《幂函数》课件

合集下载

3.3幂函数课件(人教版)

3.3幂函数课件(人教版)

学习目标
新课讲授
课堂总结
例3 证明幂函数 f(x)= x 是增函数.
证明:函数的定义域是[0,+∞).
x1, x2 [0, ), 且 x1 x2 , 有
f (x1) f (x2) x1 x2
x1 x2 x1 x2 x1 x2
x1 x2 x1 x2
因为 x1 x2 0, x1 x2 0, 则
R
R
R
R
[0,+∞)
R
奇偶性
奇函数 偶函数 奇函数
单调性 公共点
增函数
(-∞,0]递减 [0,+∞)递增
增函数 (1,1)
思考:你能总结幂函数的一般性质吗?
1
y x2
y=x-1
[0,+∞) [0,+∞) 非奇非偶 函数
增函数
{x| x≠0} {y| y≠0}
奇函数
(-∞,0)递减 (0,+∞)递减
学习目标
新课讲授
课堂总结
总结归纳 幂函数的一般性质: (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数, 特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; α<0时,幂函数的图象不过原点,幂函数的图象在区间(0,+∞)上是减函数.
把自变量全部用x来表示,函数值用y来表示,则它们的函数关系式是:
1
y=x
y=x2
y=x3 y= x 2 y=x-1
上述问题中涉及的函数,都是形如y=xα的函数. 一般地,函数y = xα叫做幂函数,其中x是自变量,α是常数.

高中数学《3.3幂函数》课件

高中数学《3.3幂函数》课件

的图像都
过点(1,1)
❖ 函数
是奇函数,函数
是偶函数
❖ 在区间
上,函数
是增函数,函数
是减函数
❖ 在第一向限内,函数
的图像向上与y轴无限的
接近,向右与x轴无限的接近。
例. 证明幂函数 f (x) x 在[0,+∞)上是增函数.
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f (x1) f (x2 ) x1 x2
则m的值为
课堂小结
❖ 了解幂函数的概念 ❖ 会画常见幂函数的图象
❖ 结合图像了解幂函数图象的变化情况和简 单性质
❖ 会用幂函数的单调性比较两个底数不同而 指数相同的幂的大小
单 调 性(-∞,0)减
(0,+∞)增
y
y x3
函数 y x3
定义域 R
O
x 值域 R
奇偶性 奇
单调性 增
y
1
y x2
函数
1
y x2
定义域[0,+∞)
O
x 值域 [0,+∞)
奇偶性非奇非偶
单调性 增
幂函数的性质
yx
1
y x2 y x3 y x2
y x1
(1,1)
幂函数的性质
❖ 函数
-1或4
规律 ❖
的系数是1
❖ 底数是单一的x
总结 ❖ 指数是常数
幂函数的定义
幂函数的定义:一般地函数 y x 叫做幂函数
其中x是自变量,α是常数。
对于幂函数,我们先讨论α=1,2,3,1 ,1 时的情景,
2
1
即先讨论函数 y x, y x2 , y x3, y x 2 , y x1

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;

m=0.

m=2
时,f(x)=
x
1 2
,图象过点(4,2);

m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).

幂函数(共2课时)课件(共35张PPT)

幂函数(共2课时)课件(共35张PPT)
3.3 幂函数
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。

底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念

2 幂函数的图象与性质

3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练


3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27

幂函数ppt课件

幂函数ppt课件
x1 x2
因为x1 x2 0, x1 x2 0, 所以f ( x1 ) f ( x2 ),
即幂函数 f ( x) x 是增函数.

x1 x2
.
x1 x2
在进行无理式的变形时,
不仅可以将分母有理化,
也可以将分子有理化.
归纳小结
通过这节课的学习,你能说说我们是怎么研究幂函数的吗?
调递增
调递增
(0,+∞)
在R上单 在[0,+∞) 单调递减
调递增 单调递增
公共点为(1,1)
例1:证明幂函数 f(x)= x是增函数 .
证明:函数的定义域是[0,+∞).
x1 , x2 [0,), 且x1 x2 , 有f ( x1 ) f ( x2 ) x1 x2

( x1 x2 )( x1 x2 )
1
2
3
问题3:如何画出 y = x 和y = x 的图象?
追问:观察这两个函数的解析式,你能说出它们的一些性质吗?
1
2
y = x 的定义域为:
[0,+∞)
非奇非偶函数
y = x 3的定义域为: R
奇函数
1
2
2
-1
3
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
,
y
=
x
问题4:请同学们在同一个坐标系中画出
的图象.并结合图象和解析式观察它们有哪些性质.
直观想象
转化与化归
数形结合
思想方法
数学抽象
背景
核心素养

《函数》第07讲 幂函数课件

《函数》第07讲 幂函数课件
(3).x 7, 3 , 求f x 的值域.
2.求下列函数在x (1, 2]的值域: x 1 y 2 x 1 x 2 3x 2 2 y x 5 3 f x x x 1
思考题
已知函数 f x 2 ,求f(x)的最小值,并求 x 4 此时的x值.
y loga x与y a 互为反函数.
x
log2 (3 1) 1, x
x
.
y loga ( x )的单调性?
y loga t , t x

知识应用
5 1.已知函数 f x x x
(1).x 1, 2 , 求f x 的值域.
(2).x 2, 4 , 求f x 的最小值.
问题2.你能画出函数的大致图像吗?
Y
2
1
0
X
1
2
a 函数 f x x (a>0)的大致图像 x
y
2 a a
0
a 2 a
x
b 思考:f x ax (a 0, b 0)的图像? x
作业问题选讲
选择题:正确率低下? ABCD四个字母很值钱, 5分. 3. 5. 11.
幂函数
知识梳理
一.幂函数的定义
名称 幂函数
指数函数
表达式
常数
为非零有理数
过定点
理由
y x

x
(1,1) 1 1 (0,1) a 0 1
ya
a 0, a 1
函数操
yx
yx
2
yx
3
yx
1 2
yx
1
4.常用幂函数的性质

高中数学课件-幂函数

高中数学课件-幂函数

奇偶性 奇函数
偶函数
奇函数
非奇非 偶函数
奇函数
x∈[0,+∞)
单调性 增
时,增 x∈(-∞,0]


时,减
x∈[0,+∞) 时,增 x∈(-∞,0] 时,减
主页
[难点正本 疑点清源] 1.在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴, 在(1,+∞)上幂函数中指数越大,函数图象越远离 x 轴.

n

b 2a
n
f (m) 0 b2 4ac 0 f (n) 0
f(x)min>0(x∈[m, n])
④f(x)=ax2+bx+c<0(a>0)

[m,
n]
上恒成立
f f
(m) 0 (n) 0
f(x)max<0(x∈[m, n])
幂函数的图像与性质
知识点梳理
1.幂函数的概念 一般地,我们把形如 y=xα 的函数称为幂函数,其中 x 是自变量,α 是常数.
变式训练 4
已知幂函数 f(x)= x(m2 m)1 (m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单 调性; (2)若该函数还经过点(2, 2),试确定 m 的值,并求满足条 件 f(2-a)>f(a-1)的实数 a 的取值范围.
解 (1)m2+m=m(m+1),m∈N*, 而 m 与 m+1 中必有一个为偶数, ∴m(m+1)为偶数.
∴m>-1+ 5.
[8 分]
由②得 Δ2=(-m)2-4<0,即-2<m<2.
[12 分]
综上可得 5-1<m<2.
[14 分]

幂函数-课件ppt

幂函数-课件ppt
5.已知点 33,3 3在幂函数 f(x)的图象上,则 f(x)的定义域
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档