细胞生物学思考题(含答案)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章细胞概述

1. 举例说明细胞的形态与功能相适应。

答:细胞的形态结构与功能的相关性与一致性是很多细胞的共同特点。如红细胞呈扁圆形的结构,有利于O2和CO2的交换; 高等动物的卵细胞和精细胞不仅在形态、而且在大小方面都是截然不同的,这种不同与它们各自的功能相适应。卵细胞之所以既大又圆,是因为卵细胞受精之后,要为受精卵提供早期发育所需的信息和相应的物质,这样,卵细胞除了带有一套完整的基因组外,还有很多预先合成的mRNA和蛋白质,所以体积就大; 而圆形的表面是便于与精细胞结合。精细胞的形态是既细又长,这也是与它的功能相适应的。精细胞对后代的责任仅是提供一套基因组,所以它显得很轻装; 至于精细胞的细尾巴则是为了运动寻靶,尖尖的头部,是为了更容易将它携带的遗传物质注入卵细胞。

2. 真核细胞的体积一般是原核细胞的1000倍,真核细胞如何解决细胞内重要分子的浓度问题?

答:出现了特化的内膜系统,这样,体积增大了,表面积也大大增加,并使细胞内部结构区室化,一些重要分子的浓度并没有被稀释。

3. 相邻水分子间的关系是靠氢键维系的,这种氢键赋予水分子哪些独特的性质,对于生活细胞有什么重要性?

答:首先,氢键能够吸收较多的热能,将氢键打断需要较高的温度,所以氢键可维持细胞温度的相对稳定。第二是相邻水分子间形成的氢键使水分子具有一定的粘性,这样使水具有较高的表面密度。第三,水分子间的氢键可以提高水的沸点,这样使它不易从细胞中挥发掉。

4. 蛋白质的糖基化对蛋白质的理化性质有哪些影响?

答:①溶解度。糖基化往往使蛋白质在水中的溶解度增大。但是,若糖链增长到一定程度,由于相对分子质量增大和形成高级结构,亦会出现憎水性增加的现象。②电荷。氨基糖解离后,应带正电荷。但是,天然存在的氨基糖的氨基都被N-乙酰基取代,实际上相当于中性糖。许多糖链上有唾液酸,或糖醛酸,解离后带负电荷。所以,糖基化可能使蛋白质增加许多负电荷。

5. 组成蛋白质的基本构件只是20种氨基酸。为什么蛋白质却具有如此广泛的功能?

答:根本原因是蛋白质具有几乎无限的形态结构,因此蛋白质仅仅是一类分子的总称。换句话说,蛋白质之所以有如此广泛的作用,是因为蛋白质具有各种不同的结构,特别是在蛋白质高级结构中具有不同的结构域,而这种不同的空间构型使得蛋白质能够有选择地同其它分子进行相互作用,这就是蛋白质结构决定功能的特异性。正是由于蛋白质具有如此广泛不同特异性才维持了生命的高度有序性和复杂性。

6.为什么解决生命科学的问题不能仅靠分子生物学而要靠细胞生物学?

答:在生命活动中,随着细胞周期的进行和细胞代谢状态的不同,各种反应复合物,包括细胞器乃至整个细胞要不断进行组装和去组装。因此,细胞生命活动的基础是细胞组装活动,而这些组装活动又不能简单地归结于分子水平的活动,这就是为什么不能仅靠分子生物学而要靠细胞生物学解决生命科学问题的缘由。

7.请简述病毒的生活史。

答:病毒的生活史分为5个基本过程:吸附(absorption): 病毒对细胞的感染起始于病毒蛋白外壳同宿主细胞表面特殊的受体结合,受体分子是宿主细胞膜或细胞壁的正常成分。因此,病毒的感染具有特异性。

侵入(penetration): 病毒吸附到宿主细胞表面之后,将它的核酸注入到宿主细胞内。病毒感染细菌时,用酶将细菌的细胞壁穿孔后注入病毒核酸;对动物细胞的感染,则是通过胞吞作用,病毒完全被吞入。

复制(replication): 病毒核酸进入细胞后有两种去向,一是病毒的遗传物质整合到宿主的基因组中,形成溶原性病毒;第二种情况是病毒DNA(或RNA)利用宿主的酶系进行复制和表达。

成熟(maturation): 一旦病毒的基因进行表达就可合成病毒装配所需的外壳蛋白,并将病毒的遗传物质包裹起来,形成成熟的病毒颗粒。

释放(release): 病毒颗粒装配之后,它们就可从被感染的细胞中释放出来进入细胞外,并感染新的细胞。有些病毒释放时要将被感染的细胞裂解,有些则是通过分泌的方式进入到细胞外。

第二章细胞生物学研究方法

1.举例(3~5个)说明研究方法的突破对细胞生物学发展的推动作用。

答:①细胞培养技术,…

②离心分离技术,…

③流式细胞分离技术,…

④基因敲除技术,…

⑤干细胞培养技术,…

⑥……

2.为什么说细胞培养是细胞生物学研究的最基本技术之一?

3.用什么方法追踪活细胞中蛋白质合成与分泌过程?包括哪几个步骤?

答:追踪活细胞中某种蛋白质合成与分泌的过程一般采用同位素示踪技术。其基本步骤是:①将放射性同位素标记的氨基酸(3H-亮氨酸)加到细胞培养基中,在很短时间内使这些与未标记的相应氨基酸化学性质相同的标记分子进入细胞(称为脉冲标记);②除去培养液并洗涤细胞,再换以未标记氨基酸的培养基培养细胞,已进入细胞的标记氨基酸将被蛋白质合成系统作为原料加以利用,掺入到某种新合成的蛋白质中;③每隔一定时间取出一定数量的细胞,利用电镜放射自显影技术探查被

标记的特定蛋白质在不同时间所处的位置。通过比较不同时间细胞取样的电镜照片就可以了解细胞中蛋白质合成及分泌的动态过程。

5.为什么电子显微镜需要真空系统(vacuum system)?

答:由于电子在空气中行进的速度很慢,所以必须由真空系统保持电镜的真空度,否则,空气中的分子会阻挠电子束的发射而不能成像。用两种类型的真空泵串连起来获得电子显微镜镜筒中的真空,当电子显微镜启动时,第一级旋转式真空泵(rotary pump)获得低真空,作为二级泵的预真空;第二级采用油扩散泵(oil diffusion pump)获得高真空。

6.什么是相位和相差?

答:所谓相位是光波在前进时,电振动呈现的交替的波形变化。由于光是电磁波,其电振动与磁振动垂直,又与波的传播方向垂直,导致了传播时波形的变化。同一种光波通过折射率不同的物质时,光的相位就会发生变化,波长和振幅也会发生变化。所谓相差是指两束光波在某一位置时,由于波峰和波谷不一致,即存在着相位上的差异,叫相差。同一种光通过细胞时,由于细胞不同部分的折射率不同,通过细胞的光线比未通过细胞的光线相位落后,而通过细胞核的光线比通过细胞其他部位的相位落后,这就是相位差。

7.与光镜相比,用于电子显微镜的组织固定有什么特殊的要求?

答:比光镜的要求更高。首先是样品要薄,这是因为电子的穿透能力十分有限,即使是100~200kV高压,电子穿透厚度仅为1μm。通常把样品制成50~100nm厚的薄片(一个细胞切成100~200片),称超薄切片(ultrathin section)。其次是要求很好地保持样品的精细结构,特别是在组织固定时要求既要终止细胞生命,又不破坏细胞的结构。第三是要求样品要具有一定的反差。电子显微镜的样品切片最后被放置在载网上而不是玻片上。

8.什么是细胞分选?基本原理是什么?

答:用流式细胞计将特定的细胞分选分选出来的技术,分选前,细胞要被戴上特殊的标记。所用的标记细胞的探针是能够同待分选细胞表面特征性蛋白(抗原)结合的抗体,而这种抗体又能够同某种荧光染料结合。当结合有荧光染料的探针与细胞群温育时,探针就会同具有特异表面抗原的细胞紧紧结合,由于抗体的结合,被结合的细胞带上了荧光标记。细胞被标记之后,除去游离的抗体,并将细胞进行稀释。当稀释的细胞进入超声波振荡器时,极稀的细胞悬浮液形成很小的液滴,一个液滴中只含有一个细胞。液滴一旦形成并通过激光束时,激光束激发结合在细胞表面抗体分子成为一种标签。当液滴逐个通过激光束时,受到两种检测器的检测:如果液滴中含有细胞就会激活干涉检测器(interference detector),只有带有荧光标记细胞的液滴才会激活荧光检测器(fluorescence detector)。当带有荧光标记的液滴通过激光束时,将两种检测器同时激活,引起液滴充电信号使鞘液带上负电荷。由于液滴带有负电荷,移动时就会向正极移动,进入到荧光标记细胞收集器中。如果是含有非荧光标记细胞的液滴进入激光束,只会被干涉检测器检测到,结果使充电信号将液滴的鞘液带上正电荷,从而在移动时偏向负极,被非荧光标记细胞收集器所收集。如果是不含有细胞的液滴进入激光束,则不会被任何检测器所检测,因而不会产生充电信号,液滴的鞘液不会带上任何电荷,所以在移动时不受任何影响直接进入非检测的收集器。

9.什么是细胞培养,应注意哪些问题?

相关文档
最新文档