、牛顿运动定律常用解题方法1.合成法与分解法【例1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=,cos37°=)(1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g mF a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N= N 点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.2. 正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有F ma F ma x x y y ==,,有的情况下分解加速度比分解力更简单。

例3. 质量为m 的物体放在倾角为α的斜面上斜面固定在地面上,物体和斜面间的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,如图2的所示,则F 的大小为多少图2解析:物体受力分析如图2(a )所示,以加速度方向即沿斜面向上为x 轴正向,分解F 和mg ,建立方程并求解:图2(a )x 方向:F mg F ma f cos sin αα--= y 方向:F mg F N --=cos sin αα0 又因为F F f N =μ联立以上三式求解得F m a g g =++-(sin cos )cos sin αμααμα例4. 如图3所示,电梯与水平面夹角为30°,当电梯加速向上运动时,人对梯面压力是其重力的65,则人与梯面间的摩擦力是其重力的多少倍解析:此题为分解加速度较简单的典型例题,对人受力分析如图3(a )所示,取水平向右为x 轴正方向,此时只需分解加速度,建立方程并求解:图3(a )x 方向:F ma f =cos30y 方向:F mg ma N -=sin 30解得F mgf =353. 假设法在分析物理现象时,常常出现似乎是这又似乎是那,不能一下子就很直观地判断的情况,通常采用假设法。

例5. 两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图4所示,滑块A 、B 的质量分别在M 、m ,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知滑块都从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力( )A. 等于零B. 方向沿斜面向上C. 大小等于μθ1mg cosD. 大小等于μθ2mg cos解析:以B 为研究对象,对其受力分析如图4所示,由于所求的摩擦力是未知力,可假设B 受到A 对它的摩擦力沿斜面向下,由牛顿第二定律得mg F ma fB sin θ+=①对A 、B 整体进行受力分析,有()sin ()cos ()M m g M m g M m a +-+=+θμθ1②由①②得F mg fB =-μθ1cos式中负号表示F fB 的方向与规定的正方向相反,即沿斜面向上,所以选B 、C 。

4、整体法与隔离法例1、如图所示,在粗糙的水平面上有一个三角形木块abc ,在它的两个粗糙斜面上分别放两个质量为m 1和m 2的木块,m 1>m 1;已知三角形木块和两个物体都静止,则粗糙的水平面对三角形木块 ( )A 、有摩擦力的作用,摩擦力的方向水平向右;B 、有摩擦力的作用,摩擦力的方向水平向左;C 、有摩擦力的作用,但摩擦力的方向不能确定,因m 1、m 2、θ1、θ2的数值均未给出;D 、没有摩擦力的作用。

分析:对abc 和m 1、m 2组成的系统进行分析,除水平面对abc 下表面可能存在水平方向的摩擦力以外,整体受到系统外的作用力只有abc 和m 1、m 2的重力G 和水平面的支持力F N ,受力情况如图2所示,在水平方向系统不受其它外力,而abc 和m 1、m 2组成的系统中各物体的加速度都为零,系统处于平衡状态,所以在水平方向a 受到水平面的摩擦力必为零。

即abc 相对于水平面没有运动趋势。

故正确的答案是D 。

b如图2b如图1例5. 如图12所示,两个用轻线相连的位于光滑平面上的物块,质量分别为m 1和m 2。

拉力F 1和F 2方向相反,与轻线沿同一水平直线,且。

试求在两个物块运动过程中轻线的拉力。

图12解析:设两物块一起运动的加速度为a ,则对整体有对m 1有解以上二式可得点评:该题体现了牛顿第二定律解题时的基本思路:先整体后隔离––––即一般先对整体应用牛顿第二定律求出共同加速度,再对其中某一物体(通常选受力情况较为简单的)应用牛顿第二定律,从而求出其它量。

系统内各物体加速度不同时对于整体法,其本质是采用牛顿第二定律,设质点系在某一方向上所受到的合力为F ,质点系中每一个物体的质量分别为m 1、m 2、m 3……,每一个物体的加速度分别为a 1、a 2、a 3……,则F = m 1a 1 +m 2a 2 +m 3a 3+……。

例1:如图1所示,质量为M 的框架放在水平的地面上,内有一轻质弹簧上端固定在框架上,下端固定一个质量为m 的小球。

小球上下振动时不与框架接触,且框架始终没有跳起。

则当框架对地面的压力刚好为零时,小球的加速度为多大解:对于本题,若采用常规的方法,先对框架进行受力分析,如图2所示,弹簧对框架的作用力为N =Mg 。

再对小球进行受力分析,如图3所示,则根据牛顿第二定律可得:N +mg =ma Mg +mg =ma a =Mg +mgm图1图2MgN图3N mg若采用整体法,取框架、小球为一个整体,则整体所受的合力为Mg +mg ,框架的加速度a 1=0,小球的加速度a 2=a ,则根据牛顿第二定律可得:Mg +mg =Ma 1+ma 2=maa =Mg +mg m可见,采用整体法比分别分析两个物体要简单。

【例8】如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求.错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.解题方法与技巧: 解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图. 据物体平衡条件得:F N -F f ′-Mg =0② 且F f =F f ′③由①②③式得F N =22mM g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22mM +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N = ma +M ×0 故木箱所受支持力:F N =22mM +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22mM +g .【例7】 如图,倾角为α的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。

求水平面给斜面的摩擦力大小和方向。

解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。

可以先求出木块的加速度()αμαcos sin -=g a ,再在水平方向对质点组用牛顿第二定律,很容易得到:ααμαcos )cos (sin -=mg F f如果给出斜面的质量M ,本题还可以求出这时水平面对斜面的支持力大小为:F N =Mg +mg (cos α+μsin α)sin α,这个值小于静止时水平面对斜面的支持力。

5、结合图象分析解决问题应用图象是分析问题和解决问题的重要方法之一,在解决动力学问题时,如果物体的受力情况比较复杂,要分析物体的运动情况可以借助于图象,根据物体的受力情况做出运动物体的速度-时间图象,则物体的运动情况就一目了然,再根据图象的知识求解可以大大地简化解题过程。

例:质量为1kg 的物体静止在水平地面上,物体与地面间的动摩擦因数,作用在物体上的水平拉力F 与时间的关系如图所示,求运动物体在12秒内的位移(答案:s=100m )α6. 程序法按顺序对题目给出的物体运动过程进行分析的方法简称“程序法”。

“程序法”要求我们从读题开始,注意题中能划分多少个不同的过程或多少个不同的状态,然后对各个过程进行分析。

一、牛顿运动定律在动力学问题中的应用 1、已知力求运动例1:如图所示,长为L 的长木板A 放在动摩擦因数为μ1的水平地面上,一滑块B (大小可不计)从A 的左侧以初速度v 0向右滑入木板A ,滑块与木板间的动摩擦因数为μ2(A 与水平地面间的最大静摩擦力与滑动摩擦力大小相同),已知A 的质量M=2.0kg ,B 的质量m=3.0kg ,AB 的长度L=3.0m ,v 0=5.0m/s ,μ1=,μ2=,请分别求出A 和B 对地的位移 解:分别对A 、B 受力分析如图所示:根据牛顿第二定律:B 物体的加速度 a B =f 1/m=μ2mg/m=4m/s 2A 物体的加速度a A =(f 1-f 2)/M=(μ2mg-μ1(M+m)g)/M=1m/s 2设经过时间t ,AB 的速度相等则有:v 0-a B t=a A t 解得 t=1s 所以B 发生的位移:m t a t v s B B 0.32120=-= A 发生的位移:m t a s A A 5.0212==AB 速度达到相等后,相对静止一起以v=1m/s 的初速度,a=μ2g=2m/s2的加速度一起匀减速运动直到静止,发生的位移:av s 22=所以A 发生的位移为s A +s=+= B 发生的位移为s B +s=+=例三:质量为12kg 的箱子放在水平地面上,箱子和地面的滑动摩擦因数为,现用倾角为37的60N 力拉箱子,如图所示,3s 末撤去拉力,则撤去拉力时箱子的速度为多少箱子继续运动多少时间而静止 析与解:选择木箱为研究对象,受力分析如图: 沿水平和竖直方向将力正交分解,并利用牛顿运动定律,得方向: 水平方向: F cos37-N =ma竖直方向: F sin37+N =mg 解得: a =s 2v=at =s当撤去拉力F 后,物体的受力变为如图3-2-5,则由牛顿第二定律得:N =mg =ma`, a`=g =3m/s 2t=v/a `=点评:本例考察了支持力和摩擦力的的被动力特征,当主动力F 变化时,支持力N 摩擦力f 都随之变。

相关文档
最新文档