(最全)高中数学概率统计知识点总结

合集下载

高中数学概率高中数学概率与统计

高中数学概率高中数学概率与统计

高中数学概率高中数学概率与统计高中数学概率一:高中数学概率统计知识点总结概括一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。

在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句__输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。

②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅资料、设计调查问卷等方法收集数据。

(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

高中数学概率统计知识点全归纳

高中数学概率统计知识点全归纳

高中数学《概率与统计》知识点总结一、统计1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

3、总体特征数的估计:⑴平均数:nx x x x x n++++= 321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211; 注意:频率分布表计算平均数要取组中值。

⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=−=ni ix xns ;标准差:21)(1∑=−=ni ix xns注:方差与标准差越小,说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧−⎪⎪=⎪⎨−⎪⎪=−⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

二、概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示; ⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果; ⑵古典概型的特点:①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。

2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。

4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。

3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。

分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结高中数学概率统计是数学中的一门重要学科,它研究了随机事件的发生规律以及通过统计方法对数据进行分析和推断的技巧。

下面我将对高中数学概率统计的知识点进行总结,帮助大家更好地掌握这门学科。

一、概率1. 随机事件的基本概念:随机事件是指在一定条件下,可能发生也可能不发生的事件。

2. 事件的运算:事件的和、积、差、余事件。

3. 事件的等价关系:互不相容事件、互斥事件、对立事件。

4. 事件的概率:频率对概率的定义、概率的性质。

5. 概率空间:试验的样本空间、随机事件、样本点、概率空间的性质。

二、概率计算1. 频率与概率:计算频率、计算概率。

2. 概率的计算法则:加法法则、减法法则、乘法法则、全概率公式、贝叶斯定理。

3. 排列与组合:排列、组合的计算公式。

三、随机变量及其分布律1. 随机变量的基本概念:随机变量是指试验结果的一个实函数,它的取值不确定,但取值的范围是确定的。

2. 随机变量的分布律:离散随机变量、连续随机变量、概率密度函数、分布函数。

3. 随机变量的数字特征:数学期望、方差、标准差。

四、常见离散型随机变量1. 伯努利分布:定义、数学期望、方差。

2. 二项分布:定义、数学期望、方差。

3. 泊松分布:定义、数学期望、方差。

五、常见连续型随机变量1. 均匀分布:定义、数学期望、方差。

2. 正态分布:定义、标准正态分布、数学期望、方差。

3. 指数分布:定义、数学期望、方差。

六、大数定律与中心极限定律1. 大数定律:大数定律是指随着试验次数的增加,样本均值会稳定地接近于总体均值。

2. 中心极限定律:中心极限定律指的是当样本容量足够大时,样本均值的分布近似服从正态分布。

七、统计推断1. 统计参数与统计量:总体参数、样本参数、抽样分布。

2. 点估计与区间估计:点估计、区间估计的概念与计算方法。

3. 假设检验:原假设与备择假设、显著性水平、拒绝域、接受域。

4. 卡方检验:卡方分布、卡方检验的计算方法。

高中数学概率统计知识点总结大全

高中数学概率统计知识点总结大全

概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计
一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12n
x x x x n
++⋅⋅⋅+=
②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+
3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121
[()()()]n s x x x x x x n
=
-+-+⋅⋅⋅+- 二、频率直方分布图下的频率
1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数
2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;
三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n n
x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-
四、线性回归直线方程:ˆˆˆy
bx a =+ 其中:1
1
2
22
1
1
()()
ˆ()
n
n
i i i i i i n
n
i i i i x x y y x y nxy
b
x x x nx ====---∑∑==
--∑∑ , ˆˆa
y bx =- 1、线性回归直线方程必过样本中心(,)x y ;
2、ˆ0:b
>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析
1、残差:ˆˆi i i e
y y =-(残差=真实值—预报值)。

分析:ˆi e 越小越好; 2、残差平方和:21ˆ()n
i i i y y
=-∑, 分析:①意义:越小越好; ②计算:222211221
ˆˆˆˆ()()()()n
i i n n i y y
y y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):221
2
1
ˆ()1()
n
i i i n
i i y y
R y y ==-∑=-
-∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;
4、相关系数
:()()
n
n
i i i i x x y y x y nx y
r ---⋅∑∑=
=
分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关
③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2
2()
()()()()
n ad bc k a b c d a c b d -=
++++
②.犯错误上界P 对照表
3、独立性检验步骤
①.计算观察值k :2
()()()()()
n ad bc k a b c d a c b d -=++++;
②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;
③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;
【经典例题】
题型1 与茎叶图的应用
例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。

根据这50位市民 (1)分别估计该市的市民对甲、乙部门评分的中位数;
(2)分别估计该市的市民对甲、乙部门的评分做于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙学科网两部门的评价。

题型2 频率直方分布图的应用
例2(2015广东)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,
(1)求直方图中x 的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则
月平均用电量在220,240的用户中应抽取多少户?
练习2 (2014全国1)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)
频数 6 26 38 22 8
(1)在答题卡上作出这些数据的频率分布直方图: (2)估计这种产品质量指标值的平均数及方差
(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
题型3 计算线性回归方程
例3(2015重庆)随着我国经济的发展,居民
的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 2010 2011 2012 2013 2014
时间代号t 1 2 3 4 5 储蓄存款y (千亿元) 5 6 7 8
10
(1)求y 关于t 的回归方程ˆˆˆy
bt a =+ (2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.
练习3(2014全国2)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:
年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (1)求y 关于t 的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
题型4 线性回归分析
例4(2016全国3)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(1).由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;
(2).求出y 关于t 的回归方程ˆˆˆy
bt a =+(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑,
7
2
1
()
0.55i
i y y =-=∑,≈2.646.
参考公式:1
22
1
1
()()
()(y y)n
i
i
i n n
i i i i t t y y r t t ===--=
--∑∑∑,
回归方程y a bt =+中:1
2
1
()()
()
n
i
i
i n
i i t t y y b t t ==--=-∑∑,
=.a y bt -
题型5 独立性检验综合应用
例5.为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表: (1)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人? (2)在上述抽取的人中选2人,求恰有一名女生的概率;
(3)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由。

练习5. 为调查某市学生百米运动成绩,从该市学生中按照男女比例 随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之 间,将测试结果按如下方式分成五组,第一组[),14,13第二组[)15,14, 第 五组[]18,17,如图是按上述分组方法得到的频率分布直方图. (1)求这次测试成绩的平均数、众数和中位数、
(2)设n m ,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即[)[]18,1714,13,⋃∈n m ,求事件“2>-n m ”的概率;
(3)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如下表: 完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性别有关”?
男 女 总计 达标 24 不达标 12 总计
50。

相关文档
最新文档