抑制载波的双边带调制与解调

合集下载

双边带抑制载波调幅与解调实验

双边带抑制载波调幅与解调实验

实验类型:□验证□综合□设计□创新实验日期: 实验成绩:___实验名称实验二双边带抑制载波调幅与解调实验(DSB-SC AM)指导教师实验目得1、掌握双边带抑制载波调幅与解调得原理及实现方法.2、掌握相干解调法原理。

3、了解DSB调幅信号得频谱特性。

4、了解抑制载波双边带调幅得优缺点。

仪器设备与耗材1、信号源模块2、模拟调制模块3、模拟解调模块4、20M双踪示波器实验基本原理1、DSB调幅典型波形与频谱如图1所示:图1DSB信号得波形与频谱实验中采用如下框图实现DSB调幅。

图2DSB调幅实验框图由信号源模块提供不含直流分量得2K正弦基波信号与384K正弦载波信号sinwct经乘法器相乘,调制深度可由“调制深度调节”旋转电位器调整,得到DSB调幅信号输出.2、相干解调法实验中采用如下框图实现相干解调法解调DSB信号:调幅输入相乘输出解调输出图3 DSB解调实验框图(相干解调法)实验步骤与实验记录实验步骤:1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧得交流开关,再分别按下三个模块中得电源开关,对应得发光二极管灯亮,三个模块均开始工作。

(注意,此处只就是验证通电就是否成功,在实验中均就是先连线,后打开电源做实验,不要带电连线)3、DSB调幅(1)信号源模块“2K正弦基波”测试点,调节“2K调幅”旋转电位器,使其输出信号峰峰值为1V左右;“384K正弦载波”测试点,调节“384K调幅"旋转电位器,使其输出信号峰峰值为3、6V左右。

(2)实验连线如下:信号源模块ﻩ--—-———-—-模拟调制模块“相乘调幅1”2K正弦基波--—--——--—基波输入384K正弦载波—----—--载波输入(3)调节“调制深度调节1”、旋转电位器,用示波器观测“调幅输出”测试点信号波形。

这里也可采用“相乘调幅2”电路完成同样过程。

4、DSB解调(相干解调法)(1)实验连线如下:模拟调制模块--------—---模拟解调模块“相干解调法”载波输入---—---—-—-—-—--载波输入调幅输出--———--—---——-—-调幅输入(2)调节“解调深度调节”旋转电位器’观测“相乘输出”与“解调输出”测试点波形,并对比模拟信号还原得效果。

抑制载波双边带调幅(DSB-SC)和解调的实现精选全文完整版

抑制载波双边带调幅(DSB-SC)和解调的实现精选全文完整版

可编辑修改精选全文完整版抑制载波双边带调幅(DSB-SC)和解调的实现一、设计目的和意义本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。

在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。

因此这种信号在许多信道中均是不适宜直接进行传输的。

在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。

而在接收端则需要解调过程,以恢复原来有用的信号。

调制解调过程常常决定了一个通信系统的性能。

随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。

同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。

二、设计原理(1):调制与解调的MATLAB实现:调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

振幅调制是一种实用很广的连续波调制方式。

调幅信号X(t)主要有调制信号和载波信号组成。

调幅器原理如图1所示:其中载波信号C(t)用于搭载有用信号,其频率较高。

幅度调制信号g(t)含有有用信息,频率较低。

运用MATLAB 信号g(t)处理工具箱的有关函数可以对信号进行调制。

对于信号x(t),通信系统就可以有效而可靠的传输了。

在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。

解调器原理如图2所示:对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB的相关函数实现。

(2):频谱分析 当调制信号f(t)为确定信号时,已调信号的频谱为()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示:图3 双边带调幅频谱抑制载波的双边带调幅虽然节省了载波功率,但已调西那的频带宽度仍为调制信号的两倍,与常规双边带调幅时相同。

dsb调制解调实验报告

dsb调制解调实验报告

dsb调制解调实验报告DSB 调制解调实验报告一、实验目的本次 DSB 调制解调实验的目的在于深入理解双边带调制(DSB)和解调的原理,通过实际操作和观察实验现象,掌握 DSB 调制与解调的基本方法和技术,分析其性能特点,并对相关理论知识进行验证和巩固。

二、实验原理(一)DSB 调制原理DSB 调制是一种抑制载波的双边带调制方式。

在调制过程中,将调制信号与载波信号相乘,得到已调信号。

其数学表达式为:\s_{DSB}(t) = m(t) \cdot c(t)\其中,\(m(t)\)为调制信号,\(c(t) = A \cos(\omega_c t)\)为载波信号,\(A\)为载波幅度,\(\omega_c\)为载波角频率。

(二)DSB 解调原理DSB 信号的解调通常采用相干解调法。

在接收端,将已调信号与同频同相的本地载波相乘,然后通过低通滤波器滤除高频分量,即可恢复出原始调制信号。

其数学表达式为:\r(t) = s_{DSB}(t) \cdot c(t)\\r(t) = m(t) \cdot c^2(t) =\frac{1}{2} m(t) +\frac{1}{2} m(t) \cos(2\omega_c t)\经过低通滤波器后,高频分量被滤除,得到解调后的信号:\m_d(t) =\frac{1}{2} m(t)\三、实验仪器与设备本次实验所使用的仪器和设备包括:1、函数信号发生器:用于产生调制信号和载波信号。

2、示波器:用于观察调制信号、已调信号和解调信号的波形。

3、乘法器:实现信号的相乘,完成调制和解调过程。

4、低通滤波器:滤除解调后的高频分量。

四、实验步骤1、按照实验电路图连接好各仪器设备,确保连接正确无误。

2、打开函数信号发生器,设置调制信号的频率、幅度和波形。

3、同样在函数信号发生器中设置载波信号的频率和幅度。

4、将调制信号和载波信号输入乘法器进行调制,在示波器上观察已调信号的波形。

5、将已调信号与同频同相的本地载波信号输入乘法器进行解调。

抑制载波的双边带调制与解调

抑制载波的双边带调制与解调

02.DSB信号的解调
DSB信号只能采用相干解调。乘法器输出为: sDSB (t) x sp(t) LPF mo (t)
sp (t) sDSB (t) cosct m(t) cos2 ct
1 2
m(t)
1 2
m(t)
cos
2ct
cosct
经低通滤波器滤除高次项,得
mo (t)
1 2
m图(t)3- 4
0
cosct
0
sDSB (t)
0
t
t
t
载波反向点
M ( ) 1
H
0 H
SDSB ( ) 1/2
2 H
c
0
c
讨论:●DSB信号不能进行包络检波,只能相干解调; ●除不含载频分量离散谱外,DSB信号频谱同于AM(由上下对称
的两个边带组成)--DSB信号是不带载波的双边带信号;
●它的带宽为基带信号带宽的两倍: BDSB BAM 2Bm 2 f H
通信技术专业教学资源库 南京信息职业技术学院
《现代通信技术》课程
抑制载波的双边 带调制与解调
主讲: 朱国巍
目录
01 DSB信号的表达式、频谱及带宽
02
DSB信号的解调
03
小结
01.DSB信号的表达式、频谱及带宽
条件(在一般模型的基础上):
滤波器为全通网络:H()=K(=1);
调制信号:无直流分量,依然 m(t) 0
m(t )
×
sm (t)
h(t)
cos c t
图 幅度调制器的一般模型
(1)模型
m(t)
×
sDSB (t)
cosct
DSB调制器模型

【精品】1.双边带抑制载波调幅- 通信原理实验报告

【精品】1.双边带抑制载波调幅- 通信原理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1、掌握抑制载波双边带调幅与解调的原理及实现方法。

2、掌握用MATLAB 仿真软件观察抑制载波双边带的调幅与解调。

二、实验内容1、观察双边带调幅的波形。

2、观察双边带调幅波形的频谱。

3、观察双边带解调的波形。

三、实验仪器装有MATLAB 软件的计算机一台四、实验原理 1、双边带调幅c c其中:()m t 为基带信号,cos 2c c A f t π为载波,()DSB S t 调制信号。

在常规双边带调幅时,由于已调波中含有不携带信息的载波分量,故调制效率较低。

为了提高调制效率,在常规调幅的根底上抑制掉载波分量,使总功率全部包含在双边带中。

这种调制方式称为抑制载波双边带调制,简称双边带cos 2c f t π调制(DSB AM)。

双边带调制信号的时域表达式:()DSB S t = ()m t cos 2c c A f t π=c A ()m t 双边带调制信号的频域表达式:()DSB S f =1[()()]2c c c A M f f M f f ++-实现双边带调制就是完成调制信号与载波信号的相乘运算。

原那么上,可以选用很多种非线性器件或时变参量电路来实现乘法器的功能,如平衡调制器或环形调制器。

双边带调制节省了载波功率,提高了调制效率,但已调信号的带宽仍与调幅信号一样,是基带信号带宽的两倍。

如果输入的基带信号没有直流分量,那么得到的输出信号便是无载波分量的双边带信号。

双边带调制实质上就是基带信号直接与载波相乘。

2、双边带解调cos 2c f t π其中:()r t 为接受到的信号,cos 2c f t π为恢复载波,0()y t 为输出。

假设调制信号在信道中传输无能量损失,即:()()DSB r t S t =双边带解调只能采用相干解调,把已调信号乘上一个与调制器同频同相的载波,将已调信号的频谱搬回到原点位置,时域表达式为:1()cos 2()cos 2cos 2=(t)(1cos 4)2c c c c c c r t f t A m t f t f t A m f t π=ππ+π其中:()()DSB r t S t =然后通过低通滤波器,滤除高频分量,使得无失真地恢复出原始调制信号01()(t)2c y t A m =五、实验程序及结果1、信号()()200m t sinc t =⨯,画出其幅频特性图。

抑制载波双边带调幅

抑制载波双边带调幅

抑制载波双边带调幅(DSB-SC)和解调的实现一、设计目的和意义本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。

在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。

因此这种信号在许多信道中均是不适宜直接进行传输的。

在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。

而在接收端则需要解调过程,以恢复原来有用的信号。

调制解调过程常常决定了一个通信系统的性能。

随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。

同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。

二、设计原理(1):调制与解调的MATLAB实现:调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

振幅调制是一种实用很广的连续波调制方式。

调幅信号X(t)主要有调制信号和载波信号组成。

调幅器原理如图1所示:其中载波信号C(t)用于搭载有用信号,其频率较高。

幅度调制信号g(t)含有有用信息,频率较低。

运用MATLAB信号g(t)处理工具箱的有关函数可以对信号进行调制。

对于信号x(t),通信系统就可以有效而可靠的传输了。

在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。

解调器原理如图2所示:对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB 的相关函数实现。

(2):频谱分析当调制信号f(t)为确定信号时,已调信号的频谱为()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示:图3 双边带调幅频谱抑制载波的双边带调幅虽然节省了载波功率,但已调西那的频带宽度仍为调制信号的两倍,与常规双边带调幅时相同。

DSB抑制载波双边带幅度调制、相干解调系统的MATLAB实现

DSB抑制载波双边带幅度调制、相干解调系统的MATLAB实现

抑制载波双边带幅度调制、相干解调系统的MATLAB实现目录一、作业要求 (1)二、DSB-SC原理描述 (1)三、DSB-SC实现框图 (2)四、MATLAB程序及注释 (3)五、仿真结果 (11)一、作业要求用MATLAB程序开发设计抑制载波双边带幅度调制、相干解调系统。

系统参数如下:信源为频率为3K、幅度为1的正弦信号,载波频率为信源频率的30倍。

要求有如下输出和显示:(1)调制前后的信号波形、信号频谱;(2)在信道输入信噪比分别为0dB和10dB两种情况下,解调器的输入和输出波形各有何不同;(3)绘出输入信噪比与输出信噪比之间的关系(不能直接使用制度增益的公式来绘制)。

二、DSB-SC原理描述所谓线性调制是指信号的频谱为调制信号(即基带信号)频谱的线性平移及变换,而非线性调制时已调信号与输入调制信号之间不存在这种对应关系,已调信号频谱中将出现与调制信号无线性关系的分量。

在常规双边带调幅(DSB )时,由于已调波中含有不携带信息的载波分量,故调制效率较低。

为了提高调制效率,在常规调幅的基础上抑制掉载波分量,使总功率全部包含在双边带中。

这种调制方式称为抑制载波双边带调制 (DSB-SC)。

在抑制载波双边带调幅(DSB-SC )中,实现双边带调制就是完成调制信号与载波信号的相乘运算,输出已调信号时域表达式为:()()()=DSB c S t f t cos w t其中f(t)为调制信号,可确切知道也可以为随机信号,通常认为平均值为0。

ωc 为载波频率。

双边带解调只能采用相干解调,把已调信号乘上一个与调制器同频同相的载波,将已调信号的频谱搬回到原点位置,时域表达式为:21()()()()(12)2==+DSB c c c S t cos w t f t cos w t f t cos w t 然后通过低通滤波器,滤除高频分量,使得无失真地恢复出原始调制信号。

三、DSB-SC 实现框图DSB_SC 信号的产生:f(t)cos(wt)S(t)DSB_SC信号的解调:四、MATLAB程序及注释clc;clear;tic;fm=3*10^3;%pre modulation freqfc=30*fm;%carrier freqfs=2*2^10*fc;%sampling freqT=1/fs;%sampling intervalL=256*2^10;%length of signalt=(0:L-1)*T;%time vectorft=sin(2*pi*fm*t);%pre-modulation signalplot(t,ft);title('premodulation signal');xlabel('t/s');ylabel('f(t)');saveas(gcf,'premodulation signal.bmp','bmp');s_dsb=ft.*cos(2*pi*fc*t);%modulated signalplot(t,s_dsb);title('modulated signal');xlabel('t/s');ylabel('dsb(t)');saveas(gcf,'modulated signal.bmp','bmp');NFFT=2^nextpow2(L);fw_ft=fft(ft,NFFT)/NFFT*2;%show reality ampltitudef=fs/NFFT*(0:1:NFFT-1);abs_fw_ft=abs(fw_ft);plot(f(1:NFFT/2),abs_fw_ft(1:NFFT/2));saveas(gcf,'premodulation signal spectrum.bmp','bmp');plot(f(1:ceil(10*fm*L*T)),abs_fw_ft(1:ceil(10*fm*L*T)));%better effectfw_dsb=fft(s_dsb,NFFT)/NFFT*2;abs_fw_dsb=abs(fw_dsb);plot(f(1:NFFT/2),abs_fw_dsb(1:NFFT/2));saveas(gcf,'modulated signal spectrum.bmp','bmp');plot(f(1:ceil(2*fc*L*T)),abs_fw_dsb(1:ceil(2*fc*L*T)));%better effect%--------------------------------------q2dsb_n0=awgn(s_dsb,0);%add noiseplot(t,dsb_n0);dsb_n10=awgn(s_dsb,10);plot(t,dsb_n10);fw_dsb_n0=fft(dsb_n0,NFFT);%fftabs_fw_dsb_n0=abs(fw_dsb_n0);plot(f(1:NFFT/2),abs_fw_dsb_n0(1:NFFT/2));fw_dsb_n10=fft(dsb_n10,NFFT);abs_fw_dsb_n10=abs(fw_dsb_n10);plot(f(1:NFFT/2),abs_fw_dsb_n10(1:NFFT/2));[max_n0,locat_n0]=max(abs_fw_dsb_n0(1:NFFT/2));%bpf_n0w_bpf=11;%适当的取带通滤波器的带宽,会影响最后的制度增益abs_fw_dsb_n0(:,1:(locat_n0-w_bpf))=0;abs_fw_dsb_n0(:,(locat_n0+w_bpf):NFFT-locat_n0-w_bpf)=0;abs_fw_dsb_n0(:,NFFT-locat_n0+w_bpf:NFFT)=0;fw_dsb_n0(:,1:(locat_n0-w_bpf))=0;fw_dsb_n0(:,(locat_n0+w_bpf):NFFT-locat_n0-w_bpf)=0;fw_dsb_n0(:,NFFT-locat_n0+w_bpf:NFFT)=0;[max_n10,locat_n10]=max(abs_fw_dsb_n10(1:NFFT/2));%bpf_n10 %w_bpf=5;abs_fw_dsb_n10(:,1:(locat_n10-w_bpf))=0;abs_fw_dsb_n10(:,(locat_n10+w_bpf):NFFT-locat_n10-w_bpf)=0; abs_fw_dsb_n10(:,NFFT-locat_n10+w_bpf:NFFT)=0;fw_dsb_n10(:,1:(locat_n10-w_bpf))=0;fw_dsb_n10(:,(locat_n10+w_bpf):NFFT-locat_n10-w_bpf)=0;fw_dsb_n10(:,NFFT-locat_n10+w_bpf:NFFT)=0;% tic;%bpf1 %slow time wasting,no loop% for i=1:size(fw_dsb_n0,2)% max_abs_fw_n0=max(abs_fw_dsb_n0);% if abs_fw_dsb_n0(i)<0.1*max_abs_fw_n0% fw_dsb_n0(i)=0;% abs_fw_dsb_n0(i)=0;% end% end% toc;% tic;%bpf2% for i=1:size(fw_dsb_n10,2)% max_abs_fw_n10=max(abs_fw_dsb_n10);% if abs_fw_dsb_n10(i)<0.1*max_abs_fw_n10% fw_dsb_n10(i)=0;% abs_fw_dsb_n10(i)=0;% end% end% toc;fti_n0=ifft(fw_dsb_n0);%input signalfti_n10=ifft(fw_dsb_n10);fti_n0=real(fti_n0);fti_n10=real(fti_n10);plot(t,fti_n0);plot(t,fti_n10);dsb_n0_temp=fti_n0.*cos(2*pi*fc*t);fw_dsbi_n0=fft(dsb_n0_temp,NFFT);fw_dsbi_n0(:,ceil((1.5*fm)*L*T):NFFT-ceil((1.5*fm)*L*T))=0;%lpf %适当的取低通滤波器的带宽,会影响最后的制度增益abs_fw_dsbi_n0=abs(fw_dsbi_n0);plot(f(1:NFFT/2),abs_fw_dsbi_n0(1:NFFT/2));fto_n0=ifft(fw_dsbi_n0);%output signalfto_n0=real(fto_n0);plot(t,fto_n0);dsb_n10_temp=fti_n10.*cos(2*pi*fc*t);fw_dsbi_n10=fft(dsb_n10_temp,NFFT);fw_dsbi_n10(:,ceil((1.5*fm)*L*T):NFFT-ceil((1.5*fm)*L*T))=0;%lpf abs_fw_dsbi_n10=abs(fw_dsbi_n10);plot(f(1:NFFT/2),abs_fw_dsbi_n10(1:NFFT/2));fto_n10=ifft(fw_dsbi_n10);%output signalfto_n10=real(fto_n10);plot(t,fto_n10);plot(t,fto_n10-fto_n0);%difference btw n10&n0%------------------------------------q3sini=zeros(1,201);sono=zeros(1,201);for snr=0:200dsb_n_snr=awgn(s_dsb,snr);%add noiseplot(t,dsb_n_snr);fw_dsb_n_snr=fft(dsb_n_snr,NFFT);%fftabs_fw_dsb_n_snr=abs(fw_dsb_n_snr);plot(f(1:NFFT/2),abs_fw_dsb_n_snr(1:NFFT/2));[max_n_snr,locat_n_snr]=max(abs_fw_dsb_n_snr(1:NFFT/2));%bpf_n _snr%w_bpf=5;abs_fw_dsb_n_snr(:,1:(locat_n_snr-w_bpf))=0;abs_fw_dsb_n_snr(:,(locat_n_snr+w_bpf):NFFT-locat_n_snr-w_bpf)=0; abs_fw_dsb_n_snr(:,NFFT-locat_n_snr+w_bpf:NFFT)=0;fw_dsb_n_snr(:,1:(locat_n_snr-w_bpf))=0;fw_dsb_n_snr(:,(locat_n_snr+w_bpf):NFFT-locat_n_snr-w_bpf)=0;fw_dsb_n_snr(:,NFFT-locat_n_snr+w_bpf:NFFT)=0;fti_n_snr=ifft(fw_dsb_n_snr);%input signalfti_n_snr=real(fti_n_snr);plot(t,fti_n_snr);dsb_n_snr_temp=fti_n_snr.*cos(2*pi*fc*t);fw_dsbi_n_snr=fft(dsb_n_snr_temp,NFFT);fw_dsbi_n_snr(:,ceil((1.5*fm)*L*T):NFFT-ceil((1.5*fm)*L*T))=0;%lpfabs_fw_dsbi_n_snr=abs(fw_dsbi_n_snr);plot(f(1:NFFT/2),abs_fw_dsbi_n_snr(1:NFFT/2));fto_n_snr=ifft(fw_dsbi_n_snr);%output signalfto_n_snr=real(fto_n_snr)*2;%after lpf we acquire ft/2,so we need to *2plot(t,fto_n_snr);sini(1,snr+1)=10*log10(abs(mean(mean(ft(32768:229376).*ft(327 68:229376)))/(mean(mean(fti_n_snr(32768:229376)-ft(32768:229376)).*(fti_n_snr(32768:229376)-ft(32768:229376))))));sono(1,snr+1)=10*log10(abs(mean(mean(ft(32768:229376).*ft(32 768:229376)))/(mean(mean(fto_n_snr(32768:229376)-ft(32768:229376)).*(fto_n_snr(32768:229376)-ft(32768:229376))))));%取不受加窗影响的信号段endsnr_x=0:200;plot(snr_x,sono./sini);toc;% subplot(3,1,1);plot(t(32768:229376),ft(32768:229376));% subplot(3,1,2);plot(t(32768:229376),fti_n_snr(32768:229376)); % subplot(3,1,3);plot(t(32768:229376),fto_n_snr(32768:229376));五、仿真结果在MATLAB仿真中,取系统参数如下:信源为频率为3K、幅度为1的正弦信号,载波频率为信源频率的30倍,即为90K。

抑制载波双边带幅度的调制和解调的实现

抑制载波双边带幅度的调制和解调的实现

河南理工大学万方科技学院毕业设计(论文)毕业设计论文题目抑制载波双边带幅度的调制和解调的实现院(系部)专业名称学生姓名学生学号指导教师摘要我们知道,由各种信号源所产生的基带信号并不能在大多数信道内直接传输,而是需要经过调制之后再送到信道中去.在接收端就必须通过相反的过程,即调制或解调.调制是使信号m(t)控制载波的某一个(或几个)参数,使这个参数按照信号m(t)的规律变化的过程。

载波可以是正弦波或脉冲序列。

在AM信号中载波分量并不携带信息,信息完全由边带传送。

如果将载波抑制,不附加直流分量,既可以得到抑制载波双边带信号,简称双边带信号(DSB)。

而从高频信号中恢复出调制信号的过程又叫做解调.MATLAB软件是美国mathworks公司出品的商业数学软件,用于数学开发,数学可视化,数据分析以及数值计算的高级技术计算语言和交互式环境,它主要包括MATLAB和Simulink两大部分。

本文主要研究了在通信原理中和软件MATLAB中调幅和解调的原理以及为何进行解调的问题。

本文着重研究了抑制载波双边带调幅和解调的问题,并通过运用MATLAB软件进行仿真模拟,加深了对所学通信原理知识的理解,并熟悉了MATLAB软件的运行环境。

关键词:调制、解调、抑制载波双边带、信号、MATLAB、仿真ABSTRACTWe know, generated by various sources of baseband signal and cannot be transmitted directly in most channels, but need to go through the modulation in later sent to the channel. In the receiver must through the opposite process, namely the demodulation or modulation modulation signal are the M (T) and control one (or carrier a few) parameters, make this parameter according to the signals of M (T) process of change. The carrier can be sine wave or pulse sequence. In the AM signal carrier component does not carry information, information completely by the sideband transmission. If the carrier suppression, no additional DC component, which can get double sideband suppressed carrier signal, referred to as the double-sideband signal (DSB). And from the high-frequency signal recovery process of modulation signal demodulation of.MATLAB software is also called the United States of America commercial mathematical software produced by MathWorks company, used in mathematics development, mathematics visualization, data analysis and numerical calculation of senior technical computing language and interactive environment, it mainly includes two parts of MATLAB and Simulink.This paper mainly studied on the principle of amplitude modulation in the MATLAB and software of the communication principle and demodulation and the problem of why the demodulation. This paper focuses on the problem of double sideband suppressed carrier modulation and demodulation, and simulated by using MATLAB software, in order to learn communication theory knowledge, and familiar with the operating environment of MATLAB software.Key words: Modulation, demodulation, bilateral with carrier suppression, signal, MATLAB, simulation目录前言 (1)1 MATLAB软件简介 (2)1.1内容简介 (2)1.2发展环境 (3)1.3编程创造的功能 (3)1.4图形和3D (3)1.5 MATLAB常用基本数学函数 (4)1.6 MATLAB常用三角函数 (5)1.7 MATLAB基本绘图函数 (6)1.8 注解 (6)1.9 什么叫仿真 (6)2信号的介绍 (8)2.1 AM信号 (8)2.2 DSB信号 (9)2.3 SSB信号 (9)3信号的幅度的调制和解调 (11)3.1在通信原理中调制的定义 (11)3.2 通信中按调制方式的分类 (11)3.3通信原理中调幅的定义 (12)3.4 MATLAB中幅度调制的原理 (12)3.4.1 AM调幅原理 (12)3.4.2单边带调幅(SSB)产生原理 (14)3.4.3双边带调幅(DSB)产生原理 (14)3.5 DSB调制系统的抗噪声性能 (14)3.6解调定义 (17)3.7相干解调 (18)3.8非相干解调 (18)3.9相干解调与非相干解调的比较 (19)3.10为什么要调制解调 (20)4 信号的频谱和功率谱密度分析 (21)4.1信号功率谱分析 (21)4.2信号功率谱密度分析 (21)5 设计步骤 (23)5.1 绘制已知信号f(t) (23)5.2 绘制已知信号f(t)的频谱 (23)5.3 绘制载波信号 (23)5.4 绘制已调信号 (24)5.5 绘制已调信号的频谱 (24)5.6 绘制DSB-SC调制信号的功率谱密度 (24)5.7 绘制相干解调后的信号波形 (25)5.8 程序设计 (25)6设计结果及分析 (29)6.1结果如图所示: (29)6.2 结果分析 (29)6.3设计总结 (30)7心得与体会 (32)7.1设计体会 (32)7.2 对设计的建议 (32)致谢 (34)参考文献 (35)附录 (36)前言本设计要求采用matlab或其他相关软件工具实现对信号进行抑制载波双边带幅度的调制和解调,并且绘制相关的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

02.DSB信号的解调
DSB信号只能采用相干解调。乘法器输出为: sDSB (t) x sp(t) LPF mo (t)
sp (t) sDSB (t) cosct m(t) cos2 ct
1 2
m(t)
1 2
m(t)
cos
2ct
cosct
经低通滤波器滤除高次项,得
mo (t)
1 2

m图(t)3- 4








--即无失真地恢复出原始电信号。
可见 DSB调制的好处:节省了载波发射功率,调制效率高;调制电路简单
,仅用一个乘法器就可实现。
DSB调制的缺点:占用频带宽度比较宽,为基带信号的2倍。
如何改进?
03.小结
总结
1.采用相干解调
2. BDSB BAM 2 f H
3.调制效率高为100% 4.应用场合较少
通信技术专业教学资源库 南京信息职业技术学院
谢谢
主讲: 朱国巍
通信技术专业教学资源库 南京信息职业技术学院
《现代通信技术》课程
抑制载波的双边 带调制与解调
主讲: 朱国巍
目录
01 DSB信号的表达式、频谱及带宽
02
DSB信号的解调
03
小结
01.DSB信号的表达式、频谱及带宽
条件(在一般模型的基础上):
滤波器为全通网络:H()=K(=1);
调制信号:无直流分量,依然 m(t) 0
0
cosct
0
sDSB (t)
0
t
t
t
载波反向点
M ( ) 1
H
0 H
SDSB ( ) 1/2
2 H
c
0
c
讨论:●DSB信号不能进行包络检波,只能相干解调; ●除不含载频分量离散谱外,DSB信号频谱同于AM(由上下对称
的两个边带组成)--DSB信号是不带载波的双边带信号;
●它的带宽为基带信号带宽的两倍: BDSB BAM 2Bm 2 f H
m(t )
×
sm (t)
h(t)
cos c t
图 幅度调制器的一般模型
(1)模型
m(t)
×
sDSB (t)
cosct
DSB调制器模型
(2) 表达式
sDSB (t) m(t) cos ct
S DSB()
1 2
[M (
c )
M (
c )]
01.DSB信号的表达式、频谱及带宽
m(t )
(3)波形及频谱
相关文档
最新文档