新教材第五章统计与概率5.3.4 课时22频率与概率
人教B版高中数学必修第二册5.3 5.3.4 频率与概率【课件】

这批电视机( )
A.次品率小于10%
B.次品率大于10%
C.次品率等于10%
2.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随 机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋 子吗?说明你的理由.
解 不一定.有放回地摸10次棋子相当于做10次重复试验,因为每 次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有 两次或两次以上摸到黑棋子,也可能没有一次摸到黑棋子.
7.某企业质量检验员为了检测生产线上零件的尺寸情况,从生产 线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位: mm),得到如下的频率分布直方图:
已知尺寸在[63.0,64.5)内的零件为 一等品,否则为二等品.将频率视为概 率,从生产线上随机抽取1个零件,试估 计所抽取的零件是二等品的概率.
解 由题意,得 n=4500-200-2100-1000=1200,所以随机调查的 网上购物消费者中对网上购物“比较满意”或“满意”的总人数是 1200+2100 =3300,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意” 的频率是34350000=1115.由此估计在网上购物的消费者群体中对网上购物“比较 满意”或“满意”的概率是1115.
解 因为零件尺寸在[63.0,64.5)内的频率为(0.750+0.650+0.200)×0.5= 0.8,1-0.8=0.2,
所以从生产线上随机抽取1个零件,估计所抽取的零件是二等品的概率为0.2.
解Hale Waihona Puke 2PART TWO
30分钟综合练
一、选择题
1.从一批电视机中随机抽出10台进行质检,其中有一台次品,则
解析 A中,此概率只说明发生的可能性大小,具有随机性,并 非一定是比赛5场,甲胜3场;B中,此治愈率只说明发生的可能性大 小,具有随机性,并非10个病人中一定有1人治愈;C中,随机试验的 频率可以估计概率,并不等于概率;D中,连续抛一枚均匀硬币,若5 次都是正面朝上,则第六次仍然可能正面朝上,D正确.故选D.
5.3.4频率与概率 高一数学精品教学课件(人教B版2019必修第二册)

答案:D
随机的 随机事件
试验
随机的 频率
大量的 重复
稳定于 某常数
估计
确定的 概率
为了节省事件,我们可以把小组内10个成员的试验 数据累加起来,每人做50次,一共做了500次,频率就 已经比较稳定了。
结论
瑞士数学家雅各布.伯努利(1654 -1705)最早阐明了可以由频率估计 概率即:
在相同的条件下,大量的重复实验 时,根据一个随机事件发生的频率所逐渐 稳定的常数,可以估计这个事件发生的概 率
5.3.4频率与概率
创设情境 导入新课
玲玲和倩倩是一对好朋友,她俩都想去观看演唱会, 可手头只有一张票,怎么办呢?
玲玲对倩倩说:“我向空中先后抛两枚同样的硬币, 如果落地后一正一反,就我去;如果落地后两面一样, 就你去!”结果倩倩欣然答应。
请问:你觉得这个游戏公平吗?为什么?
第一种看法是:这个游戏不公平。
当试验次数很大时,一个事件发生频率 也稳定在相应的概率附近.因此,我们可 以通过多次试验,用一个事件发生的频率 来估计这一事件发生的概率.
在相同情况下随机的抽取若干个体进行实验, 进行实验统计.并计算事件发生的频率 根据频率估计该事件发生的概率.
做一做 游戏规则: 准备两组相同的牌,每组两张,两张牌面的数字分别是1和2.从两 组牌中各摸出一张为一次试验.
频率
100
150
200
250
300
350
400
450
请你和同学一起做重复试验,在图25.2.3中用不同颜 色的笔分别画出相应的两天折线。
观察两个转盘,我们可以发现:转盘甲中的蓝色区域所 对的圆心角为900,说明它占整个转盘的四分之一;转 盘乙尽管大一些,但蓝色区域所对的圆心角仍为900, 说明它还是占整个转盘的四分之一。你能预测指针停 在蓝色区域的概率吗?
5.3.4频率与概率课件(共63张PPT) 数学人教B版(2019)必修第二册

核心素养形成
随堂水平达标
课后课时精练
2
PART TWO
核心素养形成
题型一 对概率的正确理解 例 1 经统计,某篮球运动员的投篮命中率为 90%,对此有人解释为其 投篮 100 次一定有 90 次命中,10 次不中,你认为这种解释正确吗?说说你 的理由.
[解] 这种解释不正确.理由如下: 因为“投篮命中”是一个随机事件, 投篮命中率为 90%,是指该运动员投篮命中的概率是一种可能性,就一 次投篮而言,可能发生也可能不发生,而不是说投篮 100 次就一定命中 90 次.
解 (1)计算mn 即得男婴出生的频率依次约是 0.5200,0.5173,0.5173,0.5173.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(2)这一地区男婴出生的概率约是多少?
解 (2)由于这些频率非常接近 0.5173,因此,这一地区男婴出生的概率 约为 0.5173.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
金版点睛 1频率是事件 A 发生的次数 m 与试验总次数 n 的比值,利用此公式可 求出它们的频率.频率本身是随机变量,当 n 很大时,频率总是在一个稳定 值附近左右摆动,这个稳定值就是概率. 2解决此类问题的步骤是先利用频率的计算公式依次计算出各个频率 值,再确定频率的稳定值即为概率.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
1.判一判(正确的打“√”,错误的打“×”)
(1)某事件发生的概率是随着试验次数的变化而变化的.( × )
(2)某事件发生的频率 P(A)=1.01.( × )
(3)某厂的产品合格率为 90%,现抽取 10 件检查,其中必有 9 件合 格.( × )
人教B版(2019)高中数学必修第二册 第五章统计与概率5.3.4频率与概率同步习题(含答案)

5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:时间2016年2017年2018年2019年出生婴儿数21840230702009419982 出生男婴数11453120311029710242(2)该市男婴出生的概率约为多少?知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.137.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:“满意”的概率是( )A.715B.25C.1115D.13159.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.11.对某批产品进行抽样检查,数据如下:抽查________件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:赔付金额(元)01000200030004000 车辆数500130100150120(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.:易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.63.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码12345678910 取到的次数101188610189119A.0.53 B.0.5C.0.47 D.0.374.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增大,有( )A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.456.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3000辆帕萨特出租车,乙公司有3000辆桑塔纳出租车,100辆帕萨特出租车.交警部门应先调查哪家公司的车辆较合理?( )A.甲公司B.乙公司C.甲与乙公司D.以上都对二、多项选择题9.下列说法中,正确的有( )A.频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小B.百分率是频率,但不是概率C.频率是不能脱离试验次数n的实验值,而概率是具有确定性的不依赖于试验次数的理论值D.频率是概率的近似值,概率是频率的稳定值10.下列说法正确的是( )A.事件A的概率为P(A),必有0≤P(A)≤1B.事件A的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效.现有胃溃疡的病人服用此药,则估计有明显疗效的概率约为76% D.某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖11.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩(取整数)分布:法正确的是( )A.估计她得90分以上(含90分)的概率约为0.067B.估计她得60~69分的概率约为0.150C.估计她得60分以上(含60分)的概率约为0.982D.估计她得59分以下(含59分)的概率约为0.10812.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买,则下列说法正确的是( )B.估计顾客同时购买乙和丙的概率为0.2C.估计顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.4D.如果顾客购买了甲,则该顾客同时购买乙、丙、丁中的丙的可能性最大三、填空题13.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率的近似值是________.14.一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x个;[40,50)5个;[50,60)4个;[60,70]2个.则x等于________;根据样本的频率估计概率,数据落在[10,50)的概率约为________.15.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.16.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%;一旦失败,一年后将丧失全部资金的50%.下表是去年200例类似项目开发的实施结果.四、解答题17.电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的及格率(60分及以上为及格);(2)从该校高一年级随机选取一名学生,估计这名学生该次期末考试成绩在70分以上(包括70分)的概率.19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40) 天数21636257 4(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.20.甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:测试指标[85,90)[90,95)[95,100)[100,105)[105,110)甲机床81240328 乙机床7184029 6(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20,假设甲机床某天生产50零件,请估计甲机床该天的日利润(单位:元);(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层随机抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn答案 A解析根据概率的定义,当n很大时,频率是概率的近似值.2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)解(1)表中乒乓球为优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,随着抽取的球数n的增加,计算得到的频率值虽然不同,但都在常数0.950的附近摆动,所以任意抽取一个乒乓球检测时,其为优等品的概率约为0.950.3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(2)该市男婴出生的概率约为多少?解(1)2016年男婴出生的频率为1145321840≈0.524.同理可求得2017年、2018年和2019年男婴出生的频率分别为0.521,0.512,0.513.(2)该市男婴出生的概率约为0.52.知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%答案 D解析A中,此概率只说明发生的可能性大小,具有随机性,并非一定是比赛5场甲胜3场;B中,此治愈率只说明发生的可能性大小,具有随机性,并非10个病人一定有1人治愈;C中,随机试验的频率可以估计概率,并不等于概率;D中,概率为90%,即可能性是90%.故选D.5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.解不一定.有放回地摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑棋子,也可能没有一次摸到黑棋子.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.13答案 A解析从已知数据可以看出,在随机抽取的这20名学生中,身高在155.5~170.5 cm之间的学生有8人,频率为25,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5~170.5 cm之间的概率约为2 5 .7.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg答案 B解析由题意可得,该批垫片中非优质品约为5280×500≈8.929 kg.8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:满意情况不满意比较满意满意非常满意人数200n 21001000 “满意”的概率是( )A.715B.25C.1115D.1315答案 C解析由题意,得n=4500-200-2100-1000=1200,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的总人数为1200+2100=3300,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的频率为33004500=1115.由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为1115.故选C.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:落在桌面的数字1234 5 频数3218151322答案0.35解析落在桌面的数字不小于4,即4,5的频数共13+22=35,所以频率为35100=0.35,所以估计落在桌面的数字不小于4的概率约为0.35.10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.答案0.4解析由频率的定义可知用电量超过指标的频率为1230=0.4,由频率估计概率,知第一天用电量超过指标的概率约是0.4.11.对某批产品进行抽样检查,数据如下:抽查________件产品.答案1000解析根据题表中数据可知合格品出现的频率依次为0.94,0.92,0.96,0.95,0.95,故合格品出现的概率约为0.95,因此要从该批产品中抽到950件合格品大约需要抽查1000件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.解(1)贫困地区的频率分别逐渐趋近于0.5和0.55.故所求概率分别为0.5和0.55.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,样本车辆总数n=500+130+100+150+120=1000,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元或4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率,得P(C)=0.24.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.解(1)甲品牌产品寿命小于200 h的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200 h的概率为1 4 .(2)根据抽样结果,寿命大于200 h的产品共有75+70=145个,其中甲品牌产品有75个,所以在样本中,寿命大于200 h的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200 h的该产品是甲品牌的概率为15 29.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.求:错误!解(1)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为400600=23.(2)由题意可知,生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为3001000=3 10.(3)由题意可知,∵a+b+c=600,∴a,b,c的平均数为200,∴s2=13[(a-200)2+(b-200)2+(c-200)2]=13(a2+b2+c2-120000),∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c =0时,有s2=80000.易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错分析由于混淆了概率与频率的概念而致误,事实上频率是随机的,而概率是一个确定的常数,与每次试验无关.答案0.5正解通过做大量的试验可以发现,正面朝上的频率都在0.5附近摆动,故掷一次硬币,正面朝上的概率是0.5,故填0.5.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.易错分析(1)对随机数表认识不到位,不能准确找出恰有两次命中的组数;(2)对用频率估计概率的方法理解不到位,不能求出“运动员三次投篮恰有两次命中”的概率.答案1 4正解20组随机数中,恰有两次命中的有5组,用频率估计概率,因此,该运动员三次投篮恰有两次命中的概率为P=520=14.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%答案 D解析抽出的样本中次品率为110,即10%,所以总体中次品率大约为10%.2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.6 答案 B解析因为抛了10次硬币,正面朝上的情形出现了6次,我们说频率为3 5,而不能说概率为35.3.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码 1 2 3 4 5 6 7 8 9 10 取到的次数101188610189119A .0.53B .0.5C .0.47D .0.37答案 A解析 取到号码为奇数的次数为10+8+6+18+11=53,所以f =53100=0.53,所以估计取到号码为奇数的概率约为0.53.4.若在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),则随着n 的逐渐增大,有( )A .f (n )与某个常数相等B .f (n )与某个常数的差逐渐减小C .f (n )与某个常数的差的绝对值逐渐减小D .f (n )在某个常数的附近摆动并趋于稳定 答案 D解析 由频率和概率的关系知,在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),随着n 的逐渐增加,频率f (n )逐渐趋近于概率.5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45答案 D解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件产品为二等品的概率为0.45.6.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定答案 A解析概率是一个确定的常数,在试验前已经确定,与试验次数无关.故选A.7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③答案 A解析概率反映的是随机性的规律,但每次试验出现的结果具有不确定性,因此①②④错误;③中抛掷均匀塑料圆板出现正面与反面的概率相等,是公平的,因此③错误.8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有。
第5章 5.4 统计与概率的应用-(新教材)人教B版(2019)高中数学必修第二册课件

x
=
1 20
(2.5×4
+
7.5×8
+
12.5×5
+
17.5×2
+
22.5×1)
=
9.5(min).
s2
=
1 20
[
(2.5-
9.5)2×4+
(7.5-
9.5)2×8+
(12.5-
9.5)2×5+
(17.5-
9.5)2×2+(22.5-9.5)2×1]=28.5(min2).
s= 28.5≈5.34(min).
[解] (1)由中位数可知,85 分排在第 25 名之后,从名次上讲, 85 分不算是上游,但也不能单以名次来判断学习成绩的好坏,小刚 得了 85 分,说明他对这阶段的学习内容掌握较好.
(2)甲班学生成绩的中位数为 87 分,说明高于或等于 87 分的学 生占一半以上,而平均分为 79 分,标准差很大,说明低分也多,两 极分化严重,建议对学习有困难的同学多给一些帮助;
1.思考辨析(正确的画“√”,错误的画“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( ) (3)平时的多次比赛中,小明获胜的次数比小华高,所以这次比 赛应选小明参加.( )
(1)× (2)× (3)√ [(1)概率很小的事件,也是随机事件,不 可能事件的概率为 0.
[跟进训练]
1.某校甲班、乙班各有 49 名学生,两班在一次数学测验中的
成绩(满分 100 分)统计如下表:
班级 平均分 众数 中位数 标准差
甲班
79
ቤተ መጻሕፍቲ ባይዱ
70
87
2019_2020学年新教材高中数学第五章统计与概率5.3.4频率与概率课件新人教B版必修第二册

教材反思 随机事件在一次试验中是否发生虽然不能事先确定,但是在大 量重复试验的情况下,它的发生呈现出一定的规律性,可以用事件 发生的频率去“测量”,因此可以通过计算事件发生的频率去估算 概率.
跟踪训练 1 李老师在某大学连续 3 年主讲经济学院的高等数
学,下表是李老师这门课 3 年来的考试成绩分布:
一名学生,估计这名学生该次数学考试成绩在[90,100]内的概率.
【解析】 由频率分布直方图可以看出,所抽取的学生成绩中, 在[90,100]内的概率为
0.01×(100-90)=0.1. 因为由样本的分布可以估计总体的分布,所以全校学生的数学 得分在[90,100]内的频率可以估计为 0.1. 根据用频率估计概率的方法可知,随机选取一名学生,这名学 生该次数学考试成绩在[90,100]内的概率可以估计为 0.1.
A.5.5~7.5 B.7.5~9.5 C.9.5~11.5 D.11.5~13.5 解析:共 20 个数据,频率为 0.2,在此范围内的数据有 4 个, 只有在 11.5~13.5 范围内有 4 个数据:13,12,12,12,故选 D. 答案:D
人教B版高中数学必修第二册精品课件 第五章 5.3.4 频率与概率

C.16个
D.160个
)
4.一个容量为20的样本,数据的分组及各组的频数如下:[10,20),2个;
[20,30),3个;[30,40),x个;[40,50),5个;[50,60),4个;[60,70),2个,并且样本在区
间[30,40)内的频率为0.2.则x=
落在区间[10,50)内的概率约为
;根据样本的频率分布估计,数据
45 12 19
(2)抽到方块或黑桃的概率大约是 +
= .
90 90 30
30
(3)设梅花大约有 x 张,则45 = 90-30-45-12,
解得x=2.
故梅花大约有2张.
【变式训练3】 池塘中有黑色和红色两种小鱼,随机从水中捉一条小鱼,看
清颜色后再放回去,重复了80次,其中捉到红色小鱼60次.已知池塘中共有
2 000条小鱼,问黑色小鱼、红色小鱼大约各多少条?
解:因为捉小鱼80次,捉到红色小鱼60次,所以捉到黑色小鱼20次.
又因为池塘中共有2 000条小鱼,
60
所以红色小鱼大约有 2 000×80=1 500(条),黑色小鱼大约有
20
2 000× =500(条).
80
【易错辨析】
因对概率和频率的关系不清致误
【典例】 某同学抛掷一枚均匀硬币10次,共有8次出现反面向上,于是他指
出:“抛掷一枚均匀硬币,出现反面向上的概率应为0.8.” 你认为他的结论正
确吗?
错解:正确.
以上解答过程中都有哪些错误?出错的原因是什么?你如何改正?你如何防
范?
8
提示: 10 =0.8是此同学在本次试验中得到的“出现反面向上”这一事件发生
他一定能中1次奖吗?
《概率》统计与概率PPT(频率与概率)

课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
定义
表示法
一般地,对于事件 A 与事件
包含
关系
B,如果事件 A 发生,则事件
一定发生
B⊇A
________
B__________,称事件 B 包含
(或
事件 A(或事件 A 包含于事件
A⊆B
_______)
B)
图示
定义
表示法
给定事件 A,B,由所
有 A 中的样本点与 B
并事件
中的样本点组成的事
和
件称为 A 与 B 的_____
合格产品
D.该厂生产的产品合格的可能性是99.99%
答案:D
解析:合格率是99.99%,是指该工厂生产的每件产品合格的可能
性大小,即合格的概率.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率与频率的关系及求法
例2下面是某批乒乓球质量检查结果表:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
概率为78%”,这是指(
)
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识对点练
课时综合练
解析
三、解答题 9.电影公司随机收集了电影的有关数据,经分类整理得到下表:
第一 第二 第三 第四 第五 第六 电影类型
知识对点练
课时综合练
解 (1)依题意,60 分及以上的分数所在的第三、四、五、六组,频率 和为(0.015+0.03+0.025+0.005)×10=0.75,
知识对点练
课时综合练
易错分析 (1)对随机数表认识不到位,不能准确找出恰有两次命中的 组数;
(2)对用频率估计概率的方法理解不到位,不能求出“运动员三次投篮 恰有两次命中”的概率.
答案
1 4
正解 20 组随机数中,恰有两次命中的有 5 组,用频率估计概率,因此,
该运动员三次投篮恰有两次命中的概率为 P=250=41.
知识对点练
课时综合练
A.①②③④ B.①②④
C.③④
D.③
答案 A
知识对点练
课时综合练
答案
解析 概率反映的是随机性的规律,但每次试验出现的结果具有不确定 性,因此①②④错误;③中抛掷均匀塑料圆板出现正面与反面的概率相等, 是公平的,因此③错误.
知识对点练
课时综合练
解析
5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事
答案 4 0.7
解析 样本中数据总个数为 20,∴x=20-(2+3+5+4+2)=4;在[10,50) 中的数据有 14 个,故所求概率 P=1240=0.7.
知识对点练
课时综合练
答案
解析
7.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手 里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛 2 枚同样的一元硬 币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认 为这个游戏公平吗?答:________.
知识对点练
课时综合练
解 (1)表中乒乓球为优等品的频率依次是 0.900,0.920,0.970,0.940,0.954,0.951. (2)由(1)知,随着抽取的球数 n 的增加,计算得到的频率值虽然不同,但 都在常数 0.950 的附近摆动,所以任意抽取一个乒乓球检测时,其为优等品 的概率约为 0.950.
答案 0.5
知识对点练
课时综合练
答案
正解 通过做大量的试验可以发现,正面朝上的频率都在 0.5 附近摆动, 故掷一次硬币,正面朝上的概率是 0.5,故填 0.5.
知识对点练
课时综合练
答案
易错点二 对用频率估计概率的方法理解不透致误 7.已知某运动员每次投篮命中的概率都为 40%,现采用随机模拟的方法 估计该运动员三次投篮恰有两次命中的概率:先由计算器产生 0 到 9 之间取 整数值的随机数,指定 1,2,3,4 表示命中,5,6,7,8,9,0 表示不命中;再以每三 个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下 20 组随机 数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________.
知识对点练
课时综合练
答案
解析
2.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的 频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间 [15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估 计概率,现从该批产品中随机抽取 1 件,则其为二等品的概率是( )
知识对点练
课时综合练
解析
3.某厂生产的电器是家电下乡政府补贴指定品牌,其产品是优等品的
概率为 90%,现从该厂生产的产品中任意地抽取 10 件进行检验,结果前 9
件产品中有 8 件是优等品,1 件是非优等品,那么第 10 件产品是优等品的
概率为( )
A.90%
B.小于 90%
C.大于 90% D.无法确定
课时综合练
答案
解析
易错点一 混淆概率与频率的概念 6.把一枚质地均匀的硬币连续掷了 1000 次,其中有 496 次正面朝上, 504 次反面朝上,则可认为掷一次硬币正面朝上的概率为________. 易错分析 由于混淆了概率与频率的概念而致误,事实上频率是随机 的,而概率是一个确定的常数,与每次试验无关.
项目开发的实施结果.
投资成功 投资失败
192 次
8次
则估计该公司一年后可获收益的平均数是________.
答案 0.476
知识对点练
课时综合练
答案
解析 应先求出投资成功与失败的概率,再计算收益的平均数.设可获 收益为 x 万元,如果成功,x 的取值为 5×12%,如果失败,x 的取值为-5×50%.
答案
知识点三 用频率估计概率 5.从某校高二年级的所有学生中,随机抽取 20 人,测得他们的身高(单 位:cm)分别为: 162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175. 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中 任抽一人,估计该生的身高在 155.5~170.5 cm 之间的概率约为 ( )
课时22 频率与概率
知对点练
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
知识点一 频率与概率
1.在 n 次重复进行的试验中,事件 A 发生的频率为mn ,当 n 很大时,P(A)
与mn 的关系是(
)
A.P(A)≈mn B.P(A)<mn
C.P(A)>mn 答案 A
D.P(A)=mn
解析 根据概率的定义,当 n 很大时,频率是概率的近似值.
知识对点练
课时综合练
答案
解析
2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有 关部门对某批产品进行了抽样检测,检测结果如下表所示:
抽取球数 n 50 100 200 500 1000 2000 优等品数 m 45 92 194 470 954 1902 优等品频率mn (1)计算表中乒乓球为优等品的频率; (2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结 果保留到小数点后三位)
知识对点练
课时综合练
答案
4.某理工院校一个班级有 60 人,男生人数为 57,把该班学生学号打 乱,随机指定一个学生,你认为这个学生是男生还是女生?
解 从学号中随机抽出一个, 是男生的可能性为5670=95%, 要比是女生的可能性630=5%大得多, 因此随机指定一个,估计应是男生.
知识对点练
课时综合练
知识对点练
课时综合练
答案
10.某中学从参加高一年级上学期期末考试的学生中抽出 60 名学生, 将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图 所示的频率分布直方图.观察图形的信息,回答下列问题:
(1)估计这次考试的及格率(60 分及以上为及格); (2)从该校高一年级随机选取一名学生,估计这名学生该次期末考试成绩 在 70 分以上(包括 70 分)的概率.
类类类 类类类 电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.15 0.25 0.2 0.1
知识对点练
课时综合练
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第 四类电影的概率; (2)随机选取 1 部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影 的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么 哪类电影的好评率增加 0.1,哪类电影的好评率减少 0.1,使得获得好评的电 影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
知识对点练
课时综合练
答案
课时综合练
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
一、选择题 1.从一批电视机中随机抽出 10 台进行质检,其中有一台次品,下列说 法正确的是( ) A.次品率小于 10% B.次品率大于 10% C.次品率等于 10% D.次品率接近 10% 答案 D
解析 抽出的样本中次品率为110,即 10%,所以总体中次品率大约为 10%.
车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,
而该市有两家出租车公司,其中甲公司有 100 辆桑塔纳出租车,3000 辆帕
萨特出租车,乙公司有 3000 辆桑塔纳出租车,100 辆帕萨特出租车.交警
部门应先调查哪家公司的车辆较合理?( )
A.甲公司
B.乙公司
C.甲与乙公司 D.以上都对
答案 公平
知识对点练
课时综合练
答案
解析 两枚硬币落地共有四种等可能结果:正,正;正,反;反,正; 反,反.由此可见,她们两人得到门票的概率是相等的,所以公平.
知识对点练
课时综合练
解析
8.某公司有 5 万元资金用于投资开发项目,如果成功,一年后可获收
益 12%;一旦失败,一年后将丧失全部资金的 50%.下表是去年 200 例类似
答案 A
解析 概率是一个确定的常数,在试验前已经确定,与试验次数无关.
知识对点练
课时综合练
答案
解析
4.有下列说法:①抛掷硬币出现正面向上的概率为 0.5,那么连续两次 抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某 种彩票的中奖概率为110,那么买 10 张这种彩票一定能中奖;③在乒乓球、 排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是 反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数 2 的概率是16,这说明一个骰子掷 6 次会出现一次点数 2.其中不正确的说法是 ()