单片机的一些常用程序
51单片机常见程序,附带注释

51 单片机常见程序附带注释三位数分离成 3 个一位数,截取bai=num/100;// 输出百位数shi=num%100/10;// 输出十位数ge=num/10;// 输出个位数//跑马灯程序。
当时间约为20ms形成动态扫描,#include<intrins.h>#define uint unsigned int // 无符号整型,占16 位数,表示围0~65536#define uchar unsigned char // 无符号字符型占八位数,表示围0~255void delayms(uint);uchar aa;// 定义变量void main(){aa=0xfe;while(1){aa=_crol_(aa, 1);P2=aa; // 控制单片机接口p2, 循环亮delayms(500); 灯一直亮灭,原因是视觉延迟// 当500 换成5,看起来全亮,实际上#include<reg52.h> 看上去全亮。
void delayms(uint xms) // 子程序,延时,通过数数uint i, j; for(i=xms;i>0;i--) for(j=110;j>0;j--);#include<reg52.h> // 跑马灯程序。
现在时间较长,多以是亮灭的流动,当时间约为20ms形成动态扫描,看上去全亮。
#include<intrins.h>#define uint unsigned int #define uchar unsigned char void delayms(uint);uchar aa;void main(){aa=0xfe;while(1){P2=aa; delayms(500); 灯一直亮灭,原因是视觉延迟// 无符号整型,占16 位数,表示围0~65536 // 无符号字符型占八位数,表示围0~255// 定义变量// 控制单片机接口p2, 循环亮// 当500 换成5,看起来全亮,实际上aa=_crol_(aa, 1); }}void delayms(uint xms) // 子程序,延时,通过数数 {uint i, j; for(i=xms;i>0;i--) for(j=110;j>0;j--);}#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阴极数码 管:使用单片机的引脚 1和 2,控制两个数码管静态显示 00到59) #define uchar unsigned char #define uint unsigned int sbit dula1=P1A7;uchar num,num1; // 共阴极数码管 0123456789abcdef0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; void main (){while(1){for(num1=0;num1<=5;num1++)// 申明 U1 锁存器锁存端 段选 sbit dula2=P0A7;// 申明 U1 锁存器锁存端段选uchar code table[]={{for(num=0;num<=9;num++){dula2=1; // 打开U1 锁存端P1=table[num]; // 送入位选信号器dula2=0; // 关闭U1 锁存500 毫秒约0.3sdelayms(100); // 延时dula1=1; // 打开U1 锁存端P2=table[num1]; // 送入位选信号器dula1=0;// 关闭U1 锁存500 毫秒约0.3s}delayms(100); // 延时}}}void delayms (uint xms){uint x, y ;dula1=0;// 关闭 U1 锁存器for (y=200;y>0;y--);}#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阴极数码 管)#define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; sbit dula2=P2A7; uchar num,num1; uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; void main (){while(1){for(num1=0;num1<=9;num1++){dula1=1; //打开U1锁存端P1=table[num1]; // 送入位选信号for (x=xms;x>0;x--) //x=xms 即延时约为 xms 毫秒// 申明 U1 锁存器锁存端 段选 // 申明 U1 锁存器锁存端段选// 共阴极数码管 0123456789abcdefdelayms(1000);// 延时 500 毫秒约0xc0,0xf9,0xa4, 0xb0,// 共阳极数字: 0123456789abcdefg0.3s for(num=0;num<=9;num++)dula2=1; // 打开 U1 锁存端P1=table[num]; // 送入位选信号 dula2=0;// 关闭 U1 锁存器 500 毫秒约 0.3s }} } void delayms (uint xms) { uint x, y ; for (x=xms;x>0;x--) delayms(1000);// 延时//x=xms 即延时约为 xms 毫秒for (y=200;y>0;y--); 有语法错误 #include <reg52.h> //52 系列单片机头文件 #define uchar unsigned char // 无符号字符型占八位数,表示围 0~255 #define uint unsigned int //无符号整型 占 16 位数,表示围 sbit dula1=P1A 6; //申明U1锁存器锁存端 段选 sbit dula2=P0A7; //申明U1锁存器锁存端段选uchar code table[]={0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ;void display(uchar,uchar) ;uchar num,num2,shi,ge;void main (){TMOD=Ox11;〃设置定时器0和1为工作方式1 (M1M0为01, 0001 00THO= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL0= (65535-50000)%256;TH1= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL1= (65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器0TR1=1;// 启动定时器 1while(1)// 程序停止在这里不停的对数码管动态扫描同时等待中断的发生display(shi,ge);dula2=1; // 打开U1 锁存端P1=table[shi]; // 送入位选信号dula2=0; // 关闭U1 锁存器delayms(1175); // 延时0.1 毫秒void delayms(uint xms) // 延时子程序{uint i,j;for (i=xms;i>0;i--)//i=xms 即延时约为xms 毫秒for (j=110;j>0;j--); }void T1_time()interrupt 1{TH1= (65536-50000)/256; // 重装初值TL1= (65536-50000)%256;num2++; //num 每加 1 次判断一次是否到20 次if(num2==20){num2=0; // 然后把num2 清0 重新再计数20 次num++;if (num==60) // 这个数用来送数码管显示,到60 后归0num=0;shi=num/10; // 把一个 2 位数分离后分别送数码管显示,十位数ge=num%10; // 个位数#include <reg52.h> //52 系列单片机头文件 (目标:控制时间24 小时一循环) #define uchar unsigned char#define uint unsigned intsbit dula1=P1A7; //申明U1锁存器锁存端段选sbit dula2=P0A7; //申明U1锁存器锁存端段选uchar num,num1,num2,num3,num4;uchar code table[]={0xc0,0xf9,0xa4, 0xb0, // 共阳极数字:0123456789abcdefg0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ;void main (){while(1){for(num3=0;num3<=23;num3++) // 每天24 小时进位一{for(num2=0;num2<=59;num2++)// 每60 分进位一{for(num1=0;num1<=5;num1++) //每6*10s 进位一{dula2=1; // 打开U1 锁存端P1=table[num1]; // 送入位选信号dula2=0; // 关闭U1 锁存0.1 毫秒// 每1s 进位一打开U1锁存端// 送入位选信号// 关闭U1 锁存器// 延时0.1 毫秒}}}}}void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--)for (y=110;y>0;y--); }delayms(1175); //for(num=0;num<=9;num++){dula2=1;P1=table[num];dula2=0;delayms(1000);}//x=xms 即延时约为xms 毫秒延时//#include <reg52.h> //52 系列单片机头文件 (目标:控制时间 24 小时一循环,蜂鸣器每过一段时间响一次)#define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; sbit dula2=P2A7; sbit f=P0;// 声明单片机 P0 口的第一位 ,也就是三极管基级的位置单片机第 39 接口uchar num,num1,num2,num3,num4; uchar code table[]={ 0xc0,0xf9,0xa4, 0xb0,// 共阳极数字: 0123456789abcdefg0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83,// 申明 U1 锁存器锁存端// 申明 U1 锁存器锁存段选 段选0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)f=0; // 控制蜂鸣器的不响 每 1ms 进位一for(num=0;num<=9;num++)//{锁存端dula2=1;// 打开 U1选信号P2=table[num];// 送入位U1锁存器dula2=0;// 关闭// 延时 0.1 毫秒delayms(1074);}// 控制蜂鸣器的响delayms(1000); }}}{进位一for(num2=0;num2<=59;num2++){for(num4=0;num2<=59;num4++)// 每 60 分// 每 60s 进位一{for(num3=0;num3<=23;num3++) // 每天进位一f=1;void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--) //x=xms 即延时约为xms 毫秒for (y=10;y>0;y--);}#include <reg52.h> //52 系列单片机头文件(目标:用单片机和两个共阳极数码管,控制依次显示0到59,然后循环,有合适的时间间隔,程序停止)#define uchar unsigned char#define uint unsigned intsbit dula1=P1A7; // 申明U1 锁存器锁存端段选sbit dula2=P2A7; // 申明U1 锁存器锁存端段选uchar num,num1;uchar code table[]={0xc0,0xf9,0xa4, 0xb0,// 共阳极数字:0123456789abcdefg0x99,0x92,0x82,0xf8,}void delayms (uint xms)uint x, y ;0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)for(num1=0;num1<6;num1++){dula1=1; P1=table[num1]; dula1=0;delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约0.3s器500 毫秒约 0.3s for(num=0;num<=9;num++){dula2=1; P2=table[num]; dula2=0;delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存// 延时dula1=0; // 关闭 U1 锁存器uchar num,num1; uchar code table[]={0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ; void main ()while(1){for(num=0;num1<6;num1++){dula1=1;//打开U1锁存端P1=table[num1]; // 送入位选信号for (x=xms;x>0;x--)//x=xms 即延时约为 xms 毫秒for (y=200;y>0;y--);}#include <reg52.h> //52 管,控制依次显示 0到 59, 系列单片机头文件 (目标:用单片机和两个共阳极数码 时间间隔约 0.5, 程序停止) #define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; // 申明 U1 锁存器锁存端 段选 sbit dula2=P2A7;// 申明 U1 锁存器锁存端段选0xc0,0xf9,0xa4, 0xb0, // 共阳极数字: 0123456789abcdefgdelayms(100); // 延时500 毫秒约0.3sfor(num=0;num<=9;num++){dula2=1; // 打开U1 锁存端P2=table[num]; // 送入位选信号器dula2=0; // 关闭U1 锁存500 毫秒约0.3sdelayms(100);// 延时}}}}void delayms (uint xms)//延时子程序{uint x, y ;for (x=xms;x>0;x--) //x=xms 即延时约为xms毫秒for (y=300;y>0;y--);0.3sfor(num=0;num<=9;num++){dula2=1; //打开U2锁存端 P2=table[num];// 送入位选信号#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阳极数码 管,控制依次显示 0到 59,时间间隔约 0.5, 程序停止) #define uchar unsigned char #define uint unsigned intsbit dula1=P1A7; sbit dula2=P2A7; // 申明 U1 锁存器锁存端段选 段选uchar num,num1; uchar code table[]={ 0xc0,0xf9,0xa4, 0xb0, // 共阳极数字: 0123456789abcdefg0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; voiddelayms(uint) ; void main ()while(1){for(num=0;num1<6;num1++) {dula1=1; P1=table[num1]; dula1=0; delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和共阳极数码管, 控制依次显示 0到 9,时间间隔约 0.5s ;)#define uchar unsigned char #define uint unsigned int500 毫秒约 0.3sdelayms(100);// 延时}}}}void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--)〃x=xms 即延时约为xms 毫秒for (y=300;y>0;y--);器// 关闭 U1 锁存}dula2=0;sbit dula1=P1A7;// 申明 U1 锁存器锁存端 段选// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约 0.3//打开U2锁存端 // 送入位选信号//关闭U2锁存器// 延时 500 毫秒约 0.3sbit dula2=P2A7; // 申明 U2 锁存器锁存端 段选uchar num; uchar codetable[]={ 0xc0,0xf9,0x a4, 0xb0,0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)// 共阳极数字: 0123456789abcdefgfor(num=0;num<10;num++){dula1=1; P1=table[num]; dula1=0; delayms(100);dula2=1; P2=table[num]; dula2=0; delayms(100);void delayms (uint xms) {uint x, y ;for (x=xms;x>0;x--)//x=xms 即延时约为xms 毫秒for (y=300;y>0;y--);}#include <reg52.h> //52 系列单片机头文件(目标:用定时器0 的方式 1 实现第一个灯管以200ms闪烁;用定时器1的方式1实现数码管前两位59s循环计时)#define uchar unsigned char // 无符号字符型占八位数,表示围0~255#define uint unsigned int // 无符号整型,占16 位数,表示围sbit dula=P2A6; //申明U1锁存器锁存端段选sbit wela=P2A7; //申明U2锁存器锁存位选sbit led1=P1A0; // 申明灯 1 点0uchar code table[]={ // 共阴极数码管0123456789abcdef0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; voiddisplay(uchar,uchar) ; uchar num,num1,num2,shi,ge; void main (){TMOD=0x01;〃设置定时器0和1为工作方式1 (M1M0为01, 0001 00THO= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL0= (65535-50000)%256; TH1= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL1= (65535-50000)%256; EA=1;// 开总中断ET0=1; // 开定时器0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器 0TR1=1;// 启动定时器 1while(1)//程序停止在这里不停的对数码管动态扫描同时等待中断的发生 {display(shi,ge);}}void display (uchar shi,uchar ge) // 控制数码管{ dula=1;// 打开 U1 锁存端 段选 P0=table[shi];//送入段选信号 dula=0;// 关闭 U1 锁存器 P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时 wela=1;// 原来的段选数据通过位选锁存器造成混乱 P0=0xfe;// 送位选数据 wela=0;delayms(5); // 延时dula=1; // 打开 U1 锁存端 段选P0=table[ge]; // 送入段选信号dula=0;// 关闭 U1 锁存器 P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时 wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时} void delayms(uint xms) // 延时子程序{uint i,j;for (i=xms;i>0;i--) //i=xms 即延时约为 xms 毫秒for (j=110;j>0;j--);} void T0_time()interrupt 1{TH0= (65536-50000)/256; TL0= (65536-50000)%256;num++;//num1 每加 1次判断一次是否到 4次 ,时间间隔200ms // 重装初值if(num1==4)num1=0; // 然后把num1 清0 重新再计数 4 次led1=~led1; // 让发光管状态取反}} void T1_time()interrupt 3{TH1= (65536-50000)/256; // 重装初值TL1= (65536-50000)%256;num2++; //num 每加 1 次判断一次是否到20 次if(num2==20){num2=0; // 然后把num2 清0 重新再计数20 次num++;if (num==60) // 这个数用来送数码管显示,到60 后归0num=0;shi=num/10; // 把一个 2 位数分离后分别送数码管显示,十位数ge=num%10; // 个位数// 共阴极数码管 0123456789abcdef0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void delayms(uint) ;void display(uchar,uchar) ;uchar num,num1,num2,shi,ge;void main (){TMOD=0x01;〃 设置定时器0和1为工作方式1 ( M1M (为01, 0001 0001 )TH0= (65535-50000)/256;// 装初值 12.00M 晶振定时 50s 数为 50000TL0= (65535-50000)%256;TH1= (65535-50000)/256;// 装初值 12.00M 晶振定时 50s 数为 50000 TL1=(65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器 0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器 0TR1=1;// 启动定时器 1#include <reg52.h> //52 系列单片机头文件 (目标:用定时器 0 的方式 1 实现第 一个灯管以200ms 闪烁;用定时器1的方式1实现数码管前两位59s 循环计时)#define uchar unsigned char 占八位数,表示围 0~255// 无符号字符型 #define uint unsignedint 数,表示围// 无符号整型, 占 16位 sbit dula=P2A 6;//申明U1锁存器锁存端 段选 sbit wela=P2A7;//申明U2锁存器锁存 位选sbit led1=P1A0;// 申明灯 1 点 0 uchar code table[]={while(1)// 程序停止在这里不停的对数码管动态扫描同时等待中断的发生{display(shi,ge);}}void display (uchar shi,uchar ge) // 控制数码管{dula=1; // 打开U1 锁存端段选P0=table[shi];//送入段选信号dula=0; // 关闭U1 锁存器P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时dula=1; // 打开U1 锁存端段选P0=table[ge];//送入段选信号dula=0; // 关闭U1 锁存器P0=0xff; // 送位选数据前关闭所有显示,防止打开位选锁存器时wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时{void delayms(uint xms) // 延时子程序uint i,j;for (i=xms;i>O;i--) 〃i=xms 即延时约为xms毫秒for (j=110;j>0;j--);}#include <reg52.h> //52 系列单片机头文件 (目标:中断程序,控制 1 点0 二极管10ms闪烁)#define uchar unsigned char#define uint unsigned intsbit led1=P1A0; II声明单片机P1 口的第一位uchar num;void main (){TMOD=0x01;〃设置定时器0为工作方式1 (M1M(为01)TH0= (65535-50000)/256;// 装初值12.00M 晶振定时50ms数为50000TL0= (65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器0 中断TR0=1;// 启动定时器0while(1)// 程序停止在这里等待中断的发生{if(num==200)// 判断一次是否到20{num=0; // 然后把num 清0 重新再计数20 次led1=~led1; // 让发光管状态取反}}}void T0_time()interrupt 1{TH0= (65535-50000)/256; // 重装初值TL0= (65535-50000)%256;num++; //num 加上1#include <reg52.h> //52 系列单片机头文件 (目标:中断程序,控制 1 点0 二极管100ms 闪烁,若num=10则0.05s闪烁,换句话控制5000或者num都可以控制时间。
单片机指令大全(二)2024

单片机指令大全(二)引言概述:本文是关于单片机指令大全的第二部分。
在上一部分中,我们介绍了一些常用的单片机指令和其功能。
本文将继续介绍更多的单片机指令,包括数据传输、逻辑运算、算术运算、位操作以及状态寄存器等方面的指令。
这些指令将帮助您更好地理解和使用单片机。
1. 数据传输指令1.1. MOV指令:将一个数据从源操作数传送到目的操作数。
1.2. LDI指令:将一个立即数传送到一个寄存器。
1.3. LDS和STS指令:将数据从SRAM传送到寄存器或将寄存器的数据传送到SRAM。
1.4. IN和OUT指令:将数据从端口传送到寄存器或从寄存器传送到端口。
2. 逻辑运算指令2.1. AND、OR和XOR指令:进行逻辑与、逻辑或和逻辑异或运算。
2.2. NOT指令:对一个寄存器的数据进行逻辑非运算。
2.3. CLR指令:将一个寄存器的数据清零。
3. 算术运算指令3.1. ADD和SUB指令:对两个操作数进行加法或减法运算。
3.2. INC和DEC指令:对一个寄存器的数据进行加1或减1操作。
3.3. MUL和DIV指令:进行乘法和除法运算。
4. 位操作指令4.1. ANDI、ORI和XORI指令:对一个寄存器的数据进行与、或和异或运算。
4.2. SBI和CBI指令:设置或清除一个I/O端口的某个位。
4.3. SBIC和SBIS指令:跳转指令,根据指定的I/O端口位是否被设置或清除执行跳转操作。
5. 状态寄存器相关指令5.1. SEI和CLI指令:设置或清除全局中断。
5.2. SREG指令:用于保存和恢复状态寄存器的值。
5.3. IJMP和EIJMP指令:用于从程序中直接跳转到任意存储器位置。
总结:本文介绍了单片机指令大全的第二部分内容,包括数据传输、逻辑运算、算术运算、位操作以及状态寄存器等方面的指令。
这些指令的功能与用法将有助于您更好地理解和应用单片机。
通过熟练掌握这些指令,您将能够更加灵活地进行单片机程序的设计与开发。
51单片机指令使用方法

51单片机指令使用方法51单片机是一种常用的嵌入式微控制器,广泛应用于各种电子设备中。
它具有强大的控制能力和灵活的指令集,为我们开发各种应用提供了便利。
在使用51单片机时,我们需要熟悉其指令的使用方法,下面我们来介绍一些常用的指令及其应用。
首先,我们来讲解一些与数据传输和处理相关的指令。
MOV指令是最常用的指令之一,用于将一个数据从一个寄存器或内存单元传输到另一个寄存器或内存单元。
通过MOV指令,我们可以在单片机中实现数据的复制、传递和处理等操作。
除了MOV指令,还有一些其他常用的数据传输和处理指令,比如ADD指令用于进行加法运算,AND指令用于进行逻辑与操作,OR指令用于进行逻辑或操作等。
这些指令可以实现各种数据处理、逻辑运算和位操作等功能,为我们的程序提供灵活性和多样性。
接下来,我们介绍一些与控制流程相关的指令。
循环结构是程序中常用的一种控制结构,而JMP指令和CJNE指令可以实现跳转和循环控制。
JMP指令用于无条件跳转到指定的地址,而CJNE指令则根据比较结果决定是否跳转到指定的地址。
通过这些指令,我们可以实现程序的分支、循环和条件控制等功能。
此外,还有一些与中断处理相关的指令需要我们熟悉。
中断是单片机中常用的一种事件触发机制,通过中断处理,我们可以实现对外部事件的及时响应。
EA指令用于使能全局中断,而EN和DIS指令用于使能和禁止外部中断。
通过这些指令,我们可以合理利用中断机制,提高程序的响应速度和实时性。
最后,我们来介绍一些与IO口操作相关的指令。
单片机的IO口是与外部设备进行通信的接口,而P1、P2等寄存器则是与IO口对应的数据寄存器。
通过MOV指令和SETB/C指令,我们可以实现对IO口数据的读写操作和控制。
通过这些指令,我们可以与外部设备进行数据交互,实现各种输入输出功能。
总结起来,51单片机的指令使用是嵌入式开发中的基础知识,熟练掌握各种指令的使用方法能够提高我们的开发效率和程序的性能。
单片机红绿灯程序完整版

通灯设计交通灯设计方案:1:实现东西路----南北路红绿灯的交通指示。
2:东西路灯变化----红绿黄一南北路灯变化----绿黄红> T3:红灯延时时间---25S绿灯延时时间---20S黄灯延时时间一3S4:数码管显示:红灯---前20S不显示,只在最后5S开始倒计时显示。
绿灯---前15S不显示,只在最后5S开始倒计时显示。
黄灯---3S倒计时显示(若东西路为黄灯,南北路为红灯,那么南北绿的数码管也显示3S)。
5:交通应急事件处理:利用中断分别实现东西路---南北路的交通应急事件处理。
6:延时程序的使用:用循环延时和定时器计时的方法。
注:P1.0---北路绿灯,P1.1--北路黄灯,P1.2---北路红灯cP1.3--东路绿灯,P1.4---东路黄灯,P1.5----东路红灯。
【交通灯流程图】开始延时20秒5秒倒计时结束其他灯不变南北路绿灯亮,红,黄灯灭东西路红灯亮,绿,黄灯灭南北路绿灯数码管开始倒计时5秒南北路绿灯灭,黄灯亮且数码管开始倒计时3秒东西路红灯——数码管开始倒计时3秒3秒倒计时结束延时25秒5秒倒计时结束东西路绿灯亮,黄灯,红灯灭南北路红灯亮,黄灯,绿灯灭东西路数码管开始倒计时5秒其他灯不变东西路绿灯灭,黄灯亮且数码管开始倒计时3秒南北路红灯一一数码管开始倒计时3秒3秒倒计时结束程序如下:ORG 0000HLJMP LOOPORG 000BHLJMP WZDOORG 0013HLJMP WZD1ORG 0030HLOOP:MOV R3,#5MOV R4,#5MOV R2,#20l=LIfc=ER;定时器0中断,实现交通应急事件;下载可编辑亮 oMOV SP,#70H MOV IE,#85HMOV TMOD,#01H ;置T0为工作方式1MOV TH0,#3CH;置T0定时初值50msMOV TL0,#0B0HCLRTF0SETBTR0;启动定时器T0SETB P1.1 ;东---红灯亮,北---绿灯亮SETB P1.2CLR P1.0SETB P1.3SETB P1.4CLR P1.5ACALL DEL30SACALL Y ELLOW1 ; 北---绿灯转黄灯,东---红灯亮 ACALL DEL3S ;延时后北---黄灯火SETB P1.0;东:红灯火,绿灯亮,北:黄灯火,红灯CLR P1.2SETB P1.4SETB P1.5ACALL DEL55S ; 北---红灯不变,东---绿灯转黄灯ACALL Y ELLOW2ACALL DEL3SSJMP LOOPYELLOW1: ; 北---绿灯转黄灯,东---红灯不变SETB P1.0SETB P1.2CLR P1.1SETB P1.3CLR P1.5SETB P1.4RETYELLOW2: ; 东---绿灯转黄灯,北---红灯不变SETB P1.0SETB P1.1CLR P1.2SETB P1.3CLR P1.4RETWZD0: ;实现南北路交通应急事件CLR P1.0 ;(南北路保持畅通,东西路停止通行)SETB P1.1SETB P1.2SETB P1.3SETB P1.4CLR P1.5JNB P3.2,WZD0RETIWZD1: ;实现东西路交通应急事件CLR P1.3 ;(东西路保持畅通,南北路停止通行)CLR P1.2SETB P1.1SETB P1.0SETB P1.4SETB P1.5JNB P3.3,WZD1RETIDEL30S: J红绿灯延时DEL25S:JNB TF0QEL25S ;查询50ms到否CLR TFOMOV TH0,#3CH ;恢复T0定时初值50msMOV TL0,#0B0HDJNZ R2,DEL25S ;判断1s到否?未到继续状态MOV R2,#20 ;置50ms计数初值DJNZ R4,DEL25S ;状态1维持25s取数延时DEL5S:5MOV R2,#6DEL5:MOV A,R2ACALLST ;取数MOV P0,A ;实现数码管显示ACALL DEL1S ;每隔1S减1DJNZ R2,DEL5RETDEL3S:MOV R2,#4HDEL3:MOV A,R2ACALL ST ;取数MOV P2,AMOV P0,A ;数码管显示ACALL DEL1SDJNZ R2,DEL3RETDEL55S:ACALL DEL20SMOV R2,#6 ;倒计时5S DEL55:ACALL DEL1SMOV A,R2ACALLSTMOV P2,A ;数码管显示DJNZ R2QEL55RETDEL1S: ;1S 延时子程序MOV R5,#0BHST1:MOV R6,#0DAH下载可编辑ST2:MOV R7,#0CFHDJNZ R7,$DJNZ R6,ST2DJNZ R5,ST1RETDEL20S: ;20S延时子程序MOV R5,#0BH;#0DCHST3:MOV R6,#0DAHST4:MOV R7,#0CFHDJNZ R7,$DJNZ R6,ST4DJNZ R5,ST3RETST: ;取数MOV DPTR,#TABMOVC A,@A+DPTRRETTAB:DB 0FFH,0FFH,0F9H,0A4H,0B0H,99H,92HEnd.专业.整理.。
C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。
在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。
本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。
这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。
正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。
2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。
3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。
4. 循环延时的优点是简单易用,适用于较短的延时时间。
5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。
二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。
2. 配置定时器的工作模式,如工作方式、定时器精度等。
3. 设置定时器的初值和重装值,控制定时器中断的触发时间。
4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。
5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。
三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。
2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。
3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。
4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。
5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。
四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。
2. 配置计时器的工作模式,如工作方式、计时器精度等。
3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。
4. 根据计时器的计数值进行延时的判断和计数。
5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。
8051单片机指令

8051单片机指令8051单片机是一种经典的微控制器,使用广泛,特别适用于嵌入式系统开发。
在实际的编程过程中,了解并掌握8051单片机的指令集是非常重要的。
本文将介绍一些常用的8051单片机指令,帮助读者更好地理解和应用这些指令。
一、MOV指令MOV指令是8051单片机中最常用的指令之一,用于将数据从一个寄存器移动到另一个寄存器。
例如,MOV A, B表示将B寄存器的值移动到A寄存器中。
这个指令非常简单直观,容易理解和使用。
二、ADD指令ADD指令用于将两个数相加,并将结果存储到累加器。
例如,ADD A, B表示将A和B寄存器中的值相加,并将结果存储到A寄存器中。
这个指令非常有用,可以实现简单的数学运算。
三、SUB指令SUB指令用于计算两个数的差值,并将结果存储到累加器。
例如,SUB A, B表示将B寄存器的值从A寄存器的值中减去,并将结果存储到A寄存器中。
这个指令也非常常用,可以实现简单的减法运算。
四、MUL指令MUL指令用于计算两个数的乘积,并将结果存储到累加器和扩展寄存器中。
例如,MUL AB表示将A和B寄存器中的值相乘,并将低8位结果存储到累加器A中,将高8位结果存储到扩展寄存器B中。
这个指令非常有用,可以实现简单的乘法运算。
五、DIV指令DIV指令用于计算两个数的商和余数,并将结果存储到累加器和余数寄存器中。
例如,DIV AB表示将A和B寄存器中的值相除,并将商存储到累加器A中,余数存储到余数寄存器B中。
这个指令非常有用,可以实现简单的除法运算。
六、JMP指令JMP指令用于无条件跳转到指定的地址。
例如,JMP 2000H表示程序跳转到2000H地址处执行。
这个指令非常常用,可以实现程序的控制流跳转。
七、JC指令JC指令用于在进位标志位(Carry Flag)为1时跳转到指定的地址。
例如,JC 3000H表示当进位标志位为1时,程序跳转到3000H地址处执行。
这个指令非常有用,可以实现条件判断和分支跳转。
九齐单片机例程

九齐单片机例程一、九齐单片机简介九齐单片机是一款基于51系列的单片机开发板,采用AT89S52芯片,具有丰富的外设资源和强大的处理能力。
其开发环境为Keil C51,支持C语言编程,使用方便。
二、九齐单片机例程简介九齐单片机例程是一些常用的程序样例,包含了各种基础操作和应用场景,可以帮助初学者快速上手并深入理解单片机编程。
三、LED闪烁程序LED闪烁是最基础的程序之一,在此介绍如何在九齐单片机上实现LED闪烁:1. 确定引脚:将LED连接到P1.0引脚。
2. 配置引脚:将P1.0引脚配置为输出模式。
3. 控制引脚:通过改变P1.0引脚输出电平来控制LED亮灭。
4. 循环控制:利用循环结构让LED周期性地闪烁。
四、数码管显示程序数码管显示是另一个常见的应用场景,在此介绍如何在九齐单片机上实现数码管显示:1. 确定引脚:将数码管连接到P0口。
2. 配置引脚:将P0口配置为输出模式。
3. 控制引脚:通过改变P0口输出电平来控制数码管的显示。
4. 数字转换:将要显示的数字转换为对应的7段数码管编码。
5. 显示循环:利用循环结构让多个数码管周期性地显示不同的数字。
五、定时器中断程序定时器中断是九齐单片机中比较重要的一个功能,可以实现一些定时任务。
在此介绍如何在九齐单片机上实现定时器中断:1. 配置定时器:使用TMOD寄存器配置定时器模式和计数方式。
2. 设置计数值:使用THx和TLx寄存器设置计数值,决定了定时时间长度。
3. 开启中断:使用IE寄存器开启相应的中断,如ET0表示开启T0计时器中断。
4. 中断服务程序:编写相应的中断服务程序,在时间到达时执行相应操作。
六、串口通信程序串口通信是单片机与外部设备进行数据传输的重要方式之一,在此介绍如何在九齐单片机上实现串口通信:1. 配置串口:使用SCON寄存器配置波特率、数据位、停止位等参数。
2. 中断控制:使用IE寄存器开启串口中断,使用ES和EA寄存器分别开启串口接收和总中断。
单片机常用c代码

单片机常用c代码在单片机领域,C语言是最常用的编程语言之一。
它具有简单易学、灵活高效的特点,被广泛应用于单片机系统的开发中。
本文将介绍一些常用的单片机C代码,为读者提供参考和学习的资源。
一、IO口控制单片机的IO口是与外部设备连接的重要接口,通过控制IO口的高低电平来实现与外部设备的通信。
以下是常见的IO口控制代码示例:1. 设置IO口为输出模式:```c#define LED_PIN 0 // 指定IO口引脚号void setup() {pinMode(LED_PIN, OUTPUT); // 设置IO口为输出模式}void loop() {digitalWrite(LED_PIN, HIGH); // 设置IO口为高电平delay(1000); // 延迟1秒digitalWrite(LED_PIN, LOW); // 设置IO口为低电平delay(1000); // 延迟1秒```2. 设置IO口为输入模式:```c#define BUTTON_PIN 1 // 指定IO口引脚号void setup() {pinMode(BUTTON_PIN, INPUT); // 设置IO口为输入模式}void loop() {if (digitalRead(BUTTON_PIN) == HIGH) { // 判断IO口电平是否为高电平// 执行相应操作}}```二、定时器控制定时器是单片机中的重要组件,可用于实现精确的时间控制和周期性任务。
以下是常见的定时器控制代码示例:1. 设置定时器计数器和预分频值:void setup() {TCCR1B = (1 << CS12) | (1 << CS10); // 设置定时器1的预分频为1024}void loop() {// 执行相应操作}```2. 设置定时器中断服务程序:```cISR(TIMER1_COMPA_vect) {// 定时器1比较匹配中断服务程序}void setup() {TCCR1B = (1 << WGM12) | (1 << CS12) | (1 << CS10); // 设置定时器1的CTC模式和预分频为1024OCR1A = 15624; // 设置定时器1的比较匹配值,实现1秒中断一次TIMSK1 = (1 << OCIE1A); // 允许定时器1比较匹配中断}void loop() {// 执行相应操作}```三、串口通信串口通信是单片机与计算机或其他外部设备进行数据交互的常用方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机复习程序1、从左到右的流水灯/* 名称:从左到右的流水灯说明:接在P0 口的8 个LED从左到右循环依次点亮,产生走马灯效果*/#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned int//延时void DelayMS(uint x){uchar i;while(x--){for(i=0;i<120;i++);}}//主程序void main(){P0=0xfe;while(1){P0=_crol_(P0,1); //P0 的值向左循环移动DelayMS(150);}}2、交通灯/* 名称:LED 模拟交通灯说明:东西向绿灯亮若干秒,黄灯闪烁5 次后红灯亮,红灯亮后,南北向由红灯变为绿灯,若干秒后南北向黄灯闪烁5 此后变红灯,东西向变绿灯,如此重复。
*/#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit RED_A=P0^0; //东西向灯sbit YELLOW_A=P0^1;sbit GREEN_A=P0^2;sbit RED_B=P0^3; //南北向灯sbit YELLOW_B=P0^4;sbit GREEN_B=P0^5;uchar Flash_Count=0,Operation_Type=1; //闪烁次数,操作类型变量//延时void DelayMS(uint x){uchar i;while(x--) for(i=0;i<120;i++);}//交通灯切换void Traffic_Light(){switch(Operation_Type){case 1: //东西向绿灯与南北向红灯亮RED_A=1;YELLOW_A=1;GREEN_A=0;RED_B=0;YELLOW_B=1;GREEN_B=1;DelayMS(2000);Operation_Type=2;break;case 2: //东西向黄灯闪烁,绿灯关闭DelayMS(300);YELLOW_A=~YELLOW_A;GREEN_A=1; if(++Flash_Count!=10) return; //闪烁5 次Flash_Count=0;Operation_Type=3;break;case 3: //东西向红灯,南北向绿灯亮RED_A=0;YELLOW_A=1;GREEN_A=1; RED_B=1;YELLOW_B=1;GREEN_B=0; DelayMS(2000);Operation_Type=4;break;case 4: //南北向黄灯闪烁5 次DelayMS(300);YELLOW_B=~YELLOW_B;GREEN_B=1; if(++Flash_Count!=10) return;Flash_Count=0;Operation_Type=1;}}//主程序void main(){while(1) Traffic_Light();}3、定时器控制交通指示灯/* 名称:定时器控制交通指示灯说明:东西向绿灯亮5s 后,黄灯闪烁,闪烁5 次亮红灯,红灯亮后,南北向由红灯变成绿灯,5s 后南北向黄灯闪烁,闪烁5 次后亮红灯,东西向绿灯亮,如此往复。
*/#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit RED_A=P0^0; //东西向指示灯sbit YELLOW_A=P0^1;sbit GREEN_A=P0^2;sbit RED_B=P0^3; //南北向指示灯sbit YELLOW_B=P0^4;sbit GREEN_B=P0^5;//延时倍数,闪烁次数,操作类型变量uchar Time_Count=0,Flash_Count=0,Operation_Type=1; //定时器0 中断函数void T0_INT() interrupt 1{TL0=-50000/256;TH0=-50000%256;switch(Operation_Type){case 1: //东西向绿灯与南北向红灯亮5sRED_A=0;YELLOW_A=0;GREEN_A=1;RED_B=1;YELLOW_B=0;GREEN_B=0;if(++Time_Count!=100) return; //5s(100*50ms)切换Time_Count=0;Operation_Type=2;break;case 2: //东西向黄灯开始闪烁,绿灯关闭if(++Time_Count!=8) return;Time_Count=0;YELLOW_A=~YELLOW_A;GREEN_A=0;if(++Flash_Count!=10) return; //闪烁Flash_Count=0;Operation_Type=3;break;case 3: //东西向红灯与南北向绿灯亮5sRED_A=1;YELLOW_A=0;GREEN_A=0;RED_B=0;YELLOW_B=0;GREEN_B=1;if(++Time_Count!=100) return; //5s(100*50ms)切换Time_Count=0;Operation_Type=4;break;case 4: //南北向黄灯开始闪烁,绿灯关闭if(++Time_Count!=8) return;Time_Count=0;YELLOW_B=~YELLOW_B;GREEN_A=0;if(++Flash_Count!=10) return; //闪烁Flash_Count=0;Operation_Type=1;break;}}//主程序void main(){TMOD=0x01; //T0 方式1IE=0x82;TR0=1;while(1);}4、单只数码管循环显示0~9/* 名称:单只数码管循环显示0~9说明:主程序中的循环语句反复将0~9 的段码送至P0 口,使数字0~9 循环显示*/#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intuchar code DSY_CODE[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x 80,0x90,0xff};//延时void DelayMS(uint x){uchar t;while(x--) for(t=0;t<120;t++);}//主程序void main(){uchar i=0;P0=0x00;while(1){P0=~DSY_CODE[i];i=(i+1)%10;DelayMS(300);}}5、8只数码管动态显示多个不同字符/* 名称:8 只数码管动态显示多个不同字符说明:数码管动态扫描显示0~7。
*/#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intuchar code DSY_CODE[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x 80,0x90};//延时void DelayMS(uint x){uchar t;while(x--) for(t=0;t<120;t++);}//主程序void main(){uchar i,wei=0x80;while(1){for(i=0;i<8;i++){P0=0xff;P0=DSY_CODE[i]; //发送段码wei=_crol_(wei,1);P2=wei; //发送位码DelayMS(2);}}}6、K1-K4 按键状态显示/* 名称:K1-K4 按键状态显示说明:K1、K2 按下时LED 点亮,松开时熄灭,K3、K4 按下并释放时LED 点亮,再次按下并释放时熄灭;*/#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit LED1=P0^0;sbit LED2=P0^1;sbit LED3=P0^2;sbit LED4=P0^3;sbit K1=P1^0;sbit K2=P1^1;sbit K3=P1^2;sbit K4=P1^3;//延时void DelayMS(uint x){uchar i;while(x--) for(i=0;i<120;i++); }//延时void DelayMS(uint x){uchar i;while(x--) for(i=0;i<120;i++); }//主程序void main(){P0=0xff;P1=0xff;while(1){LED1=K1;LED2=K2;if(K3==0){while(K3==0);LED3=~LED3;}if(K4==0){while(K4==0);LED4=~LED4;}DelayMS(10);}}7、INT0 中断计数/* 名称:INT0 中断计数说明:每次按下计数键时触发INT0 中断,中断程序累加计数,计数值显示在 3 只数码管上,按下清零键时数码管清零*/#include<reg51.h>#define uchar unsigned char#define uint unsigned int//0~9 的段码uchar code DSY_CODE[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x 7f,0x6f,0x00};//计数值分解后各个待显示的数位uchar DSY_Buffer[]={0,0,0};uchar Count=0;sbit Clear_Key=P3^6;//数码管上显示计数值void Show_Count_ON_DSY(){DSY_Buffer[2]=Count/100; //获取3 个数DSY_Buffer[1]=Count%100/10;DSY_Buffer[0]=Count%10;DSY_Buffer[1]=Count%100/10;DSY_Buffer[0]=Count%10;if(DSY_Buffer[2]==0) //高位为0 时不显示{DSY_Buffer[2]=0x0a;if(DSY_Buffer[1]==0) //高位为0,若第二位为0 同样不显示DSY_Buffer[1]=0x0a;}P0=DSY_CODE[DSY_Buffer[0]];P1=DSY_CODE[DSY_Buffer[1]]; P2=DSY_CODE[DSY_Buffer[2]]; }//主程序void main(){P0=0x00;P1=0x00;P2=0x00;IE=0x81; //允许INT0 中断IT0=1; //下降沿触发while(1){if(Clear_Key==0) Count=0; //清0 Show_Count_ON_DSY();}}//INT0 中断函数void EX_INT0() interrupt 0{Count++; //计数值递增}8、10s 的秒表* 名称:10s 的秒表说明:首次按键计时开始,再次按键暂停,第三次按键清零。