运算放大器知识讲解
运算放大器常见指标及重要特性

运算放大器常见指标及重要特性运算放大器是一种电子放大器,用于放大微弱电信号。
它是现代电子系统中的关键组件之一,广泛应用于各种电路中,如音频放大器、通信电路、仪器仪表、运算放大电路等。
了解运算放大器的常见指标和重要特性对于正确选择和应用运算放大器至关重要。
下面是关于运算放大器常见指标和重要特性的详细介绍。
1.常见指标(1)增益:运算放大器的增益是指输入信号和输出信号之间的放大倍数。
运算放大器的增益通常用电压增益来表示,即输出电压与输入电压之比。
(2)输入阻抗:运算放大器的输入阻抗是指输入端对外界电路的负载特性,也就是输入电路对外界电路之间的阻抗。
输入阻抗越大,对外界电路的负载影响越小。
(3)输出阻抗:运算放大器的输出阻抗是指输出端对外界电路的负载特性,也就是输出电路对外界电路之间的阻抗。
输出阻抗越小,对外界电路的阻抗匹配越好。
(4)带宽:运算放大器的带宽是指在指定的增益范围内,能够传递的频率范围。
带宽越大,运算放大器能够传递的高频信号越多。
(5)零点抵消:运算放大器的零点抵消是指在输出电压为零时,输入电压不为零的情况下,输出电压的漂移量。
零点抵消越好,运算放大器的精度越高。
2.重要特性(1)运算精度:运算放大器的运算精度是指在给定的测量条件下,输出结果与实际值之间的偏差大小。
运算精度越高,运算放大器输出的信号越准确。
(2)稳定性:运算放大器的稳定性是指在不同工作条件下,输出信号的稳定程度。
稳定性越好,运算放大器的输出信号波动越小。
(3)噪声:运算放大器的噪声是指在运放输入端产生的不可避免的电压或电流波动。
噪声越小,运算放大器的信噪比越高。
(4)温度漂移:运算放大器的温度漂移是指在温度变化的情况下,输出信号的稳定程度。
温度漂移越小,运算放大器的性能越稳定。
(5)电源电压范围:运算放大器的电源电压范围是指能够正常工作的电源电压范围。
电源电压范围越大,运算放大器的适用范围越广。
(6)输入偏置电流:运算放大器的输入偏置电流是指在没有输入信号的情况下,输入端电流的大小。
运放基础知识课件课件

设 :R 1R2 Rn;KR n
U o K ( 1 R R s f)U R 1 1 ( U R 2 2 U R n n ) 1 n ( 1 R R s f) ( U 1 U 2 U n )
结论:(1).同相加法器的输出电压与输入电压U1 Un之和成正比。
(2).缺点:调节某一支路的Rn会影响比例放大倍数 。
(3).优点:输入阻抗高。
现在学习的是第12页,共31页
二、 减法电路
P
•减法器为同、反相放大器的组合,利用叠加原理求解:
1.只考虑U1作用时:
Uo1
Rf R1
U1
2.只考虑U2作用时:同相端输入
图07.0U 2 o 减2法 电U 路o 1U o 现在2 学习 的是第(1U 1 3页, 共o312页R R 1 f()1R 2R RR 3 1fR )3 RU 2R 2 3 RR 3R U 1 fU 21
1.电路
(一)、反相比例运算电路
If
Rf
3.构成要求
R1 Ui
I1
∞ Uo
Rp=R1//Rf (R +=R -)
2.分析
Rp
(1)、∵I+=0 ∴U+=0V
(2)、U-=U+=0V(虚地)
(3)、I1=Ui /R1 (4)、∵I-=0,∴If =I1= Ui /R1
(5)、
UoURf If R R1f Ui
U i2 R2
)
Rf
( Rf R1
U i1
Rf R2
U i2 )
图07.01 反相求和运算电路
当R1R2 Rf时,输出等于相 两之 输和 入 U 。 o反 (Ui1Ui2)
现在学习的是第10页,共31页
运算放大器外部特性和含有运算放大器电路的分析基础知识讲解

Go GL ) ui
uo
un2
G1 Gf
Gf ( AGO
Gf ( AGO Gf ) Gf ) (G1 Gi Gf ) (Gf
Go GL ) ui
uo
G1 Gf
ui
Rf R1
ui
由理想运放构成的反相比例器:
i2 Rf
i1 R1 i- _
+ ui_
u-
+
u+ +
+ RL uo
_
“虚短”: u+ = u- =0, i1= uS/R1 i2= -uo /Rf
应用:在电路中起隔离前后两级电路的作用。
例
R1
+
+
u_1
R2
RL
u2
_
u2
R2 R1 R2
u1
R1
+
ui _
R2
_
+ +
+ RL _u2
u2
R2 R1 R2
u1
可见,加入跟随器后,隔离了前后两级电路的相互影响。
5. 积分器
iC C
iR R
i- _
+
u-
+
u_i
+
+ u_o
u-=0 i-=0
1. 反相比例器
Rf
R1 _ A
+ u_i
1
+
+
2
+
RL
uo _
Rf R1 1
+ ui_
Ri
+_u1ARu+1o_
2
+ RL uo
运算放大器知识点总结

u otu u i1i2运算放大器知识点总结1、 部分组成偏置电路,输入级,中间级,输出级。
2、零点漂移: (1)表现:输入u i =0时,输出有缓慢变化的电压产生。
(2)原因:由温度变化引起的。
当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。
因而零点漂移也叫温漂。
(3)衡量方法:将输出漂移电压按电压增益折算到输入端计算。
例如100,=u1A100=u2A 10000=u A如果输入等效为100uV ,漂移为1V 。
(4)减小漂移的措施: 采用差动放大电路采用温度补偿,非线性元件 3运放的输入级一般采用差动放大电路。
差动放大电路又称差分放大电路,它的输出电压与两个输入电压之差成正比。
它能较好地克服直接耦合放大器的零点漂移问题,是集成运算放大器的基本组成单元。
结构如右图:(1)对称性结构 β1=β2=β U BE1=U BE2= U BE r be1= r be2= r be R C1=R C2= R C R b1=R b2= R b(2)信号分类差模信号:i2i1id =uu u -ou VCC V EE ou V CC V EEi2uEE共模信号:)(21=i2i1icuuu+差模电压增益:idodud=uuA共模电压增益:icocuc=uuA总输出电压:icucidudocodo=uAuAuuu+=+211EEAB RRRVU+=3ABC3V7.0RUI-=2C3C2C1III==②动态恒流源等效电阻:)//1(321be33ce RRRrRrR+++=β等效,且212121//RRRRRR+⨯=(5)差动放大器输入、输出方式的接法u i1=u i2 =u ic,u id=0设u i1 ↑,u i2↑→u o1↓,u o2↓。
因u i1 = u i2,→u o1 = u o2→ u o= 0 (理想化)共模电压放大倍数A UC=0 i2i1u①双端输入双端输出共模电压放大倍数 A UC =0 差模输入电阻:()be s id 2r R R += 输出电阻:()be s id 2r R R += ②双端输入单端输出差模电压放大倍数:使用于将差分信号转化为单端输出的信号 差模输入电阻:()be id 2r R R b += 输出电阻:R 0=R C共模电压放大倍数 u i1=u i2 =u ic , 设u i1 ↑,u i2 ↑→ i e1 ↑ ,i e1 ↑ 。
运算放大器常见参数解析

运算放大器常见参数解析运算放大器是一种功率放大器,可以将输入电压放大到更大的输出电压,同时保持输入电压与输出电压之间的线性关系。
在电子设备与电路中广泛应用,例如音频放大器、通信系统等。
下面将对运算放大器的常见参数进行解析。
1.增益(Av):运算放大器的增益即输出电压与输入电压之间的比值,通常用一个数字表示。
增益越大,输出信号放大倍数就越高。
运算放大器通常有固定增益和可调增益两种类型。
2. 输入偏置电压(Vos):运算放大器的输入端有一个微小的直流偏置电压,即输入电压接近于零时实际电压。
输入偏置电压可以引起输出偏置电压,影响放大器的性能。
常见解决方法是使用一个偏置调零电路来降低输入偏置电压。
3.输入偏置电流(Ib):运算放大器的输入端也有一个微小的直流偏置电流。
输入偏置电流过大会引起伪输出电压,并对信号放大造成影响。
输入偏置电流可以通过使用PN结和电流源进行补偿。
4. 输入电阻(Rin):输入电阻是指运算放大器输入端对外部电路的等效电阻。
输入电阻越大,输入电压的损失就越小,维持输入信号的原始性。
输入电阻对应于差模模式和共模模式。
5.带宽(BW):运算放大器的带宽是指输出信号能够跟随输入信号的频率范围。
带宽越高,放大器能够处理更高频率的信号。
带宽可以通过增加放大器的带宽限制元件来提高。
6. 输出电阻(Rout):输出电阻是指运算放大器输出端对外部电路的等效电阻。
输出电阻影响着输出电压的稳定性和与外部电路的匹配性。
输出电阻越小,输出电压与负载电阻的影响就越小。
7.摆幅(Av):摆幅是指运算放大器能够提供的最大输出电压幅值。
摆幅取决于供电电源电压和运算放大器内部极限电压。
摆幅越大,放大器能够输出的电压范围就越广。
8.直流增益(Ao):直流增益是指运算放大器在输入信号频率为零时的增益。
直流增益可以决定运算放大器的静态精度,即输出电压与输入电压之间的比值。
9.共模抑制比(CMRR):共模抑制比是指运算放大器对共模信号的压制能力。
运算放大器学习的12个基础知识点

运算放大器学习的12个基础知识点一、一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么?1、为芯片内部的晶体管提供一个合适的静态偏置,芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点。
但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了。
因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。
2、消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。
二、同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?1、反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。
2、防止自激。
三、运算放大器同相放大电路如果不接平衡电阻有什么后果?烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。
四、在运算放大器输入端上拉电容,下拉电阻能起到什么作用?是为了获得正反馈和负反馈,这要看具体连接,比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输入段。
那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。
因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。
五、运算放大器接成积分器,在积分电容的两端并联电阻RF的作用是什么?用于防止输出电压失控。
六、为什么一般都在运算放大器输入端串联电阻和电容?如果你非常熟悉运算放大器的内部电路的话,你就会知道,不论什么运算放大器都是由几个晶体管或是mos管组成。
在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时候,会输出近似于正电压的电平,反之也一样。
但这样运放似乎没有什么太大的用处,只有在外接电路的时候,构成反馈形式,才会使运放有放大功能。
七、运算放大器同相放大电路如果平衡电阻不对有什么后果?1、同相反相端不平衡,输入为0时也会有输出,输入信号时输出值总比理论输出值大或小一个固定的数。
运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。
增益可以是固定的,也可以是可调的。
增益决定了输出信号相对于输入信号的放大程度。
2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。
带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。
3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。
输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。
4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。
输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。
5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。
输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。
6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。
输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。
7.输出电流:输出电流是指运放输出端提供的最大电流。
输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。
8.输出电压:输出电压是指运放输出端能够提供的最大电压。
输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。
二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。
例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。
2.选择性能指标:根据应用需求选择合适的性能指标。
不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。
3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。
产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。
运放参数详解超详细

运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。
它能够接收输入信号并在输出端放大,以达到放大信号的效果。
运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。
下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。
增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。
通常使用dB(分贝)来表示增益大小。
2.带宽:带宽是指运放能够正确放大的频率范围。
在带宽之外的信号将会被放大产生失真。
带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。
3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。
输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。
输入电阻一般以欧姆(Ω)表示。
4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。
输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。
输出电阻一般以欧姆(Ω)表示。
5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。
失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。
失调电流一般以安培(A)表示。
6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。
偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。
偏置电压一般以伏特(V)表示。
7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。
输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。
输出偏置电压一般以伏特(V)表示。
8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。
运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
为此本人特搜罗天下运放电路之应用,来个“庖丁解牛。
看看模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出 Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后我们往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!最后我们这群精英也就记得几个公式了。
今天,小吴教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在 80 dB 以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足 1 mV,(这个应该知道为什么吧,用不知道用增益和放大倍数的公式推导一下哦)两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ 以上。
因此流入运放输入端的电流往往不足 1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
如果你非要了解这些东东的话,套用一句时髦的话——蛋疼、、我们需要理解的就是理想放大器(其实大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。
图一:运放的同向端接地=0V,反向端和同向端虚短,所以也是 0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么 R1 和 R2 相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过 R1 的电流和流过 R2 的电流是相同的。
流过 R1 的电流 I1 = (Vi - V-)/R1 ……a 流过 R2 的电流 I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得 Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。
图二中 :Vi 与 V-虚短,则 Vi = V- ……a 因为虚断,反向输入端没有电流输入输出,通过 R1 和 R2 的电流相等,设此电流为 I,由欧姆定律得:I = Vout/(R1+R2) ……b Vi 等于 R2 上的分压,即:Vi = I*R2 ……c 由 abc 式得 Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。
图三中,由虚短知: V- = V+ = 0 ……a 由虚断及基尔霍夫定律知,通过 R2 与R1 的电流之和等于通过 R3 的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (Vout – V-)/R3 ……b 代入 a 式,b 式变为 V1/R1 + V2/R2 = Vout/R3 如果取 R1=R2=R3,则上式变为 Vout=V1+V2,这就是传说中的加法器了。
请看图四:因为虚断,运放同向端没有电流流过,则流过 R1 和 R2 的电流相等,同理流过 R4 和 R3 的电流也相等。
故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a (Vout – V-)/R3 = V-/R4 ……b 由虚短知: V+ = V- ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!图五:由虚断知,通过 R1 的电流等于通过 R2 的电流,同理通过 R4 的电流等于 R3 的电流,故有 (V2 – V+)/R1 = V+/R2 ……a (V1 – V-)/R4 = (V- - Vout)/R3 ……b 如果 R1=R2,则V+ = V2/2 ……c 如果 R3=R4,则 V- = (Vout + V1)/2 ……d 由虚短知 V+ = V- ……e 所以 Vout=V2-V1 这就是传说中的减法器了。
图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过 R1 的电流与通过 C1 的电流相等。
通过 R1的电流 i=V1/R1 通过 C1的电流i=C*dUc/dt=-C*dVout/dt 所以Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。
若 V1 为恒定电压 U,则上式变换为 Vout = -U*t/(R1*C1) t 是时间,则 Vout 输出电压是一条从 0 至负电源电压按时间变化的直线。
图七中由虚断知,通过电容 C1 和电阻 R2 的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。
则: Vout = -i * R2 = -(R2*C1)dV1/dt 这是一个微分电路。
如果 V1 是一个突然加入的直流电压,则输出 Vout 对应一个方向与 V1 相反的脉冲。
图八.由虚短知Vx = V1 ……a Vy =V2 ……b 由虚断知,运放输入端没有电流流过,则 R1、R2、R3 可视为串联,通过每一个电阻的电流是相同的,电流 I=(Vx-Vy)/R2 ……c 则:Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虚断知,流过 R6 与流过 R7 的电流相等,若R6=R7,则Vw = Vo2/2 ……e 同理若 R4=R5,则 Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由 efg 得 Vout = Vo2 –Vo1 ……h 由 dh 得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2 是定值,此值确定了差值(Vy –Vx)的放大倍数。
这个电路就是传说中的差分放大电路了。
分析一个大家接触得较多的电路。
很多控制器接受来自各种检测仪表的 0~20mA 或 4~20mA 电流,电路将此电流转换成电压后再送 ADC 转换成数字信号,图九就是这样一个典型电路。
如图 4~20mA 电流流过采样 100Ω 电阻 R1,在 R1 上会产生 0.4~2V 的电压差。
由虚断知,运放输入端没有电流流过,则流过 R3 和 R5 的电流相等,流过 R2 和 R4的电流相等。
故:(V2-Vy)/R3 = Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b 由虚短知:Vx = Vy ……c 电流从 0~20mA 变化,则V1 = V2 + (0.4~2) ……d 由cd 式代入 b 式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e 如果 R3=R2,R4=R5,则由 e-a 得 Vout = -(0.4~2)R4/R2 ……f 图九中 R4/R2=22k/10k=2.2,则 f 式 Vout = -(0.88~4.4)V,即是说,将 4~20mA 电流转换成了-0.88 ~ -4.4V电压,此电压可以送 ADC 去处理。
电流可以转换成电压,电压也可以转换成电流。
图十就是这样一个电路。
上图的负反馈没有通过电阻直接反馈,而是串联了三极管 Q1 的发射结,大家可不要以为是一个比较器就是了。
只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则(Vi –V1)/R2 = (V1 –V4)/R6 ……a 同理(V3 –V2)/R5 = V2/R4……b由虚短知V1 = V2……c如果 R2=R6,R4=R5,则由 abc 式得 V3-V4=Vi上式说明 R7 两端的电压和输入电压 Vi 相等,则通过 R7 的电流 I=Vi/R7,如果负载RL<<100KΩ,则通过 Rl 和通过 R7 的电流基本相同。
来一个复杂的,呵呵!图十一是一个三线制 PT100 前置放大电路。
PT100 传感器引出三根材质、线径、长度完全相同的线,接法如图所示。
有 2V 的电压加在由 R14、R20、R15、Z1、PT100 及其线电阻组成的桥电路上。
Z1、Z2、Z3、D11、D12、D83 及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2 、 Z3 可视为短路, D11 、 D12 、 D83 及各电容可视为开路。
由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11 ……a 由虚短知,U8B 第 6、7 脚电压和第 5 脚电压相等V4=V3 ……b 由虚断知, U8A 第 2 脚没有电流流过,则流过R18 和 R19 上的电流相等。
(V2-V4)/R19=(V5-V2)/R18 ……c 由虚断知,U8A 第 3 脚没有电流流过,V1=V7 ……d 在桥电路中R15 和 Z1、PT100 及线电阻串联,PT100 与线电阻串联分得的电压通过电阻 R17 加至 U8A 的第 3脚,V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e 由虚短知,U8A 第 3 脚和第 2 脚电压相等,V1=V2 ……f 由abcdef得(V5-V7)/100=(V7-V3)/2.2化简得 V5=(102.2*V7-100V3)/2.2 即V5=204.4(Rx+2R0)/(1000+Rx+2R0) –200/11 ……g 上式输出电压 V5是 Rx 的函数我们再看线电阻的影响。
Pt100 最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至 U8C 的第 10 脚,由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0) ……a (V6-V10)/R25=V10/R26 ……b 由虚短知,V10=V5 ……c 由式 abc 得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h 由式 gh 组成的方程组知,如果测出 V5、V6 的值,就可算出 Rx 及 R0,知道 Rx,查 pt100 分度表就知道温度的大小了。