PKPM如何调整参数和选用

合集下载

PKPM参数设置及依据

PKPM参数设置及依据

模块一、PMCAD一、建筑模型与荷载输入1、楼层定义---本层信息注意此处梁柱钢筋类别必须改为设计所采用类别,否则在梁柱施工图模块出图时非所选(即此处类别决定了电脑出施工图的钢筋类别)。

因此原则上建模时就应在此准确输入各种信息,可以避免后面形形色色的麻烦2、楼面恒活是否计算活载自动计算现浇楼板自重第一项通常勾选,第二项可以不选,也可以选,建议勾选,即由电脑自动计算现浇楼板自重,在后面荷载输入时只需考虑额外的自重,这样的话可以避免板厚改变或者多种板厚时引起输入多种恒载的不便3、设计参数3.1、总信息结构体系------包括框架结构、框架剪力墙结构、框筒结构、筒中筒结构、剪力墙结构、短肢剪力墙结构、复杂高层、砌体结构、底框结构常用的结构体系均已包括,但不包括钢结构、混合结构结构主材-------钢筋混凝土、砌体、钢和混凝土但是上面的结构体系会用到钢和混凝土这种主材吗???结构重要性系数--------1.1、1.0、0.9参见《混凝土规范》3.2.3条的规定底框层数--------软件提供了最多四层的底框层地下室层数--------软件提供了最多四层的地下室与基础相连的最大楼层号---------指的是建筑坡地上的建筑,输入的楼层号所在层以上的柱或墙可以悬空布置,PK、TAT、SATWE计算时自动考虑为固定端,软件提供了最大楼层号20梁柱钢筋的保护层厚度--------参见《混凝土规范》9.2.1条的规定框架梁端负弯矩调幅系数--------参见《混凝土规范》5.2.3条3.2、材料信息混凝土容重---------考虑构件表面的抹灰取28KN/M3钢材容重---------默认取为78KN/M3墙主筋类别墙水平分布筋类别墙竖向分布筋类别墙水平分布筋间距墙竖向分布筋配筋率梁柱箍筋类别???此处有几个问题需澄清:墙主筋和水平分布筋、竖向分布筋的概念区别水平分布筋间距而为何竖向分布筋配筋率?墙主筋指的难道是边缘构件的主筋吗?3.3、地震信息设计地震分组--------参见《抗震规范》附录A地震烈度--------参见《抗震规范》附录A场地类别--------参见《岩土工程勘察报告》关于场地与地基地震效应评价框架抗震等级--------某些特殊结构需提高的软件考虑自动提高,有待检验剪力墙抗震等级--------某些特殊结构需提高的软件考虑自动提高,有待检验计算振型个数-------参见《高规》3.3.10条及3.3.11条,可以参考空间协同计算结果适当调整周期折减系数-------考虑非承重墙体的刚度影响折减,参见《高规》3.3.17条3.4、风荷载信息修正后的基本风压值--------参见《荷载规范》附录D.4,取的即是7.1.1条的基本风压。

PKPM参数设置和文本分析详解

PKPM参数设置和文本分析详解

PKPM参数设置和文本分析详解(一)利用偏心布置构件功能,程序可计算自重。

范例外的自重需用户输入。

4、板―柱结构输入:柱网需输入截面为100X100的虚梁。

5、厚板转换层输入:柱网需输入截面为100X100的虚梁。

层高以板厚的1/2划分。

6、错层结构输入: A、框架错层:在PM中调整梁端高,含斜。

前处理注意事项1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。

2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。

PMCAD的数据检查要通过。

SATWE数据报告提示的问题要消除。

3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。

范例外的自重需用户输入。

4、板―柱结构输入:柱网需输入截面为100X100的虚梁。

5、厚板转换层输入:柱网需输入截面为100X100的虚梁。

层高以板厚的1/2划分。

6、错层结构输入:A、框架错层:在PM中调整梁端高,含斜梁。

B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。

C、多塔层高不同:把形成的塔虚层中楼板去掉。

关于整理SATWE设计参数便览的说明设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。

SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。

论坛里也有许多帖子,但总觉得系统性、实用性有些不足。

SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。

由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。

更欢迎参与。

SATWE参数便览之总信息1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算值重算。

2、混凝土容重:隐含值25。

构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。

3、钢材容重:隐含值78。

PKPM参数设置规范详解

PKPM参数设置规范详解

PKPM参数设置规范详解PKPM是一种常用的结构分析和设计软件,具有参数设置功能,可以根据不同的需求进行定制。

本文将详细介绍PKPM参数设置的规范,帮助用户更好地使用该软件。

首先需要明确的是,参数设置是PKPM软件中非常重要的一项功能,它直接影响到分析结果的准确性和可靠性。

因此,在进行参数设置时,需要遵循一定的规范,以确保分析结果的准确性。

一、参数设置的原则:1.合理性原则:设置的参数应符合实际情况,反映结构的真实状态,不能过于乐观或过于保守。

2.一致性原则:参数设置应与其他设计参数相一致,确保整个设计的协调性。

3.严谨性原则:遵循规范和标准,确保参数设置的合理性和准确性。

二、常见参数设置:1.材料参数:PKPM软件中提供了各类结构材料的参数设置,包括弹性模量、泊松比、抗拉强度等。

在设置材料参数时,应根据实际材料的性质和试验数据进行选择。

2.几何参数:几何参数包括构件的尺寸、形状等。

在设置几何参数时,应确保准确、一致,并考虑对结构响应的影响。

3.工况参数:工况参数包括荷载、边界条件等。

在设置工况参数时,应根据结构的使用状况和设计要求进行选择,并保持与其他设计参数的一致性。

4.计算参数:计算参数包括求解方法、计算精度等。

在设置计算参数时,应根据结构类型和分析要求进行选择,并保持计算结果的稳定性和可靠性。

三、参数设置的步骤:1.分析问题的定义:首先需要明确分析的目的和要求,确定分析的类型和范围。

2.数据的获取和处理:收集和整理分析所需的相关数据,包括结构的几何形状、材料性质、荷载情况等。

3.参数的选择和设置:根据实际情况,选择合适的参数,并进行设置。

需要注意的是,参数的设置应符合规范和标准,反映结构的真实状态。

4.分析的执行和结果的评定:按照设置的参数进行分析,并对结果进行评定。

如果结果不符合要求,可以进行参数的调整和分析的迭代,直到满足要求为止。

四、参数设置的注意事项:1.结构的复杂性:对于复杂结构的分析,参数设置更为关键。

PKPM如何调整参数和选用分析

PKPM如何调整参数和选用分析

PKPM如何调整参数和选用分析PKPM(一种常用于结构设计的计算机软件)参数调整和选用是设计和计算过程中非常重要的一环。

正确的参数调整和选用能够确保结构的安全、经济和合理。

本文将从PKPM参数的基本概念、应用范围、调整方法和选用原则等方面进行详细介绍。

一、PKPM参数的基本概念PKPM参数主要包括以下几个方面:1.材料参数:包括混凝土强度等级、钢筋强度等级、混凝土和钢筋的材料力学性能等。

2.计算参数:包括设计活载、设计雪荷载、设计地震加速度等。

3.结构参数:包括截面尺寸、受力构件的长度、连接方式等。

二、PKPM参数的应用范围PKPM适用于各种类型的结构计算和设计,包括建筑结构、桥梁结构、塔架结构等。

参数选用和调整的方法也可以适用于不同类型的结构。

三、PKPM参数的调整方法1.材料参数的调整:混凝土强度等级和钢筋强度等级是结构设计中最常见的材料参数。

根据具体的项目要求,可以通过查表或进行试验来确定合适的混凝土和钢筋强度等级,以确保结构的安全性和经济性。

2.计算参数的调整:设计活载、雪荷载和地震加速度等是结构计算中需要考虑的重要参数。

根据国家标准和设计规范的要求,可以选取合适的设计活载、雪荷载和地震加速度等值,并根据工程实际情况进行调整,以确保结构的安全性和合理性。

3.结构参数的调整:结构参数包括截面尺寸、受力构件的长度、连接方式等。

在进行结构设计和计算时,需要根据各个受力构件的受力特点和工程要求,选择合适的截面尺寸和构件长度,同时对连接方式进行合理设计,以保证结构的强度和稳定性。

四、PKPM参数的选用原则1.安全性原则:在进行PKPM参数选用和调整时,首要考虑的是结构的安全性。

必须确保结构能够满足承载能力和抗震能力的要求,以避免结构的破坏和倒塌。

2.经济性原则:结构设计和计算过程中,除了要满足安全性的要求外,还需要考虑经济性的因素。

即在满足结构的安全性的前提下,尽量减小结构的材料和成本,以提高工程的经济效益。

PKPM——参数选用

PKPM——参数选用

PKPM——参数选用PKPM(the People's Republic of China Structural Engineering Design System)是一种经典的结构工程设计系统,广泛应用于中国的建筑行业。

该系统由中国建筑科学研究院于20世纪70年代开发,并于1984年首次发布,目前已经成为中国建筑行业中最常用的设计工具之一在使用PKPM进行结构设计时,设计师需要输入建筑的基本信息,如建筑类型、平面布置等,然后系统会根据国家相关标准和规范,自动生成具体的设计参数和计算公式。

经过多年的发展和完善,PKPM已经成为一个强大而稳定的设计软件,可以帮助设计师在短时间内完成准确高效的结构设计。

在选用PKPM时,有几个关键的参数和功能必须被考虑。

首先是建筑类型的选择,PKPM可以根据不同的建筑类型,如住宅、商业建筑、工厂等,自动调整设计参数和计算公式,确保所得到的设计结果符合实际需求。

其次是结构材料的选用,PKPM支持多种材料的设计,如钢筋混凝土、预应力混凝土、钢结构等,设计师可以根据具体的项目要求选择合适的材料。

另外,在选用PKPM时,还需要考虑以下几个方面的参数。

首先是设计荷载参数,包括建筑的自重、活载、风载、地震作用等。

设计师需要根据不同的地理环境和建筑特点,合理选择荷载参数,以保证建筑结构的安全性和可靠性。

其次是设计强度参数,这涉及到结构的抗震性能和安全性能,设计师需要根据地震设计参数和不同的设计要求,合理选择强度参数,以确保结构的抗震能力和使用安全。

此外,PKPM还提供了许多其他的功能和参数,如设计纵横向抗力、地基承载力、振动控制等。

设计师可以根据具体的项目需求和结构要求,选择相应的功能和参数,并进行相应的设置和调整。

同时,PKPM还提供了详细的计算和分析结果,设计师可以通过查看和分析这些结果,优化设计方案,提高结构的安全性和经济性。

总之,PKPM是一种经典的结构工程设计系统,它的参数选用需要根据具体的项目需求和结构要求,合理选择建筑类型、结构材料、设计荷载参数和设计强度参数等。

PKPM参数设置

PKPM参数设置

PKPM参数设置2.PKPM参数选取一、风荷载程序中给出的基本周期是采用近似方法计算得到的,建议计算出结构的基本周期后,再代回重新计算。

二、地震作用及结构振动特性1)对于耦联选项,建议总是采用;2)质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。

例:*** 一31层框支结构,考虑双向水平地震力作用时,其计算剪重比增量平均为12.35%;***规则框架考虑双向水平地震作用时,角柱配筋增大10%左右,其他柱变化不大;***对于不规则框架,角、中、边柱配筋考虑双向地震后均有明显的增大;***通过双向地震力、柱按单偏压计算和双向地震力、双偏压计算比较可知,后者计算柱的配筋较前者有明显的增大。

建议:若同时勾选双向地震力、柱双向配筋时,要十分谨慎。

3)计算单向地震力,应考虑偶然偏心的影响。

5%的偶然偏心,是从施工角度考虑的。

****计算考虑偶然偏心,使构件的内力增大5%~10%;****计算考虑偶然偏心,使构件的位移有显著的增大,平均为18.47%。

注:对于不规则的结构,应采用双向地震作用,并注意不要与“偶然偏心”同时作用。

“偶然偏心”和“双向地震力”应是两者取其一,不要都选。

建议的选用方法:****当为多层(≤8层,≤30m),考虑扭转耦联与非扭转耦联均可;****当为一般高层,可选用耦联+偶然偏心;****当为不规则高层、满足抗规2条以上不规则性时,或位移比接近限值,考虑双向地震作用。

4)有效质量系数例:一八层框架,有大量的越层结构和弹性结点,需许多的振型才能使有效质量系数满足要求。

计算振型数剪重比有效质量系数30 1.6 50%60 3.2 90%原因:振型整体性差,局部振动明显。

注:要密切关注有效质量系数是否达到了要求。

若不够,则地震作用计算也就失去了意义。

三、结构的周期与位移***周期比:控制结构在大震下,扭转振型不应靠前,以减小震害。

***最大层间位移:按规范要求取楼层竖向构件最大杆件位移称为楼层控制层间位移;***位移比:取楼层最大杆件位移与平均杆件位移比值。

PKPM如何能调整全参数和选用

PKPM如何能调整全参数和选用

PKPM如何能调整全参数和选用PKPM(“平面空间结构系统计算程序”)是一种结构分析与设计软件,被广泛应用于建筑和土木工程领域。

它可以用于计算各种类型的结构,包括框架结构、砖混结构、钢结构等。

在进行结构分析和设计时,PKPM提供了一系列的参数和选项,可以根据具体的工程要求进行调整和选用。

下面将介绍如何完整调整全参数和选用PKPM。

1.在PKPM中进行结构建模首先,在PKPM中需要进行结构建模,包括输入结构的几何尺寸、材料性质和荷载情况等。

这些参数可以通过人工输入或者导入其他软件生成的模型来完成。

2.调整分析参数PKPM提供了多种不同的分析方法和选项,可以根据具体的分析需求进行调整。

例如,可以选择静力分析方法或者动力分析方法,选择不同的加载工况等。

3.选用合适的材料性质在进行结构分析和设计时,需要选用相应的材料性质,如混凝土的强度等。

这些参数可以根据具体工程的要求进行选择。

4.调整截面参数PKPM中可以设置结构截面的参数,包括截面的几何形状和截面的惯性矩等。

这些参数可以影响到结构的强度和刚度等性能。

5.输入荷载情况在进行结构分析和设计时,需要输入具体的荷载情况,包括静载荷和动载荷等。

这些荷载参数需根据工程实际情况进行选取和调整。

6.进行结构分析在完成上述参数的设置后,可以进行结构分析,得出结构的内力、位移等结果。

7.进行结构设计根据结构分析的结果,可以进行结构设计,如钢筋布置、截面尺寸等。

需要注意的是,PKPM是一种计算工具,其结果需要结构工程师进行合理的判断和调整。

在实际应用中,还需同时考虑结构的可靠性、经济性以及施工的可行性等因素。

总之,PKPM是一款功能强大的结构计算软件,通过调整全参数和选用合适的参数和选项,可以帮助工程师进行结构分析和设计。

然而,对于普通用户来说,由于其复杂性和专业性,可能需要具备一定的结构工程知识和经验才能正确使用。

pkpm参数设置

pkpm参数设置

1.PKPM参数设置1.风荷载风压标准值计算公式为:WK=βzμsμZ W。

其中:βz=1+ξυφz/μz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。

所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。

具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇: 新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。

C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。

3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。

新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。

新增加的D类对应脉动增大系数比89规范小,约小5%到10%。

与结构的材料和形式有关。

5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。

在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。

如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。

6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。

结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。

其中N为结构层数。

2.地震作用1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010版SATWE计算参数选用一、2010版计算参数的选用(PKPM及SATWE):免责声明:炒饭个人总结,仅用作参考。

以下内容需与PKPM2010版satwe说明书结合使用。

参数在PKPM中如何实现需参考satwe说明书。

1、总信息:A、“水平力与整体坐标夹角”,此参数一般不做修改。

而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。

B、PM里的“混凝土容重”框架取26,剪力墙取27。

(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。

C、“钢材容重”暂时默认78,未研究。

D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。

框架结构均可输入0,其他结构未研究。

此参数包含地下室层数。

(如3层地下室,4层裙房,此参数应输入7。

)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。

F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。

G、“地下室层数”按实际输入。

H、“墙元细分最大控制长度”取“1”。

影响计算精度,对含剪力墙的结构有影响。

I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。

J、“地下室强制采用刚性楼板假定”勾选。

K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。

勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。

L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。

对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。

无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。

M、“弹性板与梁变形协调”勾选。

梁细分后弯矩变的平缓,计算结果更加合理。

N、“结构材料信息”如实填写O、“结构体系”如实填写P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。

但本人尚未弄明白。

Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。

R、“地震作用计算信息”一般选择计算水平地震作用。

结合抗规和高规确定是否计算竖向地震作用。

高规比抗规对此条的要求严一个等级。

S、“规定水平力”一般选“规范方法”。

规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。

2、风荷载信息:地震区无论是高层还是多层均应输入风荷载,体形复杂的高层建筑应考虑不同方向风荷载作用,结合“水平力与整体坐标夹角”进行多次计算取大值。

A、“地面粗糙度”简单来说海边A类,郊区B类,城市C类,大城市D。

B“修正后的基本风压”许昌一般建筑取(n=50)。

C、“X\Y结构基本周期”先按照程序给定的缺省值计算,然后将程序输出的第X\Y平动周期值填入重新计算。

主要用于风荷载脉动增大系数的计算。

D、“风荷载作用下结构阻尼比”混凝土结构为5%;钢结构为1%;有填充墙钢结构或混合结构为2%。

也用于风荷载脉动增大系数的计算E、“承载力设计时风荷载效应放大系数”新高规对于敏感建筑放大倍,一般对于超过60米的高层建筑,取,低于60米的酌情考虑是否放大。

F、“用于舒适度验算的风压”取重现期为10年的风压值,许昌为(n=10)而不是基本风压。

G、“用于舒适度验算的结构阻尼比”按照高规条文说明:取1~2%,混凝土结构取2%,钢结构取1%。

H、“考虑顺风向风振影响”参荷载规范。

本人一般对30m以上建筑勾选。

I、“考虑横风向风振影响”参荷载规范条文说明。

未深入研究J、“扭转风振”参荷载规范条文说明。

未深入研究K“水平风体型系数”“体型分段数”此参数只考虑上部结构,不需将地下室单独分段。

用于计算风荷载,按照荷载规范取值。

参照高规条。

L、“设缝多塔背风面体型系数”当为设缝多塔结构时,需在<多塔结构补充定义>中指定风荷载遮挡面(背风面),两参数配合生效。

M、“特殊风体型系数”一般不考虑特殊风。

3、地震信息:A、“结构规则性信息”该参数在程序内部不起作用,如实填写。

B、“设计地震分组”“设防烈度”按照规范具体规定选用,附录A。

C、“场地类别”采用地质报告提供的场地类别。

D、“框架、剪力墙、钢框架抗震等级”按照规范规定选用,高规。

E“抗震构造措施的抗震等级”根据规范条文中有关抗震“构造”措施的抗震等级是提高还是降低选择。

F、“中震(或大震)设计”一般不考虑,未研究。

G、“按主震型确定地震内力符号”勾选。

按照抗震规范,考虑扭转耦联时计算得到的地震作用效应是没有符号的,SATWE原有的符号确定原则为:每个内力分量取各振型下绝对值最大者的符号。

该参数可以解决原有方式可能导致个别构件内力符号不匹配的问题。

H、“斜交抗侧力构件方向附加地震数”及“相应角度”当结构的某些抗侧力构件的角度大于15度时,应按照此方向计算水平地震作用;周期计算结果里的地震作用最大方向角也在此填入,对于异型柱结构最好增加45度方向进行补充验算(规范规定是和时才验算)。

I“考虑偶然偏心”勾选。

位移角和周期比不能通过,可不考虑偶然偏心。

J“考虑双向地震作用”抗规质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。

目前,普遍做法是在刚性楼板假定下,不考虑偶然偏心,结构位移比大于需考虑双向地震作用。

K“X向Y向相对偶然偏心”一般取。

L计算振型个数”高层(特别是复杂高层及超高层)考虑扭转耦联的振型分解反应谱法计算的振型数一般不小于15(多层可以直接取楼层数的3倍),但也不能大于3倍楼层数,多塔结构振型数不应小于塔楼数的9倍。

如果振型数取得足够多,而有效质量系数达不到90%,则考虑结构方案是否合理。

对于错层结构、局部带有夹层结构或楼板开大洞、有较大凹入等按照弹性楼板计算地震作用时,为了确保不丧失高振型的影响,振型数宜多取一些。

M活荷重力荷载代表值组合系数”一般民用建筑此参数取为,但使用功能为图书馆,藏书库等时,此参数为或其它值。

参照抗规条。

N周期折减系数”“周期折减系数”只改变地震影响系数∝。

对于采用石膏板等轻质隔墙,这些墙的刚度很弱,此处周期折减系数可以采用大值或不折减。

此系数详见《高规》第条,当非承重墙体为砌体墙时,1.框架 2.框剪 3.剪力墙。

总结:加气混凝土砌块可采用以上数值,各类混凝土空心砌块分别取, , 。

各类粘土空心砌块可取~。

目前有人提出填充墙使结构刚度增大,但同时也承受了较多地震作用力,此折减系数并不能真实反映填充墙对主体结构的影响。

本人做法:按规范规定数值的较大值采用。

O结构的阻尼比”钢筋混凝土结构及砌体结构房屋取5%,不大于12层的钢结构房屋取%,大于12层的钢结构房屋取2%,钢-混凝土混合结构房屋取4%,预应力混凝土框架结构房屋取3%,采用隔震或消能技术的结构阻尼比则高于5%有的可以达到10%。

地震影响系数随阻尼比减小而增大,其增大幅度随周期的增大而减小。

P“特征周期Tg”按抗规条取值。

Q“地震影响系数最大值”按抗规条取值。

R“用于12层以下规则混凝土框架结构薄弱层验算的地震影响系数最大值”仅用于12层以下规则混凝土框架结构薄弱层验算,此参数由前面所填参数地震分组,设防烈度,场地类别控制。

4、活荷载信息:A、“柱、墙设计时活荷载”及“传给基础的活荷载”[不折减][折减]:出计算书时必须选择折减。

柱、墙及基础活荷载折减只传到底层最大组合内力中,并没有传给JCCAD,JCCAD读取的仍然是荷载标准值,如果考虑基础活荷载折减,则应到JCCAD软件的荷载参数中输入,对于工业建筑不应折减。

B、“墙、柱、基础活荷载折减系数”对于《荷载规范》表中第1(1)项功能(如住宅、办公等)的建筑,其SATWE所列的折减系数不需修改,但是对于《荷载规范》表中其它项功能(如教学楼、商场、书店、食堂等)的建筑,其SATWE 所列的折减系数需要按照《荷载规范》第条第2项修改。

对于活荷载折减还应注意在主楼与裙房整体计算的高层建筑中,要避免裙房部分的框架柱按主楼层数取折减系数。

计算错层结构时注意按楼层数折减会导致柱底内力折减过大,使柱底内力偏小。

PMCAD的恒活设置中也有活荷载折减选项,勾选此选项对传到梁的活荷载进行了折减,此折减对梁、墙、柱、基础都起作用,如果在SATWE或JCCAD中又勾选折减,则在PMCAD中折减的活荷载,将在SATWE或JCCAD中又重复折减,使结构便于不安全。

C、“梁活荷不利布置”软件仅对梁做活荷不利布置计算,对墙、柱等竖向构件未考虑活载不利布置作用,建议钢筋混凝土结构均进行活载不利布置作用计算,仅仅是计算量较大。

D、“考虑结构使用年限的活荷载调整系数”新规范规定结构设计使用年限为100年时取。

5、调整信息:A、“梁端负弯距调幅系数”高规规定装配式框架梁现浇框架梁。

在竖向荷载作用下,考虑混凝土梁的塑性变形内力重分布,负弯距调幅后,程序能够自动调整正弯距,该参数大小只对竖向荷载起作用,对水平力不起作用。

悬臂梁的负弯距不应调幅。

转换梁及嵌固层框架梁不应调幅。

B、“梁活荷载内力放大系数”当考虑了梁活荷不利布置后,此参数应填1。

此参数目的近似考虑梁活荷载不理布置。

C、“梁扭距折减系数”对于现浇楼板结构,采用刚性楼板假定时,可以考虑楼板对梁的抗扭作用而对梁的扭距进行折减,一般,边梁扭矩折减系数不宜小于。

D“托墙梁刚度放大系数”针对梁式转换层结构,由于框支梁与剪力墙的共同作用,使框支梁的刚度增大。

托墙梁段刚度放大指与上部剪力墙及暗柱直接接触共同工作部分,而托墙梁上部有洞口部分梁刚度不放大。

因为,现在工程转换梁上部剪力墙都开有洞口,且有的洞口靠近转换梁边,因此,建议此系数不调整输入1。

E实配钢筋超配系数”对于9度设防烈度的各类框架及一级抗震等级的框架结构,框架梁和连梁端部剪力、框架柱端部弯距、剪力调整应按实配钢筋和材料强度标准值来计算。

在出施工图前,程序也不知道实配钢筋具体是多少,因此需要设计人员根据经验输入超配系数,程序根据该值自动调整配筋面积。

次参数仅对9度和1级抗震等级的结构起作用。

F连梁刚度折减系数”连梁刚度折减是针对抗震设计而言的,对非抗震设计的结构不宜折减。

设防烈度高时可以折减多些,但一般不小于,一般取。

此参数输入的越小,结构自振周期和位移越大,连梁内力降低的越明显。

G中梁刚度放大系数”取2。

H“混凝土矩形梁转T梁”勾选。

梁跨中配筋量有效减少,支座处未变化。

I“部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级”勾选。

相关文档
最新文档