运算放大器反馈讲解

合集下载

运算放大器—反馈的概念(电工电子课件)

运算放大器—反馈的概念(电工电子课件)

四、集成放大器在电子电路中的应用
1.电桥信号放大电路的应用
电桥信号放大电路实际上是一个差分放大电路,它是将由传感 器引起的电桥输出电压放大
当传感器的阻值没有变化时,即△R=0时,电桥平衡,电路 输出电压u0=0
因△R<<R
式中
称为传感器的灵敏度
当外接电阻R1=R2、Rf=R3,电桥放大器的输出电压为
正、负反馈
二、正、负反馈电路判断
瞬时极性法
即首先任意假定外输入信号的瞬时极性,然后根据放大原 理确定输出端的瞬时极性,再由反馈电路确定反馈信号的 极性。比较外输入信号及反馈信号,即可判断是什么反馈。 如反馈信号使外输入信号增强,而使净输入信号增大,即 为正反馈。反之,如反馈信号使净输入信号减小,则为负 反馈。
电喷发动机中,用来测量进气压力的进气压力传感器就是由 压敏电阻和集成运放制成的。许多车系都采用了这种传感器
2.光电测量电路 自动空调控制系统中,用作检测日照量的传感器
3.充电系统电压监视器电路 充电系统电压监视器是窗口比较器电路在电子电路中的典型应 用
电路主要是由LM339构成的一个窗口比较器。基准电压由R1和VZ 组成的稳压电路组成,VZ的稳压值是6V。基准电压分别接在A1的 正向端和A2的反相端。E接在充电系统电源上。
反馈在放大电路中应用
一、开环、闭环、反馈的概念
1、定义
集成运放有两个输入端,一个输出端。当输出端和输入端之间 不外接电路,即两者之间在外部是断开的,这称为开环状态
当用一定形式的网络(如R、C等)在外部将它们连接起来, 这称为闭环状态,又称为反馈状态。
Байду номын сангаас
所谓反馈,就是将放大电路输出信号(电压或电流)的一部分 或全部通过一定形式的电路(反馈电路)送回到输入端,和输 入信号共同作用于基本放大电路,控制其输出。

运算放大器电路中的负反馈

运算放大器电路中的负反馈

io + RL uo

R
[例 ] 试判断图示电路中 Rf 所形成的反馈。
Rf1
Rf
Rf2
ui
-uf + R11 -u+d
-∞ +
+
△ △
R21
uo1 R22
-∞ +
+
uo
R12
[解] 用瞬时极性法判断正、负反馈:
设:ui>0 →uo1>0 →uo<0 →uf<0 ∵ ud = ui-uf = ui + |uf | >ui →为正反馈;
反馈信号与输入信号在输入端以电流的形式比较 ——并 联反馈
运算放大器电路反馈类型的判别方法:
1. 反馈电路直接从输出端引出的,是电压反馈; 从负载电阻RL的靠近“地”端引出的,是电流反馈;
2. 输入信号和反馈信号分别加在两个输入端(同相和 反相)上的,是串联反馈;加在同一个输入端(同相或反 相)上的,是并联反馈;
11.2 运算放大器电路中的负反馈
1. 并联电压负反馈
if RF
设输入电压 ui 为正,
i1
+ ui –
R1 R2
id
– +

++
RL
uo –
各电流的实际方向如图 差值电流 id = i1 – if if 削弱了净输入电流(差值电 流) ——负反馈
反馈—电压反馈
反馈信号与输入信号在输入端以电流的形式比较——并
反馈信号与输入信号在输入端以电压的形式比较——串联 反馈
特点:输入电阻高、输出电阻低
3. 串联电流负反馈

u+i
uf
R1 R2

运算放大器反馈讲解PPT课件

运算放大器反馈讲解PPT课件
特点
不同类型的运算放大器具有不同的特 点和应用领域,如低噪声、高精度、 高速等。
运算放大器的基本参数
开环增益
带宽增益乘积
输入阻抗
输出阻抗
表示运算放大器在没有反馈 时的放大倍数,是衡量运算 放大器性能的重要参数。
表示运算放大器的带宽和增 益的乘积,是衡量运算放大 器频率特性的重要参数。
表示运算放大器输入端的电 阻抗,是衡量运算放大器输
类型
正反馈和负反馈。正反馈是指反馈信号使净输入信号增强的 反馈,而负反馈是指反馈信号使净输入信号减弱的反馈。
负反馈对运算放大器性能的影响
提高放大倍数的稳定性
负反馈通过引入一个与输入信号相反 的信号,减小了放大倍数的变化,提 高了放大倍数的稳定性。
减小非线性失真
负反馈可以减小放大器内部的非线性 效应,从而减小输出信号的非线性失 真。
正弦波、方波、三角波等是常见 的振荡器输出波形,根据需求选 择合适的反馈网络和电源电压。
振荡器的稳定性、频率调节范围 和波形质量是关键性能指标,可 以通过优化电路参数和采用有源
元件提高性能。
PART 05
运算放大器反馈的注意事 项与挑战
REPORTING
WENKU DESIGN
避免振荡与不稳定
负反馈
定义与工作原理
定义
运算放大器是一种具有高放大倍 数的集成电路,能够实现信号的 放大、运算、滤波等多种功能。
工作原理
运算放大器由差分输入级、放大 级和输出级三部分组成,通过正 反馈和负反馈的结合,实现信号 的放大和运算。
运算放大器的分类与特点
分类
根据不同的分类标准,运算放大器可 以分为多种类型,如电压反馈型和电 流反馈型、单电源型和双电源型等。

电压反馈型运算放大器的增益和带宽

电压反馈型运算放大器的增益和带宽

Page 3 of 8
-
-
-
R1
+
+
IN
B
R1
C
R2
MT-033
环路增益 开环增益与闭环增益之差称为环路增益,如图3所示。环路增益给出了可以在给定频率下 施加于放大器的负反馈量。
GAIN dB
OPEN LOOP GAIN
LOOP GAIN
CLOSED LOOP GAIN
NOISE GAIN
fCL
LOG f
LOG f
图5:增益带宽积
Page 5 of 8
MT-033
例如,如果有这样一个应用,要求闭环增益为10,带宽为100 kHz,则需要一个最低增益带宽 积为1 MHz的运算放大器。但这有点把问题过度简单化了,因为增益带宽积变化极大,而且在 闭环增益与开环增益相交的位置,响应实际上要低3 dB。另外,还应该允许一定的额外余量。 在上述应用中,增益带宽积为1 MHz的运算放大器是最低要求。保险起见,为了实现要求的 性能,因数至少应该是5。因此选择了增益带宽积为5 MHz的运算放大器。 稳定性标准 反馈稳定性理论认为,闭环增益必须在不大于6 dB/8倍频程(单极点响应)的斜率下与开环增 益相交,才能使系统实现无条件稳定。如果响应为12 dB/8倍频程(双极点响应),则运算放 大器会发生振荡。简单起见,不妨这样设想,每个极点增加90°相移。两个极点则会产生 180°的相移,而180°的相移会使负反馈变成正反馈,即振荡。 那么问题是:为什么要用单位增益下不稳定的放大器呢?答案是,对于给定的放大器,如 果该放大器设计时未考虑单位增益稳定性,则可在较高增益下提高带宽。这类运算放大器 有时被称为非完全补偿运算放大器。然而,仍需满足稳定性标准,即闭环增益必须在6 dB/8倍频程(单极点响应)的斜率下与开环增益相交。否则,放大器将会振荡。因此,非完 全补偿运算放大器仅在数据手册中规定的较高增益下保持稳定。 举例来说,不妨比较图6中的开环增益图。图中的三种器件,AD847、AD848 和 AD849基 本上采用相同的设计,只是内部补偿机制不同。AD847为单位增益稳定型,规定增益带宽 为50 MHz。AD848在增益为5或以上时保持稳定,其增益带宽为175 MHz。AD849在增益为 25或以上时保持稳定,其增益带宽为725 MHz。由此可见,在基本设计相同的情况下,可 以通过修改运算放大器的内部补偿机制来产生不同的增益带宽积,其为最低稳定增益的函 数。

运放的的反馈常系数-概述说明以及解释

运放的的反馈常系数-概述说明以及解释

运放的的反馈常系数-概述说明以及解释1.引言1.1 概述本文将探讨运放的反馈常系数,首先需要了解什么是反馈。

在电子电路中,反馈是指将电路的一部分输出信号返回到输入端,与输入信号进行比较和处理的过程。

反馈的应用十分广泛,能够改善电路的性能、稳定性以及频率响应等。

而运放(Operational Amplifier,简称OP-AMP)则是一种具有放大功能的电子元件,可将输入信号放大到一个较高水平。

它常常被用于各种电子设备如放大器、滤波器、函数发生器等。

而反馈常系数则是衡量反馈对电路性能影响的重要参数。

它表示输出信号与输入信号的比例关系,即反馈电压与输入电压之比。

反馈常系数的值可以大于1,小于1或等于1,这对于电路的放大和稳定性都有不同的影响。

在本文的后续部分,我们将深入研究反馈常系数的定义、作用以及影响因素。

同时,还将探索反馈常系数在实际应用中的具体案例,并对未来的发展进行展望。

通过对运放的反馈常系数的深入探讨,我们可以更好地理解和应用这一概念,从而为电子电路设计和优化提供指导和参考。

希望本文能够对读者对于运放反馈常系数有更加全面和深入的理解。

1.2 文章结构本文将按照以下结构来进行阐述:第一部分:引言在本部分中,我们将对本文的主要内容进行概述,包括文章的目的和结构安排。

第二部分:正文2.1 反馈的概念我们将介绍反馈的基本概念,包括正反馈和负反馈的定义以及其在电路中的应用。

2.2 运放的基本原理我们将详细讨论运放的基本原理,包括运放的结构和工作原理,以帮助读者更好地理解运放的反馈常系数。

2.3 反馈常系数的定义在本节中,我们将引入反馈常系数的概念,并给出其具体定义,以便读者能够理解反馈常系数在电路设计中的重要性。

第三部分:结论3.1 反馈常系数的作用我们将探讨反馈常系数在电路中的作用,包括如何影响电路的增益、稳定性和线性度等方面。

3.2 反馈常系数的影响因素在本节中,将介绍影响反馈常系数的主要因素,包括电路的频率响应、电阻和电容值的选择等等。

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法作者:周庆华来源:《硅谷》2014年第10期摘要在电子电路中,反馈的应用是极为广泛的,而集成运算放大器(简称集成运放)中引入的负反馈更对其电路的性能有着十分重要的影响。

文章就集成运算放大器中反馈的类型进行了描述,并对反馈的几种不同判别方法进行了研究和总结。

关键词集成运算放大器;反馈;反馈类型;判别方法中图分类号:TN722 文献标识码:A 文章编号:1671-7597(2014)10-0132-021 反馈的分类(类型)将电路输出端输出的电压或者电流的全部或者其中的一部分,通过反馈电路引回到输入端(如图1)称为反馈。

图1反馈根据对输入端信号的增强或者削弱情况,又可以分为正反馈和负反馈两种不同的类型。

若Xd(净输入信号)>Xi(输入信号),即Xf(反馈信号)对集成运算放大器的输入端Xi(输入信号)起到了增强的作用,则此种反馈被称之为正反馈;若Xd(净输入信号)负反馈根据从集成运算放大器输出端引出的方式不同又可以分为电压反馈(或者电流反馈);根据引回到集成运算放大器的输入端形式的不同又可以分为串联反馈(或者并联反馈),最后再根据输出端和输入端不同的引出引入方式组合成四种类型的负反馈,即:电压-并联-负反馈、电流-并联-负反馈、电压-串联-负反馈、电流-串联-负反馈。

2 反馈的判别方法针对集成运算放大器而言,反馈的判别是有一定的步骤的。

首先判断有无反馈;接着判断是正反馈还是负反馈;如果是负反馈,最后再判断负反馈的类型。

2.1 有无反馈的判别方法如果集成运算放大器的输出端和输入端有电路连接,并且反馈电路将输出端的电压或电流引入到输入端,则说明此时的电路有反馈(如图2)。

图2但有一种集成运算放大器的电路需要特别注意,虽然看似有反馈,但实际电路是直接接地的,输出端的信号没有引回到输入端,此时的集成运算放大器电路是没有反馈的(如图3)。

图32.2 正反馈和负反馈的两种判别方法方法一:集成运算放大器正反馈和负反馈的通用判别方法一般采用的是瞬时极性法,具体的判别分成以下三个步骤:①先任意假设集成运算放大器的两个输入端的任一输入端在某一瞬间的极性(假设时可以假设极性为“+”,也可以假设极性为“-”);②根据反相输入端电位的瞬时极性与同相输入端电位的瞬时极性相反;输出端电位的瞬时极性与反相输入端电位的瞬时极性相反;输出端电位的瞬时极性与同相输入端电位的瞬时极性相同的三个标准(或者直接看集成运算放大器图形的符号,标示“+”相同符号的端口极性相同,标示“+”、“-”不同符号的端口极性相反),标出集成运算放大器另外一个输入端和输出端电位的瞬时极性;③根据反馈电路上所标示出的极性,与输入端标示的极性进行对比,即可以确定反馈类型。

运算放大器负反馈原理

运算放大器负反馈原理

运算放大器负反馈原理摘要:1.运算放大器负反馈的概念2.负反馈的作用3.负反馈的实现方式4.负反馈对运算放大器的影响5.负反馈的应用正文:一、运算放大器负反馈的概念运算放大器负反馈是指将运算放大器输出信号的一部分或全部以一定方式和路径送回到输入端,作为输入信号的一部分。

这种反馈作用使得运算放大器的闭环增益趋于稳定,消除了开环增益的影响。

二、负反馈的作用负反馈主要有以下作用:1.提高闭环增益的稳定性:通过引入负反馈,使得运算放大器的闭环增益与期望值匹配,从而使得闭环增益更加稳定。

2.减小系统偏差:负反馈能够减小系统输出与系统目标的误差,使系统趋于稳定。

3.抑制零点漂移:通过负反馈,可以消除运算放大器输入端零点漂移的影响,提高电路的稳定性。

三、负反馈的实现方式负反馈的实现方式主要有以下两种:1.电流取样:将运算放大器输出端的电流通过一定的电阻取样,形成反馈电流,再与输入端的电流相减,从而实现负反馈。

2.电压取样:将运算放大器输出端的电压通过一定的电阻取样,形成反馈电压,再与输入端的电压相减,从而实现负反馈。

四、负反馈对运算放大器的影响负反馈对运算放大器的影响主要表现在以下几个方面:1.提高闭环增益的稳定性:通过负反馈,运算放大器的闭环增益能够与期望值匹配,从而使得闭环增益更加稳定。

2.减小输出信号的幅值:负反馈使得输出信号的一部分被送回到输入端,与输入信号相减,从而减小了输出信号的幅值。

3.提高输入电阻和输出电阻:负反馈使得运算放大器对输入端和输出端的阻抗发生变化,从而提高了输入电阻和输出电阻。

五、负反馈的应用负反馈在运算放大器电路中应用广泛,主要应用于以下几个方面:1.线性放大电路:通过引入负反馈,可以使得运算放大器实现线性放大。

2.运算放大器的非线性应用:通过引入负反馈,可以使得运算放大器实现诸如求和、求差、积分、微分等非线性功能。

运算放大器专题讲座

运算放大器专题讲座

由于运放在线性应用时其输入端之间的电位差很小,故 可以在两个输入端之间并联两个互为反接的二极管,以 防止意外的高差动电压损坏输入级的差分放大器。例如 NE5532(也可人为外接)。
如果运放开环使用且进行线性放大则:① 输入端经不起 幅度很小的干扰;② 放大器的输入阻抗无法设置;③ 放 大器增益的离散性无法控制;④ 放大器带宽相当窄。
基本知识: 输入级——差分放大器
集成运放内部对于差分放大器的两个输入端子往往不设 置任何偏置,故使用时需要外部给定输入端子的偏置。以 通用运放LM358和NE5532为例。 在正负双电源供电的情况下,两个输入端只要对地或者 对输出端提供直流通路(往往通过电阻实现),即可获得 输入端的偏置回路。
由于运放内部均采用恒流源偏置,故偏置电流不因外部 偏置电阻的大小而改变。 由于运放外部同相和反相输入端对地电阻如果不等,将 会造成两个输入端对地直流电位的不平衡,从而造成输出 静态的偏移,故输入电流作为运放的一个基本指标,其值 越小越好。
基本知识: 输出级——互补对称形式的射极跟随器
基本知识: 举例1——输出端中点电位的设置
特点: 运算放大器是一个高增益、高输入阻抗和低输出阻抗的 直流放大器。 运算放大器输入级必定是差分放大器,中间级往往是共 射放大器,而输出级必定是互补形式的射极跟随器。
基本知识: ——由于运算放大器增益相当高,必须通过负反馈才能 够使其工作在线性放大区,故运放在线性应用时必须设 置负反馈。 例如:
基本知识: 举例2——偏置回路电阻不对称造成的输出偏移
基本指标的应用: ——运放的指标分为:极限指标、直流指标、交流指标、 其它指标。 极限指标(Maximum Ratings) 使用运放过程中,极限指标不能被超过!!!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑版
12
7.1.4 串联反馈与并联反馈
判断电路中的级间交流反馈是串联反馈还是并联反馈
并联反馈
xf (if)
可编辑版
级间反馈通路
13
7.1.4 串联反馈与并联反馈
判断电路中的级间交流反馈是串联反馈还是并联反馈
串联反馈
级间反馈通路
xf (vf)
可编辑版
14
7.1.5 电压反馈与电流反馈
电压反馈与电流反馈由反馈网络在放大电路输出 端的取样对象决定
电流反馈
18
7.1.5 电压反馈与电流反馈
电压反馈
反馈通路
可编辑版
end
19
7.2 负反馈放大电路的四种组态
7.2.1 电压串联负反馈放大电路 7.2.2 电压并联负反馈放大电路 7.2.3 电流串联负反馈放大电路 7.2.4 电流并联负反馈放大电路
反馈组态判断举例(交流) 信号源对反馈效果的影响
外部反馈
可编辑版
3
7.1.1 什么是反馈
框图
基本放大电路的输入 信号(净输入信号)
输出信号
反馈放大电路 的输入信号
反馈信号
反馈通路 ——信号反向传输的渠道
开环 ——无反馈通路
闭环 ——有反馈通路
可编辑版
4
7.1.1 什么是反馈
判断电路是否存在反馈通路
反馈通路 (本级)
反馈通路 (本级)
反馈通路 (级间)
▪ 电流控制的电流源
可编辑版
24
特点小结:
串联反馈:输入端电压求和(KVL) 并联反馈:输入端电流求和(KCL) 电压负反馈:稳定输出电压,具有恒压特性 电流负反馈:稳定输出电流,具有恒流特性
可编辑版
25
反馈组态判断举例(交流)
(-)
(+)
(+)
(+)
(+)
级间电压串联负反馈
可编辑版
26
反馈组态判断举例(交流)
可编辑版
29
信号源对反馈效果的影响
并联负反馈
iid = ii -if 要想反馈效果明显,就 要 求 if 变 化 能 有 效 引 起 iid 的 变化。
则ii最好为恒流源,即信 号源内阻Rs越大越好。
可编辑版
end
30
7.3 负反馈放大电路增益的一般表达式
1. 闭环增益的一般表达式 2. 反馈深度讨论
电流负反馈
xf=Fio , xid= xi-xf
RL io
xf
xid
io
▪ 电流负反馈稳定输出电流
可编辑版
17
7.1.5 电压反馈与电流反馈
判断方法:负载短路法
将负载短路(未接负载时输出对地短路),反馈量为零— —电压反馈。
将负载短路,反馈量仍然存在——电流反馈。
反馈通路
电压反馈 反馈通路
可编辑版
可编辑版
20
7.2.1 电压串联负反馈放大电路
特点:
▪ 输入以电压形式求和(KVL): vid=vi- vf
▪ 稳定输出电压
RL↓→vo↓→vf↓→vid(=vi-vf)↑
▪ 电压控制的电压源
vo↑
可编辑版
21
7.2.2 电压并联负反馈放大电路
特点: ▪ 输入以电流形式求和(KCL): iid=ii-if ▪ 稳定输出电压
7.1.1 什么是反馈 7.1.2 直流反馈与交流反馈 7.1.3 正反馈与负反馈 7.1.4 串联反馈与并联反馈 7.1.5 电压反馈与电流反馈
可编辑版
2
7.1.1 什么是反馈
将电子系统输出回路的电量(电压或电流)送回 到输入回路的过程。
内部反馈
ib hie
ic
vbe hrevce
hfeib
hoe vce
反馈通路
净输入量增大
负反馈
正反馈
净输入量减小
反馈通路
可编辑版
9
7.1.3 正反馈与负反馈
净输入量减小
级间负反馈
级间反馈通路
可编辑版
10
7.1.3 正反馈与负反馈
本级负反馈
净输入量减 小
反馈通路
可编辑版
11
7.1.4 串联反馈与并联反馈
由反馈网络在放大电路输入端的连接方式判定
串联
并联
串联:输入以电压形式求和(KVL) -vi+vid+vf=0 即 vid=vi- vf 并联:输入以电流形式求和(KCL) ii-iid-if=0 即 iid=ii-if
可编辑版
31
7.3 负反馈放大电路增益的一般表达式
1. 闭环增益的一般表达式
已知 A x o 开环增益 x id
电压并联负反馈
可编辑版
27
反馈组态判断举例(交流)
直流反馈
(-) (+) (+)
(+)
(+)
(+)
交、直流反馈
电流串联负反馈
可编辑版
28
信号源对反馈效果的影响
串联负反馈 vid = vi -vf
要想反馈效果明显,就 要求vf变化能有效引起vid的 变化。
则 vi 最 好 为 恒 压 源 , 即 信号源内阻Rs越小越好。
7.1 反馈的基本概念与分类 7.2 负反馈放大电路的四种组态 7.3 负反馈放大电路增益的一般表达式 7.4 负反馈对放大电路性能的影响 7.5 深度负反馈条件下的近似计算 7.6 负反馈放大电路设计 7.7 负反馈放大电路的频率响应 7.8 负反馈放大电路的稳定性
可编辑版
1
7.1 反馈的基本概念与分类
从输入端看
正反馈:引入反馈后,使净输入量变大了。 负反馈:引入反馈后,使净输入量变小了。
净输入量可以是电压,也可以是电流。

可编辑版
8
7.1.3 正反馈与负反馈
判别方法:瞬时极性法。即在电路中,从输入端开始,沿着
信号流向,标出某一时刻有关节点电压变化的斜率
(正斜率或负斜率,用“+”、“-”号表示)。
电压反馈:反馈信号xf和输出电压成比例,即xf=Fvo 电流反馈:反馈信号xf与输出电流成比例,即xf=Fio
并联结构
可编辑版
串联结构
15
7.1.5 电压反馈与电流反馈
电压负反馈
xf=Fvo , xid= xi-xf
RL
vo
xf
xid
vo
▪ 电压负反馈稳定输出电压
可编辑版
16
7.1.5 电压反馈与电流反馈
▪ 电流控制的电压源
可编辑版
22
7.2.3 电流串联负反馈放大电路
特点:
▪ 输入以电压形式求和(KVL): vid=vi- vf
▪ 稳定输出电流
io RL
vf(=ioRf) vi一定时vid
▪ 电压控制的电流源 io
可编辑版
23
7.2.4 电流并联负反馈放大电路
特点: ▪ 输入以电流形式求和(KCL): iid=ii-if ▪ 稳定输出电流
可编辑版
5
7.1.2 直流反馈与交流反馈
根据反馈到输入端的信号是交流,还是直流,或
同时存在,来进行判别。
直流反馈
可编辑版
交、直流反馈
6
7.1.2 直流反馈与交流反馈
(a)直流通路
(b)交流通路
可编辑版
7
7.1.3 正反馈与负反馈
从输出端看
正反馈:输入量不变时,引入反馈后输出量变大了。 负反馈:输入量不变时,引入反馈后输出量变小了。
相关文档
最新文档