概率统计知识点归纳

合集下载

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

统计概率知识点梳理总结

统计概率知识点梳理总结

统计概率知识点梳理总结统计概率是统计学中非常重要的一个分支,它研究随机现象的概率规律,为我们处理不确定性的问题提供了一种方法。

在统计概率的学习中,有一些基本概念和方法是必须掌握的。

本文将对统计概率的相关知识进行梳理总结,包括概率基本概念、概率分布、概率密度函数、概率函数、随机变量、概率质量函数、期望、方差等内容。

1.概率基本概念概率是一个介于0-1之间的数,用来度量一个事件发生的可能性。

概率的基本概念包括样本空间、随机事件、事件的概率、事件的互斥和事件的独立性等。

样本空间是指试验中所有可能结果的集合,随机事件是指样本空间中的一个子集,事件的概率是指该事件发生的可能性大小,用P(A)表示。

事件的互斥指两个事件不可能同时发生,事件的独立性指两个事件之间的发生没有关系。

2.概率分布概率分布是描述随机变量所有可能取值及其对应概率的分布情况。

常见的概率分布包括离散型概率分布和连续型概率分布。

离散型概率分布是指随机变量只能取其中的一个值的概率分布,如伯努利分布和泊松分布;连续型概率分布是指随机变量可以取任意实数值的概率分布,如正态分布和指数分布。

3.概率密度函数概率密度函数是描述连续型随机变量的概率分布的函数,用f(x)表示。

概率密度函数具有非负性、非减性和归一性等性质。

通过概率密度函数可以计算随机变量在其中一区间内取值的概率。

4.概率函数概率函数是描述离散型随机变量的概率分布的函数,它给出了随机变量取各个值的概率。

概率函数具有非负性和归一性等性质。

通过概率函数可以计算随机变量取一些特定值的概率。

5.随机变量随机变量是一个实数值函数,它的取值是试验结果的函数。

随机变量可以是离散型的,也可以是连续型的。

离散型随机变量通常用字母大写表示,如X;连续型随机变量通常用字母小写表示,如x。

随机变量可以有多种数学表达方式,如分布函数、概率密度函数和概率函数等。

6.概率质量函数概率质量函数是描述离散型随机变量的概率分布的函数,用p(x)表示。

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。

这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。

每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。

统计概率知识点归纳总结大全

统计概率知识点归纳总结大全

统计概率知识点归纳总结大全1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归.考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ;等可能事件概率的计算步骤:(1) 计算一次试验的基本事件总数n ;(2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n=求值;(4) 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值ix (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:ξ1… k… nPn n q p C 00111-n n q p C…k n k kn q p C -q p C n n n称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:ξ1x2x… i x… PP 1P 2…i P…ξ1 2 3… k… Ppqp2q p…1k q p -…考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D . (3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.(4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.(1)若2~(,)N ξμσ,则~(0,1)N ξμησ-= ;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.。

概率统计知识点总结

概率统计知识点总结

概率统计知识点总结概率统计是一门研究随机现象规律性的数学学科,主要研究随机变量的分布、参数估计、假设检验、方差分析等内容。

下面是对概率统计中的一些重要知识点的总结:1. 随机事件与概率:随机事件是指试验中可能发生也可能不发生的结果,概率是描述随机事件发生可能性的数值。

概率由经典概率、几何概率和统计概率三类组成。

2. 随机变量与概率分布:随机变量是一个能随机变化的量,可以分为离散随机变量和连续随机变量。

概率分布指的是随机变量各个取值及其相应的概率。

3. 期望与方差:期望是统计量中的一个重要概念,描述了随机变量在一次试验中平均取值的大小。

方差则是描述随机变量取值分散程度的一个指标。

4. 大数定律与中心极限定理:大数定律指的是当样本容量足够大时,样本平均值会趋近于理论期望。

中心极限定理则是指当样本容量足够大时,样本均值的分布会趋近于正态分布。

5. 参数估计与假设检验:参数估计是通过样本数据来估计总体参数的值,可以分为点估计和区间估计。

假设检验则是通过样本数据来判断总体参数的假设是否成立。

6. 方差分析与回归分析:方差分析是根据不同因素对总体均值的影响进行推断的一种方法。

回归分析则是研究因变量与自变量之间关系的一种方法,可以进行线性回归和非线性回归。

7. 相关分析与统计推断:相关分析是研究两个变量之间关系的一种方法,可以通过计算相关系数来确定两个变量之间的线性关系强度和方向。

统计推断是利用样本数据对总体进行推断的一种方法,可以由样本推断出总体特征。

8. 非参数统计方法:非参数统计方法是在对总体分布形态不做假设的情况下,利用样本统计量进行推断的方法。

它包括了秩和检验、符号检验、分布自由检验等方法。

以上只是概率统计中的一部分重要知识点总结,概率统计的内容非常广泛,应用领域也十分广泛。

希望能够通过学习以上知识点,对概率统计有一个初步的了解。

概率和统计的基本概念知识点总结

概率和统计的基本概念知识点总结

概率和统计的基本概念知识点总结概率和统计是数学中的两个重要分支,被广泛应用于各个领域,包括自然科学、社会科学和工程学等。

本文将对概率和统计的基本概念进行总结和阐述,并提供一些实际应用案例。

1. 概率的基本概念概率是描述事件发生可能性的数值,通常用一个介于0和1之间的数表示。

概率的计算可以根据事件的性质和概率空间来进行。

1.1 事件与样本空间事件是指在一次试验中可能发生的一种或几种结果。

样本空间是指试验的所有可能结果的集合。

事件是样本空间的子集。

1.2 随机试验与概率空间随机试验是指具有以下特点的实验:可以在相同的条件下重复进行,并且每次试验的结果无法提前确定。

概率空间包括样本空间和概率函数。

1.3 概率函数概率函数是一个将样本空间的事件映射到实数区间[0,1]的函数。

它满足以下条件:对于任意样本空间的事件A,概率函数P(A)具有非负性、规范性和可列可加性。

2. 统计学的基本概念统计学是研究收集、整理、分析和解释数据的方法和技术的学科。

统计学分为描述统计和推断统计两个方面。

2.1 描述统计描述统计是用图表、统计量等方法对数据进行总结和描述的过程。

常用的描述统计方法包括平均数、中位数、众数、方差、标准差等。

2.2 推断统计推断统计是通过对样本数据进行分析,得出关于总体的结论或推断的过程。

推断统计方法包括假设检验、置信区间估计等。

3. 概率与统计的应用案例概率和统计的理论在实际生活和科学研究中有着广泛的应用。

以下是几个典型的案例:3.1 风险评估概率与统计能够用于评估风险和制定保险政策。

根据历史统计数据和概率模型,可以估计某种风险发生的可能性,并制定相应的保险费率。

3.2 质量控制概率与统计可以用于质量控制中的过程监控和产品检验。

通过收集数据并进行统计分析,可以判断生产过程是否处于控制状态,以及产品是否符合质量标准。

3.3 经济预测概率与统计可以应用于经济领域的预测和决策。

通过对历史数据进行分析,可以建立经济模型并做出相应的预测,帮助政府和企业做出合理决策。

概率统计知识点

概率统计知识点

一.随机事件和概率1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。

则称P(A)为事件A 的概率。

(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。

设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A =2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂ A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

(4)全概公式设事件B 1, B 2,Λ , B n 满足1°B 1, B 2,Λ , B n两两互不相容,P (B i ) > 0(i = 1,2,Λ , n ) ,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结
数学必修三统计和概率的主要知识点包括:
1. 统计:
- 样本调查与总体推断:样本的选择和调查方法,通过样本推断总体特征;
- 随机变量与概率分布:离散型和连续型随机变量的概念,概率质量函数和概率密度函数;
- 期望与方差:随机变量的期望值和方差;
- 离散型随机变量的分布:二项分布、泊松分布等离散型随机变量的性质;
- 连续型随机变量的分布:均匀分布、正态分布等连续型随机变量的性质;
- 多元随机变量与边缘分布:多个随机变量之间的关系与边缘分布;
- 相关与回归:随机变量之间的相关性和回归分析;
- 统计与误差:抽样误差和非抽样误差。

2. 概率:
- 随机事件与概率:样本空间、随机事件和概率的概念;
- 概率的运算:事件的和、积以及互斥事件的概率;
- 条件概率:在已知一事件发生的条件下,另一事件发生的概率;
- 事件的独立性:事件之间的独立性和联合概率;
- 正态分布的应用:正态分布的特性、标准正态分布的应用;
- 抽样与抽样分布:抽样的概念,样本均值的分布;
- 参数估计:点估计和区间估计;
- 假设检验:零假设和备择假设的提出,检验统计量的构造。

以上是数学必修三统计和概率的主要知识点总结,具体内容可根据教材的要求进行深入学习和了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计知识点归纳
平均数、众数和中位数
平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.
一、正确理解平均数、众数和中位数的概念
1.平均数 平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.
2.众数 在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.
3.中位数 中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.
二、注意区别平均数、众数和中位数三者之间的关系
平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.
三、能正确选用平均数、众数和中位数来解决实际问题
由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.
极差、方差、标准差
极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.
一、极差
一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.
二、方差
方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.
求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为:
])()()[(1222212x x x x x x n
S n -++-+-= . 三、标准差
在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.
即标准差=方差.
四、极差、方差、标准差的关系
方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组
数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.
一、 随机事件的概率
1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。

3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。

7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.
概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。

认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。

二、 概率的基本性质
1、事件的关系与运算
(1)包含。

对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。

不可能事件记作∅。

(2)相等。

若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。

(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。

(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。

(5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ∅,即事件A 与事件B 在任何一次试验中并不会同时发生。

(6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。

2、概率的几个基本性质
(1)0()1P A ≤≤.
(2)必然事件的概率为1.()1P E =.
(3)不可能事件的概率为0. ()0P F =.
(4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。

(5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B =.
三、古典概型
1、基本事件的特点:(1)任何两个事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。

2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等。

具有这两个特点的概率模型称为古典概型。

3、公式:()=
A P A 包含的基本事件的个数基本事件的总数
四、几何概型
1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。

2、几何概型中,事件A 发生的概率计算公式:
()P A =构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
三类概率问题的求解策略
对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句,因为这些关键语句往往蕴含着解题的思路和方法。

一、可能性事件概率的求解策略
对于可能性事件的概率问题,利用概率的古典定义来求可能性事件的概率时,应注意按下列步骤进行:求出基本事件的总个数n;②求出事件A 中包含的基本事件的个数m;③求出事件A 的概率,即n m
A P =)(
二、互斥事件概率的求解策略
对于互斥事件的概率问题,通常按下列步骤进行:①确定众事件彼此互斥;②众事件中有一个发生;先求出众事件分别发生的概率,然后再求其和。

对于某些复杂的互斥事件的概率问题,一般应考虑两种方法:一是“直接法”,将所求事件的概率化成一些彼此互斥的事件的概率的和;二是用“间接法”,即先求出此事件的对立事件的概率)(A P ,再用)(1)(A P A P -=求出结果。

三、相互独立事件同时发生的概率的求解策略
对于相互独立事件同时发生的概率问题,其求解的一般步骤是:①确定众事件是相互独立的;②确定众事件会同时发生;③先求每个事件发生的概率,再求它们的积。

概率的计算方法
一、公式法 利用公式P =(随机事件)随机事件可能出现的结果数随机事件所有可能出现的结果数就可以计算随机事件的概率,这里
1=(必然事件)P ,0=(不可能事件)P ,如果A 为不确定事件,那么0<)
(A P <1. 二、列表法
例.如果每组3张牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少?
解:利用列表法:
3 (1,3) (2,3) (3,3)
列表中两次出现1,2,3点的可能性相同,因而共有9中可能,而牌面数字和等于4的情况有(1,
3),(2,2),(3,1),3中可能,所以牌面数字和等于4的概率等于
93,即31. 三、树状图法
如上题的另一中解法,就利用用树状图法来解:
总共9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为等于
93,即31. 四、面积法
几何概型的概率的求解方法往往与面积的计算相结合
例.如图,矩形花园ABCD ,AB 为4米,BC 为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?
解:矩形面积为:4×6=24(米2),
阴影部分面积为:12642
1=⨯⨯(米2), 212412==(小鸟落在阴影区)P .
3 1 1 1 2 2 2 3 (4) (5) (4) 开始 2 1 3 3 (2) (3) (3) (4) (5) (6)
A B
C D。

相关文档
最新文档