初二数学《等腰三角形证明》专题练习

合集下载

初二等腰三角形判定练习题

初二等腰三角形判定练习题

初二等腰三角形判定练习题等腰三角形是指具有两边长度相等的三角形,它是初中数学中重要的概念之一。

在本文中,我们将通过一些判定练习题来加深对初二等腰三角形的理解。

让我们开始吧!题目一:判断下列三角形是否为等腰三角形,并给出理由。

1. △ABC,AB = AC = 5cm,BC = 4cm。

2. △XYZ,XY = YZ = XZ = 9cm。

3. △PQR,PQ = PR = 7cm,QR = 6cm。

4. △LMN,LM = MN = LN = 10cm。

解析:1. 是等腰三角形。

根据题目给出的条件,AB = AC,即两边长度相等,符合等腰三角形的定义。

2. 是等边三角形。

根据题目给出的条件,XY = YZ = XZ,即三边长度相等,符合等边三角形的定义。

3. 不是等腰三角形。

根据题目给出的条件,PQ = PR,但QR ≠ PQ,所以它不是等腰三角形。

4. 是等边三角形。

根据题目给出的条件,LM = MN = LN,即三边长度相等,符合等边三角形的定义。

题目二:判断下列三角形是否为等腰三角形,并给出理由。

1. △DEF,DE = 8cm,DF = 6cm,EF = 8cm。

2. △UVW,UV = UW = 7cm,VW = 5cm。

3. △GHI,GH = GI = 11cm,HI = 9cm。

4. △JKL,JK = KL = LJ = 12cm。

解析:1. 是等腰三角形。

根据题目给出的条件,DE = EF,即两边长度相等,符合等腰三角形的定义。

2. 不是等腰三角形。

根据题目给出的条件,UV = UW,但VW ≠ UV,所以它不是等腰三角形。

3. 是等腰三角形。

根据题目给出的条件,GH = GI,即两边长度相等,符合等腰三角形的定义。

4. 是等腰三角形。

根据题目给出的条件,JK = KJ,即两边长度相等,符合等腰三角形的定义。

根据以上练习题的判定,我们可以总结出等腰三角形的特点:等腰三角形具有两边长度相等的特点,即两条边是等长边,而第三条边则可以不相等。

等腰三角形证明题精选(初中数学)

等腰三角形证明题精选(初中数学)

等腰三角形证明题精选(初中数学)等腰三角形证明题精选1. 等腰三角形内角求和为180°对于任意一个等腰三角形,我们可以通过以下步骤来证明其内角之和为180°:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。

又因为∠BAD和∠DAC都是直角,所以∠BAC + ∠BAD + ∠DAC = 180°。

综上所述,等腰三角形的内角之和为180°。

2. 等腰三角形的底角相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其底角相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。

又因为∠BAD和∠DAC都是直角,所以∠BAD + ∠DAC = 180° - ∠BAC。

步骤四:证明∠BAD = ∠DAC由于AD与BC平行,且∠BAD是直角,所以∠BAD +∠BDA = 180°。

根据角对应定理,∠DAC = ∠BDA。

又因为∠BAD + ∠BDA = 180°,所以∠DAC = ∠BAD。

综上所述,等腰三角形的底角相等。

3. 等腰三角形的腰长相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其腰长相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

初二数学《等腰三角形证明》专题练习

初二数学《等腰三角形证明》专题练习

初二数学《等腰三角形》练习题1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数。

5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明。

6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数。

8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC。

9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF。

10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE。

《等边三角形》练习题1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF 为等边三角形的理由。

2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形。

3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q是CM中点.求证:△BPQ是正三角形。

等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)(学生) 24-25学年八年级数学上册

等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)(学生) 24-25学年八年级数学上册

第04讲等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)知识点01:等腰三角形的判定等腰三角形的判定①有两条边相等的三角形是等腰三角形。

②有两个角相等的三角形是等腰三角形。

(简称“等角对等边”)总结:【即学即练1】已知等腰三角形的一边长为5cm ,另一边长为11cm ,则它的周长为( )A .16cmB .27cmC .21cmD .21cm 或27cm【即学即练2】如图,在ABC D 中,AB AC =,AD BD =,DE AB ^于点E ,若4BC =,BDC D 的周长为10,则AE 的长为( )A .2.5B .3C .3.5D .4知识点02:等边三角形的判定1、判定:①三条边都相等的三角形是做等边三角形②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形。

2、等腰三角形和等边三角形的判定【即学即练3】下列四个说法中,正确的有( )①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个角相等的等腰三角形是等边三角形.A .1个B .2个C .3个D .4个【即学即练4】若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为( )A .钝角三角形B .等腰三角形C .直角三角形D .正三角形题型01 格点中画等腰三角形1.如图,在33´的网格中,以AB 为一边,点P 在格点处,使ABP V 为等腰三角形的点P 有( )个A .2个B .5个C.3个D .1个2.在正方形网格中,网格线的交点成为格点,如图,A 、B 分别在格点处,若C 也是图中的格点,且使得ABC V 是以AB 为腰的等腰三角形,则符合条件的点C 有( )A .7个B .6个C .5个D .4个3.如图,在正方形网格中,网格线的交点称为格点.已知A 、B 是网格中的两个格点,如果C 也是网格中的格点,且使ABC V 为等腰三角形,那么符合条件的点C 有 个.4.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A ,B ,请在此点阵中找一个阵点C ,使得以点A ,B ,C 为顶点的三角形是等腰三角形,则符合条件的点C 有 个.5.如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图1中画一个以AB 为直角边且面积为3的直角三角形.(2)在图2中画一个以AC 为腰的等腰三角形.题型02 找出图中的等腰三角形1.如图,在ABC V 中,AB AC =,72B Ð=°,CD 平分ACB Ð交AB 于点D ,DE AC ∥交BC 于点E ,则图中共有等腰三角形( )A .3个B .4个C .5个D .6个2.如图,已知线段AB 的端点B 在直线l 上(AB 与l 不垂直)请在直线l 上另找一点C ,使ABC V 是等腰三角形,这样的点能找( )A .2个B .3个C .4个D .5个3.如图,在ABC V 中,已知边AB 的垂直平分线与边BC 的垂直平分线交于点P ,连接PA PB PC 、、,则图中有 个等腰三角形.4.如图,已知ABC V 中,37AB BC ==,,在ABC V 所在平面内一条直线,使其中有一个边长为3的等腰三角形,则这样的直线最多可画 条.5.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC .(1)求证:AB+BE=CD .(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.题型03 根据等角对等边证明等腰三角形1.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )A .40°,70°B .30°,90°C .60°,50°D .40°,20°2.在ABC V 中,36A Ð=°,72B Ð=°,则ABC V 是( )A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.在ABC V 中,若50B Ð=°,65C =°∠,则ABC V 等腰三角形.(填“是”或“不是”)4.在ABC V 中,90A Ð=°,当B Ð= 度时,ABC V 是等腰三角形.5.如图,在ABC V 中,60,40,BAC C ABC Ð=°Ð=°Ð的平分线BD 交AC 于点D .判断BCD △是否为等腰三角形?请说明理由.题型04 根据等角对等边证明边相等1.如图,在ABC V 中,6BC =,边AB 的垂直平分线交BC 于M ,点N 在MC 上,连接AM ,AN ,C NAC Ð=Ð,则MAN △的周长为( )A .6B .4C .3D .122.在ABC V 中,AD 平分235BAC B ADB AB CD ÐÐ=Ð==,,,,则AC 的长为( )A .6B .7C .8D .93.如图,在ABC V 中,ABC Ð和ACB Ð的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若8BM CN +=,则线段MN 的长为 .4.如图,在ABC V 中,4AB =,6AC =,ABC Ð和ACB Ð的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则AMN V 的周长为 .5.如图,ABC V 中,CA CB =,点D 在BC 的延长线上,连接AD AE ,平分CAD Ð交CD 于点E ,过点E 作EF AB ^,垂足为点F ,与AC 相交于点G ..(1)求证:CG CE =;(2)若30B Ð=°,40CAD Ð=°,求AEF Ð和D Ð的度数;(3)求证:2D AEF Ð=Ð.题型05 根据等角对等边求边长1.如图,在ABC V 中,B C Ð=Ð,4AB =,则AC 的长为( )A .2B .3C .4D .52.如图,在ABC V 中,ABC Ð的平分线交AC 于点D ,6AD =,过点D 作DE BC ∥交AB 于点E ,若AED △的周长为16,则边AB 的长为( )A .10B .8C .6D .163.如图,在ABC V 中,12AB =,9AC =,沿过点A 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为AD ,若12ADE C Ð=Ð,则BD 的长是 .4.如图,在Rt ABC △中,90C Ð=°,10AC =,12BC =,点D 是AC 边的中点,点E 是BC 边上一动点,将CDE V 沿DE 折叠得到C DE ¢V ,连接BC ¢,当BEC ¢△是直角三角形时,BE 的长为 .5.如图,100,40203BAC B D AB Ð=°Ð=°Ð=°=,,,求CD 的长.题型06 直线上与已知两点组成等腰三角形的点1.点A ,B 在直线l 同侧,若点C 是直线l 上的点,且ABC V 是等腰三角形,则这样的点C 最多有( )A .5个B .4个C .3个D .2个2.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(3,4),点P 是坐标轴上的一点,使OAP V 为等腰三角形的点P 的个数有( )A .5个B .6个C .7个D .8个3.如图,点O 在直线l 上,点A 在直线l 外.若直线l 上有一点P 使得APO △为等腰三角形,则满足条件的点P 位置有 个.4.如图,已知Rt ABC △中,90,30Ð=°Ð=°C A .在直线BC 或AC 上取一点P ,使得PAB V 是等腰三角形,则符合条件的P 点有 个.5.如图,在直线EF 上有一点A ,直线外有一点B ,点C 在直线EF 上,ΔABC 是以AB 、AC 为腰的等腰三角形.(1)在图中画出ΔABC(2)已知40BAF Ð=°,求BCAÐ题型07 求与图形中任意两点构成等腰三角形的点1.已知ABC V 中,AB AC =.108A Ð=°,在平面内找一点P ,使得PAB V ,PAC V ,PBC V 都是等腰三角形,则这样的P 点有( )个A .4B .6C .8D .102.已知:如图ABC V 中,=60B а,80C Ð=°,在直线BA 上找一点D ,使ACD V 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A .7个B .6个C .5个D .4个3.如图,在ABC V 中,25,100B A Ð=°Ð=°,点P 在ABC V 的三边上运动,当PAC V 成为等腰三角形时,其顶角的度数是 .4.如图,60AOB Ð=°,C 是OB 延长线上一点,若18cm OC =,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用()t s 表示移动的时间,当t = s时,POQ △是等腰三角形?5.如图,在ABC V 中,AB AC BC ==,ABC V 所在的平面上有一点P (如图中所画的点1P ),使PAB V ,PBC △, PAC V 都是等腰三角形,问:具有这样性质的点P 有几个(包括点1P )?在图中画出来.题型08 作等腰三角形(尺规作图)1.如图,已知直线m n P ,线段AC 分别与直线m ,n 相交于点B 、点C ,以点A 为圆心,AB 的长为半径画弧交直线m 于点B 、点D .若70A Ð=°,则a 的度数为( )A .45°B .50°C .55°D .60°2.如图,已知直线l 及直线l 外一点P ,过点P 作直线l 的平行线,下面四种作法中错误的是( )A .B .C .D .3.如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是 .4.如图,直线a b ,相交于点O ,150а=,点A 是直线上的一个定点,点B 在直线b 上运动,若以点O ,A ,B 为顶点的三角形是等腰三角形,则OAB Ð的度数是 .5.已知:线段a ,h ,求作等腰ABC V ,使底边BC a =,高AD h =,(要求:用尺规作图,保留作图痕迹,不必写作法和证明).题型09 等腰三角形的性质和判定1.如图,ABC V 中,AB AE =,且AD BC EF ^,垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为166AC =,,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,16AB AC ==,点E 是BC 边上任意一点,过点E 分别作AB AC ,的平行线,交AC 于点F ,交AB 于点D ,则四边形ADEF 的周长是( )A .32B .24C .16D .83.如图,在ABC V 中,BD 和CD 分别是ABC Ð和ACB Ð的平分线,EF 过点D ,且EF BC ∥,若,BE CF ==34,则EF 的长为 .4.如图,在Rt ABC △中,90A Ð=°,30C Ð=°,作边BC 的垂直平分线,交AC 于点D ,交BC 于点E .若3AD =,则DE 的长为 .5.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于点F .(1)证明:BA BC =;(2)求证:AFC V 为等腰三角形.题型10 三角形边角的不等关系1.若等腰三角形的一边长等于2,另一边长等于3,则它的周长等于( ).A .7B .8C .9D .7或82.如图,ABC V 中,5,9,10,AB AC BC EF ===垂直平分BC ,点P 为直线EF 上的任一点,则ABP V 周长的最小值是( )A .10B .14C .15D .193.等腰三角形周长为20,一边长为4,则另两边长为 .4.等腰三角形的一边是7,另一边是4,其周长等于 .5.已知a 、b 、c 为ABC V 的三边长,a 、b 满足2(2)|3|0a b -+-=,且c 为方程|6|3x -=的解,求ABC V 的周长并判断ABC V 的形状.题型11 等边三角形的判定1.在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的三角形是等边三角形;④三个外角都相等的三角形是等边三角形.正确的命题有( )A .4个B .3个C .2个D .1个2.在ABC V 中,60A Ð=°,添加下列一个条件后,仍不能判定ABC V 为等边三角形的是( )A .AB AC =B .AD BC ^C .B C Ð=ÐD .A CÐ=Ð3.在ABC V 中,B C Ð=Ð,若添加一个条件使ABC V 是等边三角形,则添加的条件可以是 .(写出一个即可)4.已知a ,b ,c 为ABC V 三边的长,当222222ab a b c bc +=++时,则ABC V 的形状是 .5.如图,在四边形ABCD 中,AD BC ∥,B D Ð=Ð,点E 在BA 的延长线上,连接CE .(1)求证:E ECD Ð=Ð;(2)若60E Ð=°,CE 平分BCD Ð,请判断BCE V 的形状并说明理由.题型12 等边三角形的判定和性质1.如图,30AOB Ð=°,点P 在AOB Ð的内部,点C ,D 分别是点P 关于OA OB 、的对称点,连接CD 交OA OB 、分别于点E ,F ;若PEF !的周长的为9,则线段OP =( )A .8B .9C .10D .112.若一个等腰三角形一腰上的高等于腰的一半,则这个等腰三角形的底角为( )A .75°B .15°C .30°或150°D .15°或75°3.如图,已知30AOB Ð=°,P 是AOB Ð内部的一个定点,且1OP =,点E 、F 分别是OA 、OB 上的动点,则PEF !周长的最小值等于 .4.如图,等边ABC V 的边长为4cm ,点Q 是AC 的中点,若动点P 以2cm /秒的速度从点A 出发沿A B A ®®方向运动设运动时间为t 秒,连接PQ ,当APQ △是等腰三角形时,则t 的值为 秒.5.如图,D 是等边ABC V 外的一点,3BC =,DB DC =,120BDC Ð=°,点E 、F 分别在AB 和AC 上.(1)求证:AD 是BC 的垂直平分线(2)若ED 平分BEF Ð,①证明:FD 平分EFC Ð;②求AEF △的周长.1.如图,ABC V 中,AB AE =,且AD BC ^,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为16,6AC =,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,AB AC =,45BAC Ð=°,AD BC ^于点D ,BE AC ^于点E ,交AD 于点F ,若10AF =,则BD 的长为( )A .4B .5C .8D .103.如图,在ABC V 中,AB AC =,120A Ð=°,6cm BC =,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm4.如图,D 为ABC V 内一点,CD 平分ACB Ð,BD CD ^,A ABD Ð=Ð,若5AC =,3BC =,则BD 的长为( )A .1B .1.5C .2D .2.55.如图,在AOB V 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD Ð=Ð=°.连接AC BD 、交于点M ,连接OM .下列结论:①BOM COM Ð=Ð;②AC BD =;③OM 平分AMD ∠;④144AOD Ð=°,⑤MOC MOD V V ≌其中正确的结论个数有( )个.A .5B .4C .3D .26.如图,在四边形OAPB 中,120AOB Ð=°,OP 平分AOB Ð,且2OP =,若点M 、N 分别在直线OA OB 、上,且PMN V 为等边三角形,则满足上述条件的PMN V 有( )A .1个B .2个C .3个D .3个以上7.如图,ABC V 中,BO 、CO 分别平分ABC Ð和ACB Ð,过点O 平行于BC 的直线分别交AB 、AC 于点D 、E ,已知9cm AB =,8cm AC =,ADE V 的周长为 .8.如图,60AOB Ð=°,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t = s 时,MON △是等腰三角形.9.已知,在ABC V 中,AB AC =,BD AC ^于点D ,AE BC ^于点E ,若50BAC Ð=°,则DCO Ð= °.10.如图,在ABC V 中,AB AC =,AD 是ABC V 的中线,点E 在AC 上,且AE AD =,连接DE ,若20CDE Ð=°,则B Ð的度数为 °.11.定义:如果一个三角形能被过顶点的一条线段分割成两个等腰三角形,则称这个三角形为特异三角形,如图,ABC V 中,36,A B Ð=°Ð为钝角,则使得ABC V 是特异三角形所有可能的B Ð的度数为 .12.已知在ABC V 中,40A Ð=°,D 为边AC 上一点,ABD △和BCD △都是等腰三角形,则C Ð的度数可能是 .13.如图,在ABC V 中,AB AC D =,是BC 边上一点,以AD 为边在AD 右侧作ADE V ,使AE AD =,连接108CE BAC DAE Ð=Ð=°,(1)求证:BAD CAE V V ≌;(2)若DE DC =,求CDE Ð的度数.14.如图,点D 、E 在ABC V 的边BC 上,AD AE =,BD CE =.(1)求证:AB AC =.(2)若108,2180BAC DAE BAC Ð=°Ð+Ð=°,直接写出图中除ABC V 与ADE V 外所有等腰三角形.15.如图,在等边ABC V 中,点D 在边BC 上,过点D 作DE AB ∥交AC 于点E ,过点E 作EF DE ^,交BC 的延长线于点F .(1)求F Ð的度数;(2)求证:DC CF =.16.如图,已知ABC V 中,D 为BC 上一点,AB AD =,E 为ABC V 外部一点,满足AC AE =,连结DE ,与AC 交于点O ,且CAE BAD Ð=Ð.(1)求证:ABC ADE △≌△;(2)若25BAD Ð=°,求EDC Ð的度数.17.如图,已知在ABC V 中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点,点P 在线段BC 上以3厘米/秒如果点P 在线段BC 上以3厘米每秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点p 的运动速度相等,经一秒后,三角形BPD 与三角形CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?18.(1)【问题提出】如图1,在Rt ABC △和Rt CDE △,已知90ACE B D Ð=Ð=Ð=°,AC CE =,B 、C 、D 三点在一条直线上,5AB =, 6.5DE =,则BD 的长度为______.(2)【问题提出】如图2,在Rt ABC △中,90ABC Ð=°,4BC =,过点C 作CD AC ^,且CD AC =,求BCD △的面积.(3)【问题解决】某市打造国家级宜居城市,优化美化人居生态环境.如图3所示,在河流BD 的周边规划一个四边形ABCD 巨无霸森林公园,按设计要求,在四边形ABCD 中,45ABC CAB ADC Ð=Ð=Ð=°,AC BC =,ACD V 面积为212km ,且CD 的长为6km ,则河流另一边森林公园BCD △的面积为______2km .。

八年级三角形的证明题

八年级三角形的证明题

八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。

求证:AD⊥BC。

- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。

- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。

- 所以△ABD≌△ACD(SSS)。

- 则∠ADB=∠ADC(全等三角形对应角相等)。

- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。

2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。

- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。

- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。

- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。

- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。

3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。

求∠A的度数。

- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。

- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。

- 因为BD = BC,所以∠C = ∠BDC = 2x。

- 又因为AB = AC,所以∠ABC = ∠C = 2x。

- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。

- 5x = 180°,解得x = 36°,所以∠A = 36°。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

八年级数学上册专题13.6 等腰三角形的证明及计算大题专项训练(50道)(举一反三)(人教版)(原卷

八年级数学上册专题13.6 等腰三角形的证明及计算大题专项训练(50道)(举一反三)(人教版)(原卷

专题13.6 等腰三角形的证明及计算大题专项训练(50道)【人教版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,可深化学生对等腰三角形工具的应用及构造等腰三角形!一.解答题(共50小题)1.(2022秋•勃利县期末)如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC 于E,且BD=BE,求证:△ABC为等腰三角形.2.(2022秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.3.(2022秋•林州市期末)已知△ABC的两边长a和b满足√a−9+(b﹣4)2=0.(1)若第三边长为c,求c的取值范围.(2)若△ABC是等腰三角形,求△ABC的周长.4.(2022秋•河东区校级期中)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB 与y轴交于D点,∠CAO=90°﹣∠BDO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.5.(2022秋•武冈市期中)已知如图,△ABC中,EF∥BC,交AB、AC于E、F,∠B的平分线交EF于O 点.(1)求证:EO=BE;(2)若EF=BE+CF,求证:OC平分∠ACB.6.(2022秋•盘龙区期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE =CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.BC,若D是AC的7.(2022秋•大石桥市期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)证明:DE=2DF.8.(2022春•大埔县期末)如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AF.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.9.(2022秋•宁明县期末)如图,在△ABC中,AC=BC,∠ACB=120°,CE⊥AB于点D,且DE=DC.求证:△CEB为等边三角形.10.(2022春•二七区校级期中)在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.11.(2022秋•台江区期末)如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.12.(2022春•市南区期末)如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB 的垂线交AC于点E,求证:BE垂直平分CD.13.(2022秋•平房区期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.14.(2022秋•河西区期末)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.15.(2022秋•巩义市期末)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B 出发以2cm/s的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A 同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?16.(2022秋•清江浦区校级月考)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)BP=(用t的代数式表示)(2)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(3)当点Q在边CA上运动时,出发秒后,△BCQ是以BC或BQ为底边的等腰三角形?17.(2022春•渠县校级期末)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.18.(2022秋•北仑区期中)(1)如图1,△ABC中,作∠ABC、∠ACB的角平分线相交于点O,过点O 作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC与∠P AC的数量关系式.19.(2022秋•余干县期中)如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:BC=DC.20.(2022春•焦作期末)如图,在等边三角形ABC中∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.21.(2022秋•工业园区期末)已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点.(1)求证:△BED是等腰三角形:(2)当∠BCD=°时,△BED是等边三角形.22.(2022春•梅州校级期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)△BDF是什么三角形?请说明理由;(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)(3)当移动点D使EF∥AB时,求AD的长.23.(2022秋•阳新县校级期末)如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC 上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.24.(2022•宁德一模)如图,已知△ABC中,∠ABC=∠ACB,以点B为圆心,BC长为半径的弧分别交AC,AB于点D,E,连接BD,ED.(1)写出图中所有的等腰三角形;(2)若∠AED=114°,求∠ABD和∠ACB的度数.25.(2022秋•平舆县期末)如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC=3BP,且∠P AB=15°,点C关于直线P A的对称点为D,连接BD,又△APC的PC边上的高为AH(1)求∠BPD的大小;(2)判断直线BD,AH是否平行?并说明理由;(3)证明:∠BAP=∠CAH.26.(2022春•本溪县期中)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为20cm,AC=8cm,求DC长.27.(2022秋•澧县期末)如图,一只船从A处出发,以18海里/时的速度向正北航行,经过10小时到达B 处.分别从A、B处望灯塔C,测得∠NAC=42°,∠NBC=84度.求B处与灯塔C距离.28.(2022春•西安期末)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.29.(2022春•嵩县期末)如图所示.点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F.(1)若MN=20cm,求△PEF的周长.(2)若∠AOB=35°,求∠EPF的度数.30.(2022秋•沂南县期末)如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF 交AD于点O.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,写出DO与AD之间的数量关系,不需证明.31.(2022秋•张家港市校级期末)如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.32.(2022春•锦江区校级期末)操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)BE与AD是否相等,为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;(3)∠DBC与∠DCB相等吗?试说明理由.33.(2022•海丰县模拟)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE(要求:不用三角形全等的方法)34.(2022春•余杭区期末)如图,已知△ABC中,AB=AC,BC=6,AM平分∠BAC,D为AC的中点,BC.E为BC延长线上一点,且CE=12(1)求ME的长;(2)求证:△DMC是等腰三角形.35.(2022•白城校级模拟)在△ABC中,AB=AC,点D是线段BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,如果∠BAC=90°,则∠BCE=;(2)如图2,设∠BAC=α,∠BCE=β.当点D在线段BC上移动时,请写出α,β之间的数量关系,请说明理由.36.(2022秋•乐亭县期末)若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.37.(2022秋•盂县期末)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.38.(2022秋•龙门县期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE =CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.39.(2022春•静安区校级期末)已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.40.(2022秋•秦淮区校级期中)在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD,垂足为E.求证:AC=2BE.41.(2022秋•滑县校级期末)已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;BC.(2)如图(2),若BE=3AE,求证:CF=14AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.(3)如图(3),若BE=1342.(2022春•峄城区期末)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CEF是等腰三角形;(2)若CD=2,求DF的长.43.(2022秋•红山区期末)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.44.(2022•南京模拟)数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几对全等三角形?丁图中有几对等边三角形?45.(2022秋•五河县期末)如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.46.(2022•南京模拟)如图,∠BAC=30°,点P是∠BAC的平分线上的一点,PD⊥AC于D,PE∥AC 交AB于E,已知AE=10cm,求PD的长度.47.(2022春•青浦区校级期末)如图,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的两侧,D在A,E之间,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.48.(2022秋•龙华区期末)如图,已知直线l1∥l2∥l3,点E、F分别在l3、l1上,Rt△ABC的直角顶点C 在直线l1上,点B在直线l2上,点A在直线l3上,l2与AC交于点D,且∠BAC=25°,∠BAE=25°.(1)求证:△ABD是等腰三角形;(2)求∠BCF的度数.49.(2022春•电白区期末)如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则(1)BP=cm,BQ=cm.(用含t的代数式表示)(2)当t为何值时,△PBQ是直角三角形?50.(2022•南京模拟)如图,在等边△ABC的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR为何种三角形?试说明理由.。

专题13.5等腰三角形的判定(原卷版)

专题13.5等腰三角形的判定(原卷版)

专题13.5等腰三角形的判定姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019江苏省滨海中学八年级期中)在△ABC中,∠A=40°,∠B=70°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.(2019秋•河西区期中)在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余3.2021·江苏无锡市·八年级期中)如图,在所给网格中,以格点(网格线的交叉点)A,B的连线为一边构 ,则符合条件的点C的个数是()造格点等腰ABCA.6B.7C.8D.94.(2020春•松江区期末)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组5.(2020·浙江杭州市·八年级期中)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组6.(2020·涿州市实验中学八年级期中)如图,∠AOP=∠BOP,CP//OB,CP=4,则OC=()A.2B.3C.4D.57.(2020•衡水模拟)在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个8.(2019秋•新泰市期末)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个9.(2019秋•西青区期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6B.7C.8D.910.(2019·浙江台州市·)如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+12∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•田家庵区期末)如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有个.12..(2019·江苏盐城市·八年级期中)如图,在△ABC,∠A=36°,D为AC边上的一点,AD=BD=BC,则图中的等腰三角形共有_____个.13.(2019秋•樊城区期末)已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.14.(2019秋•来凤县期末)如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△PAB是等腰三角形,则符合条件的点P共有个.15.(2019秋•江油市期末)如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有个.16.(2018秋•恩施市期末)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH,添的钢管长度都与OE相等,则最多能添加这样的钢管根.17.(2021·全国八年级专题练习)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是_____(写出一种即可)18.(2021·湖北荆门市·八年级期末)如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列结论:①1902BOC A ∠=+∠︒:②点O 到ABC 各边的距离相等;③EF BE CF =+:④1()2AD AB AC BC =+-;⑤设OD m =,AE AF n +=,则AEF S mn =△;其中正确的结论是______.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19..(2020·江苏常州市·)如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .(1)求ABD ∠的度数.(2)求证:AD BC =.20.(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.21.(2019秋•嘉祥县期末)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系EF=BE﹣CF.22.(2019秋•确山县期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE =CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.23.(2019秋•永城市期末)如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.24.(2020·浙江绍兴市·八年级期中)[方法呈现](1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.解决此问题可以用如下方法:延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE <AC+CE,从而可得中线AD长的取值范围是.[探究应用](2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学《等腰三角形》练习题
1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________
2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________
3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________
4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数。

5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明。

6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.
7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数。

8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC。

9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF。

10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE。

《等边三角形》练习题
1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF 为等边三角形的理由。

2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形。

3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q是CM中点.求证:△BPQ是正三角形。

4、如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED。

1.先化简,再求值:(﹣)•,其中x=﹣3.
2、(1)解方程:=;(2)解不等式组:.
3.解方程.
4.列方程或方程组解应用题:
近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?
5.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
6.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?。

相关文档
最新文档