工程光学基础教程 习题参考答案
工程光学基础 习题参考答案

1.β = 0, l' = 0, l = −50 2.β = −0.1, l' = −550, l = −55 3.β = −0.2, l' = −60, l = −300 4.β = −1, l'= −100, l = −100 5.β = 1, l' = 0, l = 0 6.β = 5, l' = −200, l = −40 7.β = 10, l' = −450, l = 45 8.β = ∞, l' = +∞, l = −50
n
1.5 10 15
Q L = −∞,∴U = 0
∴U'= I − I'
L'
=
r
1
+
sin I' sin U '
=
100
1
+
1 / 15 sin(1.9166)
=
299.332
则 实 际 光 线 的 像 方 截 距 为 299.332 , 与 高 斯 像 面 的 距 离 为 :
根据公式 n' − n = n'−n (1-20)有: n' − 1 = n'−1 ,可以看出此种情况不存在。
l' l r
r −∞ r
计算第②种情况:易知入射光线经第一面折射后过光轴与反射面的交点。
其余参考题 14。
21、一物体位于半径为 r 的凹面镜前什么位置时,可分别得到:放大 4 倍的实 像,放大 4 倍的虚像、缩小 4 倍的实像和缩小 4 倍的虚像? 解: (1)放大 4 倍的实像
(2)放大四倍虚像 (3)缩小四倍实像 (4)缩小四倍虚像
工程光学习题参考答案 平面与平面系统

第三章 平面与平面系统1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解:镜子的高度为1/2人身高,和前后距离无关。
2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少? 解:同理:1''1I I -=α 321M M M ∆中 ︒=-+-+180)()(1''12''2I I I I α ︒=∴60α 答:α角等于60︒。
3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。
如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解:O图3-44. 一光学系统由一透镜和平面镜组成,如图3-29所示。
平面镜MM 与透镜光轴垂直交于D点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像''A ''B 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-29 习题4图解: 由于平面镜性质可得''B A 及其位置在平面镜前150mm 处 ''''B A 为虚像,''B A 为实像则211-=β 21'1-==L L β 450150600'=-=-L L解得 300-=L 150'=L 又Θ'1L -L 1='1f mm f 150'=∴ 答:透镜焦距为100mm 。
5.如图3-30所示,焦距为'f =120mm 的透镜后有一厚度为d =60mm 的平行平板,其折射率n =1.5。
当平行平板绕O 点旋转时,像点在像平面内上下移动,试求移动量△'y 与旋转角φ的关系,并画出关系曲线。
工程光学第一章习题及解答

解题技巧总结
建立清晰的解题思路
根据题目要求,建立清晰的解 题思路,明确解题方向和步骤。
提高计算能力
通过练习和总结,提高自己的 计算能力和准确性,避免因计 算失误导致错误。
仔细审题
在开始解题之前,务必仔细阅 读题目,明确题目要求和给定 条件。
准确应用公式和定理
在解题过程中,准确应用相关 的公式和定理,确保适用条件 和范围正确。
注意细节和隐含条件
在解题过程中,注意细节和隐 含条件,确保解题思路和结果 完整准确。
05 习题拓展
相关知识点拓展
01
光的干涉
光的干涉是光波动性的重要表现之一,它涉及到光的相干性、干涉条件、
干涉图样等知识点。可以进一步了解干涉现象在日常生活和科技领域中
的应用,如光学干涉仪、薄膜干涉等。
02
光的衍射
光的衍射描述了光在传播过程中遇到障碍物时发生的偏离直线传播的现
象。可以深入了解衍射与干涉的区别和联系,以及衍射在光学仪器设计、
光谱分析等领域的应用。
03
光学仪器
了解各种光学仪器的基本原理和应用,如显微镜、望远镜、照相机等。
探究这些仪器中光的干涉、衍射等现象的应用,以及如何提高光学仪器
的性能。
类似题目推荐
题目
什么是光的偏振现象?请举例说明。
答案
光的偏振现象是指光波的电矢量或磁矢量在某一特定方向 上振动。例如,自然光通过偏振片后,只能沿特定方向振 动的光波通过,形成线偏振光。
题目
简述光的色散现象。
答案
光的色散现象是指不同波长的光在传播速度上存在差异, 导致白光通过棱镜后分解成不同颜色的光谱。这是因为不 同波长的光在介质中的折射率不同。
取为无穷大。
工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学第3版第一章习题答案

• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3
工程光学基础教程习题答案完整

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学习题参考答案第十一章光的干涉和干涉系统

⼯程光学习题参考答案第⼗⼀章光的⼲涉和⼲涉系统第⼗⼀章光的⼲涉和⼲涉系统1.双缝间距为1mm,离观察屏1m,⽤钠光灯做光源,它发出两种波长的单⾊光nm 0.5891=λ和nm 6.5892=λ,问两种单⾊光的第⼗级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---??===? 962231589.610589.61010D e m d λ---??===? ∴第⼗级亮纹间距()()65211010589.6589100.610e e m -?=-=?-?=?2.在杨⽒实验中,两⼩孔距离为1mm,观察屏离⼩孔的距离为50cm,当⽤⼀⽚折射率为1.58的透明薄⽚贴住其中⼀个⼩孔时(见图11-17),发现屏上的条纹系统移动了0.5场⾯,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ?=- ()1x dn h D∴-=230.510100.580.5h --??=21.7210h mm -=?3.⼀个长30mm 的充以空⽓的⽓室置于杨⽒装置中的⼀个⼩孔前,在观察屏上观察到稳定的⼲涉条纹系。
继后抽去⽓室中的空⽓,注⼊某种⽓体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空⽓折射率000276.10=n 。
试求注⼊⽓室内⽓体的折射率。
解:设⽓体折射率为n ,则光程差改变()0n n h ?=-图11-47 习题2 图()02525x d dn n h e D Dλ??∴-==?= 9025656.2810 1.000276 1.0008230.03m n n h λ-??=+=+= 4. ** 垂直⼊射的平⾯波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图⾯(见图11-18)的直线发⽣光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板⽆突变时光强的⼀半。
解:⽆突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ??∴?==+≥⼜()1n d ?=-114d m n λ?∴=+ ?-??5.若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明λλνν=,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-?=?λ,求频率宽度和相⼲长度。
工程光学练习答案(带样题).doc

工程光学练习答案(带样题)期末,东北石油大学审查了09级工程光学的测量和控制材料。
第一章练习1,假设真空中的光速为3米/秒,则计算水中(n=1.333)、皇冠玻璃(n=1.51)、燧石玻璃(n=1.65)、加拿大树胶(n=1.526)、钻石(n=2.417)和其他介质中的光速。
解决方案:当灯在水中时,n=1.333,v=2.25m米/秒,当灯在皇冠玻璃中时,n=1.51,v=1.99m米/秒,当灯在燧石玻璃中时,n=1.65,v=1.82m米/秒,当灯在加拿大树胶中时,n=1.526,v=1.97m米/秒,当灯在钻石中时,n=2.417,v=1.24米/秒。
2.一个物体穿过针孔照相机,在屏幕上形成一个60毫米大小的图像。
如果屏幕被拉开50毫米,图像的尺寸变成70毫米,计算出从屏幕到针孔的初始距离。
解决方案:在同一个均匀的介质空间中,光直线传播。
如果选择通过节点的光,方向不会改变,从屏幕到针孔的初始距离为x,则可以根据三角形的相似性得到:因此,x=300mm毫米意味着从屏幕到针孔的初始距离是300毫米。
3、一块厚度为200毫米的平行平板玻璃(n=1.5),下面放一块直径为1毫米的金属板。
如果玻璃板上覆盖有圆形纸片,则要求玻璃板上方的任何方向都不能看到纸片。
这张纸的最小直径是多少?解决方案:如果纸片的最小半径是x,那么根据全反射原理,当光束从玻璃发射到空气中的入射角大于或等于全反射临界角时,就会发生全反射,正是由于这个原因,在玻璃板上方看不到金属片。
全反射的临界角由下式确定:(1)其中N2=1,n1=1.5,根据几何关系,利用平板的厚度和纸张与金属片的半径计算全反射临界角的方法如下:(2)纸张的最小直径x=179.385mm毫米可以通过组合等式(1)和(2)来获得,因此纸张的最小直径为358.77毫米4.光纤芯的折射率是n1.包层的折射率为n2,光纤所在介质的折射率为n0。
计算光纤的数值孔径(即n0sinI1,其中I1是光在光纤中以全反射模式传播时,光在入射端面的最大入射角)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm 处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:(3)光线经过第一面折射:, 虚像第二面镀膜,则:得到:(4)在经过第一面折射物像相反为虚像。
6.一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。
沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?解:设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看(2)从第二面向第一面看(3)在水中7.有一平凸透镜r1=100mm,r2,d=300mm,n=1.5,当物体在时,求高斯像的位置'l。
在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少?解:8.一球面镜半径r=-100mm,求=0 ,⨯-1.0 ,⨯-2.0 ,-1⨯ ,⨯1 ,⨯5,⨯10,∝时的物距和象距。
解:(1)(2) 同理,(3)同理, (4)同理,(5)同理, (6)同理,(7)同理, (8)同理,9. 一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4倍的实像,当大4倍的虚像、缩小4倍的实像和缩小4倍的虚像? 解:(1)放大4倍的实像(2)放大四倍虚像(3)缩小四倍实像(4)缩小四倍虚像10.一个直径为200mm的玻璃球,折射率为1.53,球内有两个小气泡,从球外看其中一个恰好在球心。
从最近的方位去看另一个气泡,它位于球表面和球心的中间。
求两气泡的实际位置。
(解题思路)玻璃球内部的气泡作为实物经单球面折射成像。
由于人眼的瞳孔直径很小,约2—3毫米,且是从离气泡最近的方位观察,所以本题是单球面折射的近轴成像问题。
题中给出的是像距s’, 需要求的是物距是s。
解:(1)n=1.53 n’=1.00 r=-100mms’=-100mm 代入成像公式s=-100mm物为实物,且和像的位置重合,且位于球心。
(2)对另一个气泡,已知n=1.53;n’=1.00; r=-100mms’=-50mm . 代入成像公式s=-60.47mm气泡为实物,它的实际位置在离球心(100-60.47)=39.53mm 的地方。
讨论: 对于第一个气泡,也可以根据光的可逆性来确定。
因为第一个气泡和像是重合的,由可逆性将像视为物,经球面折射后仍成在相同的位置。
所以像和物只能位于球心。
11一直径为20mm 的玻璃球,其折射率为3,今有一光线一60。
入射角入射到该玻璃球上,试分析光线经玻璃球传播情况。
解:在入射点A 处。
同时发生折射和反射现象2211sin sin I n I n = 5.0360sin sin 2==︒I302︒=I∴在A 点处光线以30︒的折射角进入玻璃球,同时又以60︒的反射角返回原介质。
根据球的对称性,知折射光线将到达图中B 点处,并发生折射反射现象。
3023︒==I I 305︒=∴II I n 43sin sin = 23sin 4=I ︒=604I同理:由B 点发出的反射光线可以到达C 点处,并发生反射折射现象︒=307I 608︒=IB 点的反射光线可再次到达A 点,并发生折、反现象。
309︒=I 30210︒==I I60110︒='=I I由以上分析可知:当光线以60︒入射角射入折射率为3的玻璃球,后,可在如图A ,B ,C 三点连续产生折射反射现象。
ABC 构成了玻璃球的内解正三角形,在ABC 三点的反射光线构成了正三角形的三条边。
同时,在ABC 三点有折射光线一60︒角进入空气中事实上:光照射到透明介质光滑界面上时,大部分折射到另一介质中,也有小部分光反射回原来的介质中当光照射到透明介质界面上时,折射是最主要的,反射是次要的12有平凸透镜r 1=100mm ,r 2=∞,d=300mm ,n=1.5,当物体在-∞时,求高斯像的位置l’。
在第二面上刻一十字丝,问其通过球面的共轭像处?当入射高度h=10mm 时,实际光线的像方截距为多少?与高斯像面的距离为多少?解 1) 由r nn l l -'=-'11代入 ∞=1l , 5.11='n ,11=n ,1001=r 得: mm l 3001='mm d l l 030030012=-=-'=mm l 02='∴即:物体位于-∞时,其高斯像点在第二面的中心处。
2)由光路的可逆性可知 :第二面上的十字丝像在物方∞处。
3)当mm h 101=时1.010010sin 11===r h I 06667.01.0*5.11sin *sin =='='I n n I︒=='822.306667.0arcsin I︒=-+='-+='9172.1822.3739.50I I u umm u I r L 374.299)0334547.006667.01(*100)sin sin 1(*/=+='+='mm d L L 626.012-=-'= ︒='=-9172.12u I05018.09172.1sin *5.1sin *1sin 22-=︒-=='I nI︒-='87647.22I︒︒︒︒=+-='-+='87647.287647.29172.19172.12222I I u u由△关系可得:mm tg u tg L x 02095.09172.1*626.02-=-='=︒mm tg L 4169.087467.202095.02-=-='︒它与高斯像面的距离为-0.4169mm重点:1︒ 所有的折射面都有贡献。
2︒ 近轴光线和远轴光线的区别。
13一球面镜半径r =-100mm ,求β=0,-0.1x,-0.2x,-1x,1x,5x,10x,∞时的物距和像距。
求β=0,-0.1x , -0.2x ,-1x ,1x ,5x ,10x ,∞时的l,l’解:r l l 211=+' ,ll '-=β1) 0=β时, ,50-=l -∞=l 0='l , 50-='l (可用解)2) 1.0-=β时, ,550-=l mm l 55-=' 3) 2.0-=β时, mm l 300-=, mm l 60-=' 4) 1-=β时, ,100mm l -= mm l 100-=' 5) 1=β时, mm l 0=, mm l 0=' 6) 5=β时, mm l 40-=, mm l 200=' 7) 10=β时, mm l 45-=, mm l 450=' 8) ∞=β时, mm l 50-=, -∞='l14 思考题:为什么日出或日落时太阳看起来是扁的?答:日出或日落时,太阳位于地平线附近。
对于地球的一点,来自太阳顶部、中部和底部的光线射向地球大气层的入射角依次增大。
同时,由于大气层的密度不均匀,引起折射率n 随接近地面而逐渐增大。
所以当光线穿过大气层射向地面时,折射率n 逐渐增大,其折射角逐渐减少,光线的传播路径发生弯曲。
我们沿着光线看去,看到的发光点位置比其实际位置抬高。
另一方面,折射光线的弯曲程度还与光线入射角有关。
入射角越大的光线,弯曲越厉害,视觉位置被抬的越高。
因此从太阳上部到太阳下部发出的光线,入射角逐渐增大,下部的视觉位置就依次比上部抬的更高。
所以,日出和日落时太阳看起来呈扁椭圆形。
第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。
解:1.0'>f ()-∞=l a()'2f l b -=()f f lc =-=()/f l d -=()0=l e()/f lf =')(f f l g -=='22)(f f l h -==2.0'<f -∞=l a )(lb )(=l c =)(/)(f l d -=lf= (f)2/ )(g=lf(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。