基于PLC烘干机课程设计
毕业设计:PLC在谷物烘干机自动控制中应用

PLC在谷物烘干机自动控制中应用摘要谷物烘干机是一种自动化程度要求较高的机电设备,应用于农业生产中农作物烘干领域;它通常采用继电器逻辑控制方式,设备的电控系统故障率高,检修周期长。
随着技术的进步,这类控制系统已显示出越来越多的弊端。
近年来,PLC 机在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势,是其它工控产品难以比拟的。
因此在工业控制领域,随着电力电子技术、可编程序控制器与变频技术的发展,以PLC控制为核心的电控技术在各类机械设备中的应用越来越广,它将逐渐取代传统的继电器控制系统,上升为交流电气控制的主流。
PLC作为谷物烘干机的核心控制器,其在工业过程控制中体现了强大功能。
当前,PLC在国际市场上已成为最受欢迎的的工业控制畅销产品。
本篇论文论述可编程控制器PLC对谷物烘干机自动控制:主要介绍谷物烘干机工艺流程,PLC控制系统的设计、梯形图、程序编制等。
关键词:PLC、谷物烘干机、自动控制PLC IN THE DRYER IN THE AUTOMATIC APPLICATIONABSTRACTIn recent years, PLC automatically control the industry and application,it is in control of the performance,the cycle and hardware cost of the aspects of the comprehensive and other industrial control products incomparable.For industrial control,power electronic technology,programmable controller to control the development of the PLC to the core of the electrical control technology in various types of mechanical equipment in the use of more and more widespread, it will gradually replace the traditional relays control system for communication in the mainstream of the electrical control.PLC industry in recent years in the control and wide application in to control the performance, the cycle and hardware cost of the aspects of the comprehensive and other industrialcontrol products incomparable. this thesis deals with PLC programmable controller for the dryer machine is automatically controlled: mainly introduces the dryer process,PLC control system design and the structure, procedures etc.KEY WORDS: PLC, grain drying machine, automatic control目录前言 (1)第1章方案的比较及PLC的发展趋势 (2)1.1谷物烘干机的介绍 (2)1.1.1PLC控制电路的优点 (2)1.1.2 PLC的发展趋势 (4)第2章 PLC简介 (5)2.1 PLC 概述 (5)2.1.1 PLC的基本组成 (5)2.1.2 PLC各部分的作用 (5)第3章谷物烘干机机构及其烘干原理 (10)3.1 干燥工艺与流程 (10)3.2 主要结构与工作原理 (11)3.2.1 谷物烘干机的结构 (11)3.2.2 谷物烘干机的工作原理 (13)第4章谷物烘干机控制系统设计 (15)4.1 控制系统的硬件设计 (15)4.1.1 系统机型选择与配置 (15)4.1.2 定义号分配 (16)4.2 控制系统的软件设计 (18)4.2.1 程序框图 (15)4.2.2 梯形图与程序 (15)结论 (22)谢辞 (23)参考文献 (24)附录 (26)外文资料翻译 (31)前言随着我国农业产业化进程的推进,农业机械化自动化水平不断提高,各种形式谷物烘干机源源不断的推向市场。
基于PLC的谷物烘干机控制系统设计--程序代码-附 录

附录1谷物烘干机PLC控制程序梯形图:2谷物烘干机PLC控制程序语句表:Network 1// 启保停电路LD I0.0O M0.0AN I0.1= M0.0Network 2// 预设温度、含水率值LD M0.0A SM0.1MOVW +14144, VW10MOVW +5156, VW20Network 3// 读入温度,湿度检测信号LD M0.0A SM0.0MOVW AIW0, VW30MOVW AIW2, VW40Network 4// 高温熄火,低温加热控制LD M0.0A SM0.0AW> VW30, VW10= M2.0NOT= M2.1Network 5// 高温熄火复位LD M2.0R Q0.4, 1Network 6// 谷物进入干燥机系统LD I0.2O M0.1AN M2.1AN M1.1= M0.1TON T33, +50Network 7// 提升机、上绞龙启动LD T33= Q0.0Network 8// 检测提升机启动否LD I0.5= M0.2Network 9// 延时5秒(风机启动前)LD M0.2O M0.3AN M1.2= M0.3TON T34, +50Network 10// 风机启动(顺序,手动)LD T34LD M0.0A I0.3OLD= Q0.1Network 11// 检测风机启动否LD I0.5= M0.4Network 12// 延时5秒LD M0.4O M0.5AN M1.3= M0.5TON T35, +50Network 13// 低温加热置位LD T35A M2.1S Q0.4, 1Network 14// 下绞龙启动LD T35= Q0.2Network 15// 高水分循环加热,低水分出仓LD M0.0A SM0.0AW> VW40, VW20= M2.2NOT= M2.3Network 16// 高水分点火,报警LD M2.2AN Q0.3AN Q0.6= Q0.4= Q0.5Network 17// 检测下绞龙启动否,低含水率作排粮准备LD I0.7A M2.3= M0.6Network 18// 延时5秒LD M0.6O M0.7AN M1.4= M0.7TON T36, +50Network 19// 排粮启动LD T36AN Q0.4AN Q0.5= Q0.3Network 20// 正常排粮指示灯LD Q0.3AN Q0.4AN Q0.5= Q0.6Network 21// 定时器复位LD Q0.3 O Q0.6 = M1.1 = M1.2 = M1.3 = M1.4。
PLC控制干燥器的实现

专业方向课程设计题 目 无热再生压缩空气干燥机PLC控制系统设计 学 院 自动化学院专 业 电气工程与自动化专业班 级 07063011学 号 07063040学生姓名 李文志指导教师 吴茂刚 张卫完成日期 2010年9月19日目录一、无热再生干燥器介绍 (2)1、工作原理2、工艺流程3、时序图二、PLC控制系统设计 (5)1、系统电气控制图2、三菱顺序功能法和经验梯形图法编程3、西门子S7-200编程4、 S7-200程序软件模拟三、结论 (14)参考文献一、 无热再生干燥器1、干燥器简介干燥器是通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料的机械设备。
1.1干燥器分类干燥器可按操作过程、操作压力、加热方式湿物料运动方式或结构等不同特征分类。
按操作过程,干燥器分为间歇式(分批操作)和连续式两类;按操作压力,干燥器分为常压干燥器和真空干燥器两类按加热方式,干燥器分为对流式、传导式、辐射式、介电式等类型。
按湿物料的运动方式,干燥器可分为固定床式、搅动式、喷雾式和组合式;按结构,干燥器可分为厢式干燥器、输送机式干燥器、滚筒式干燥器、立式干燥器、机械搅拌式干燥器、回转式干燥器、气流式干燥器、振动式干燥器等多种。
1.2干燥器的未来发展方向干燥器的未来发展将在深入研究干燥机理和物料干燥特性,掌握对不同物料的最优操作条件下,开发和改进干燥器;另外,大型化、高强度、高经济性,以及改进对原料的适应性和产品质量,是干燥器发展的基本趋势;同时进一步研究和开发新型高效和适应特殊要求的干燥器,如组合式干燥器、微波干燥器和远红外干燥器等。
干燥器的发展还要重视节能和能量综合利用,如采用各种联合加热方式,移植热泵和热管技术,开发太阳能干燥器等;还要发展干燥器的自动控制技术、以保证最优操作条件的实现;另外,随着人类对环保的重视,改进干燥器的环境保护措施以减少粉尘和废气的外泄等,也将是需要深入研究的方向。
谷物烘干机PLC课设

目录第一章谷物烘干机原理简介 (1)1.1 工艺过程 (1)1.2 谷物烘干机的设计要求 (1)1.3谷物烘干机工艺流程 (1)第二章 PLC控制系统选型与硬件介绍 (3)2.1 系统机型选择与配置 (3)2.2 电源模块 (4)2.3 底板或机架 (5)2.4 PLC系统的其它设备 (5)2.5 PLC的通信联网 (5)2.6 统机型选择与配置 (6)第三章谷物烘干机PLC的设计 (8)3.1 热风循环自动控制部分的程序流程图的设计 (8)3.2 I/O模块 (9)3.3 电气控制系统原理图 (11)第四章谷物烘干机PLC控制梯图设计 (15)4.1系统梯形图设计 (15)4.2程序的编写。
(17)第五章收获与结论 (18)致谢 (20)参考文献 (21)第一章谷物烘干机原理简介1.1 工艺过程随着农业产业化进程的推进,农业机械化自动化水平不断提高,越来越需要在工业环境较差的环境中能安全运行且对安全性和可靠性要求都较高的设备,这也就使得PLC在其中的应用也不断地增加。
现以谷物烘干机为例,当前各种形式谷物烘干机源源不断地推进市场,要实现它的自动控制,可用传统的电器控制,也可用单片机控制,还可用PLC控制。
本文主要讲解用PLC对燃油循环式谷物烘干机进行介绍,实现谷物烘干全过程,即进粮循环烘干出粮的自动控制。
1.2 谷物烘干机的设计要求循环式烘干也称为批次式烘干,是指谷物的干燥、缓苏全部在机体内循环完成。
为保证谷物的品质,通常每小时降水率在1%以下,谷物需在机体内多次上下提升进行干燥-缓苏循环才能达到所需水份,故称为循环式。
循环式烘干的进出料需单独工作,不能与干燥同时进行。
相同投资的情况下,产量略低。
间接热源有热风炉(燃煤炉、稻壳炉),直接热源有天燃气、优质煤油或柴油、蒸汽。
需室内放置,不可露天作业。
烘干房占地面积约550m2,平面尺寸为15.5m×35.5m,屋脊高12.5m。
钢结构烘干房及设备与周边建筑的防火间距均须12m 以上,与周边围墙的距离均须5m以上。
基于PLC的粮食烘干机系统设计与实现论文

沈阳理工大学应用技术学院题目:基于PLC的粮食烘干机系统设计与实现院系:专业:班级学号:学生姓名:指导教师:成绩:年月日摘要目前,粮食烘干技术在粮食的储存过程中起着至关重要的作用。
由于人工晾晒存在各种人为因素和天气因素的限制,且存在效率低下,烘干效果不达标等问题。
因此,本文介绍了一种基于PLC控制技术,以欧姆龙CPM2A可编程控制器为控制核心,对粮食烘干机的自动控制,即进粮、循环烘干、自动调温、合格粮食出粮的自动控制。
实现粮食的全过程自动烘干。
本文主要有硬件设计部分,软件设计部分,主程序模块,燃烧炉模块等几部分组成。
软件设计在CX-P编程软件上以梯形图编写,主要通过步进控制指令来完成对粮食烘干机各个子过程的控制。
并通过组态王软件模拟了粮食烘干机的自动控制过程。
关键词:PLC;粮食烘干机;自动控制AbstractAt present,grain drying technology plays a vital role in the food storage process. Presence of a variety of human factors and weather factors limit due to the artificial drying, and there is the problem of inefficiency, the drying effect of non-compliance.Therefore, this article describes a PLC-based control technology, Omron CPM2A Programmable controller to control the core grain dryer automatic control, that is, into the grain circulation drying thermostat qualified food Payroll automaticallycontrol. The whole process of achieving food drying.In this paper, a few parts of the hardware design, software design, the main program module, and the burner module.The software is designed to ladder programming software CX-P prepared, mainly through the stepper control instructions to complete control of the various sub-processes of the grain dryer. Kingview software simulation, automatic control of grain drying process.Key words: PLC;grain dryer;automatically control目录绪论 01 系统的主要硬件选择 (1)1.1 控制系统选择 (1)1.1.1 欧姆龙PLC的介绍 (1)1.1.2 PLC的产生与发展 (1)1.1.3 PLC的特点 (2)1.2 粮食烘干机的选择 (3)1.2.1 概述 (3)1.2.2 粮食烘干技术 (4)1.2.3 粮食烘干机的组成 (5)2 自动控制系统设计 (7)2.1 粮食烘干工艺流程 (7)2.2 系统硬件设备 (7)2.2.1 PLC的基本组成 (7)2.2.2 系统机型的选择与配置 (9)2.2.3 定义号的分配 (9)2.3 系统的软件设计 (10)2.3.1 程序框图 (10)2.3.2 梯形图设计 (12)2.3.3 部分语句说明 (14)2 系统的组态模拟 (17)3.1 模拟软件 (17)3.1.1 组态王软件介绍 (17)3.1.2 组态王软件特点 (17)3.1.3 组态王软件的命令语言 (18)3.2 利用组态王软件模拟系统 (18)3.2.1 粮食烘干机过程模拟 (18)3.2.2 燃烧室供油控制过程模拟 (25)结论 (26)致谢 .......................................................................... 错误!未定义书签。
plc生产奶粉的干燥器温度控制系统(1)

课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。
随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生的PLC控制技术所取代。
而PLC本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。
这种温度控制系统对改造传统的继电器控制系统有相当的意义。
干燥器是通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料的机械设备。
干燥的目的是为了物料使用或进一步加工的需要。
在以PLC控制为核心,干燥器为基础的温度自动控制系统中,PLC将干燥器温度设定值与温度传感器的测量值之间的偏差经PID运算后得到的信号控制输出电压的大小,从而调节加热器加热,实现温度自动控制的目的。
文章介绍了基于S7-200温度控制系统的PID调节器的实现。
关键词:PLC 温度控制 PID 调节器 S7-200 温度传感器目录第1章绪论 (4)1.1课题背景 (4)1.2研究的主要内容 (4)第2章课程设计的方案 (5)2.1概述 (5)2.2系统设计思路 (5)2.3系统参数选择 (6)2.4控制方案设计 (6)第3章硬件设计 (8)3.1S7-200PLC选型 (8)3.2温度传感器 (9)3.3模拟PID算法简介 (10)第4章软件设计 (12)4.1控制程序的组成 (12)4.2控制程序设计 (12)第5章系统测试与分析/实验数据与分析 (16)第6章课程设计总结 (18)参考文献 (19)第1章绪论1.1 课题背景随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。
其中,温度是一个非常重要的过程变量。
基于plc烘干机课程设计

前言20 世纪 70 年代,诞生了两种改变整个世界及商业管理模式的计算机。
一类计算机,是由 Richard Morley 在 1972 年发明的,如今称之为可编程逻辑控制器 (PLC) 。
它最初并没有像个人计算机那样得到名称上的广泛认同,但是却给制造业带来了同样意义重大的冲击。
PLC 通常被称为工厂级别的个人计算机。
可编程逻辑控制器(PLC)具有以下鲜明的特点:一、系统构成灵活,扩展容易,以开关量控制为其特长;也能进行连续过程的 PID 回路控制;并能与上位机构成复杂的控制系统,如 DDC 和DCS 等,实现生产过程的综合自动化。
二、使用方便,编程简单,采用简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知识,因此系统开发周期短,现场调试容易。
另外,可在线修改程序,改变控制方案而不拆动硬件。
三、能适应各种恶劣的运行环境,抗干扰能力强,可靠性强,远高于其他各种机型。
本烘干机设计报告基于西门子 STEP 7-MicroWIN V4.0 的 PLC 开发平台,介绍了烘干机的基本原理与设计方法,并给出了程序实现的编程方法与梯形图程序及指令表程序,其目的是通过原理与设计实践结合的方式,深入浅出地介绍 PLC 的课题设计。
目录目录第一章烘干机概述 (1)1.1 控制对象的用途 (1)1.2 基本结构 (1)1.3 控制方法 (1)第 2 章设计任务和设计要求 (2)2.1 电气元件的选择 (2)2.1.1 按钮 (2)2.1.2 旋转开关 (3)2.2 PLC 之 I/O 接线 (3)2.4 烘干机工作的功能顺序 (4)第 3 章确定控制方案 (7)3.1 PLC 控制与传统继电器控制方案 (7)3.2 PLC 控制与单片机控制方案 (8)3.3 PLC 控制方案 (8)3.4 方案确定 (9)第 4 章控制系统的软件设计 ................................................................... 1 14.1 主程序的设计 .............................................................................. 1 14.2 公用子程序的设计 ....................................................................... 1 14.3 手动子程序的设计 (12)4.4 自动子程序的设计 (12)第 5 章控制系统的软件调试 (16)心得体会 (18)参考文献 (19)附录(程序指令表) (20)第一章烘干机概述第一章烘干机概述1.1控制对象的用途先进的热风循环系统使工作室温度分布均匀。
【VIP专享】烘干机PLC课程设计

目录第1章烘干机概述1.1 用途1.2 工作过程1.3 控制要求第2章控制方案论证2.1 继电器控制2.2 单片机控制2.3 可编程序控制第3章控制系统硬件设计3.1 电气元件选择3.2电动机、电气控制线路设计3.3 I/O接线图第4章控制系统软件设计4.1 梯形图的总体结构图设计4.2 手动程序设计4.3 自动程序设计4.4公用程序设计4.5 故障报警和信号显示第5章系统调试第6章心得体会参考文献附录第1章、烘干机概述1.1 用途主要用于干燥物品。
1.2 工作过程烘房内装有电接点温度计TJ,用来检测烘房温度。
当加热器通电时,烘房加热升温;通风机通电时,烘房通风。
当烘房的温度升至需要温度时,电接点温度计的接点闭合;当烘房的温度低于需要温度时,电接点温度计的接点断开。
具体过程如图所示:图1-11.3 控制要求保持温度恒定,当温度低于需要温度时,加热器开始工作,使烘房温度升高,直至到达需要温度,同时通风机间断通风.具体为:通风5min,停止2min,依次循环。
第2章、控制方案论证2.1 继电器控制继电器控制设计出的线路比较复杂,因而电器控制装置的制造周期较长,造价相应较高,维修也不方便。
控制系统完成后,若控制任务发生变化,如某些生产工艺流程的变动,则必须通过改变接线才能实现。
另外,由于接线程序控制系统中器件、接线较多,所以其平均无故障时间较短。
采用继电器控制方案,有如下缺点:不仅继电器本身容易出现误动作,特别是触头氧化及铁芯与衔铁弄脏后的吸力不足,机械运动部件运动不灵活而出现被卡烧坏线圈等故障,给维护过程带来极大不便,甚至会影响正常营运工作,而且势必使硬件接线量大且复杂,进而容易诱发以下问题:①由于接线复杂,需要工程技术人员有足够的耐心,稍有不慎就会出现错误。
②一旦接线出现问题,要查找故障也是一项艰巨的工作,这样我们的工作效率必然受到影响。
③在单机调试时,难免要对其中的线路进行改进,这也给工程技术人员带来很大的麻烦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南工程学院课程设计课程名称电气控制与PLC 课题名称烘干机电气控制系统设计专业班级测控技术与仪器0901班姓名吴志勇学号************指导教师赖指南、刘星平、周向红2012年12月28日湖南工程学院课程设计任务书课程名称电气控制与PLC 课题名称烘干机电气控制系统设计专业班级测控技术与仪器0901班姓名吴志勇学号200901200111指导教师赖指南、刘星平、周向红审批黄峰、汪超、刘星平任务书下达日期2012年12月15日课程设计完成日期2012年12月28日课题: 烘干机电气控制系统设计一. 烘干机概况及控制要求某一烘房,在干燥物品时,除要求温度能自动控制外,还需要间断通风,其主电路如图1所示。
ML1L2L3N K M1K M2F R电源开关通风电动机电热器3~R图1 烘干机主电路图−−−→−−−−→−−−−→−→5min 1min 通风延迟至需要温度通风机启动停止加热升温通风机停止通风机启动通风机停止通风通风停止−−−→−−−−−→−→5min 2min→−−−−→−升温低于需要温度图2 烘干机工作过程示意图烘房内装有电接点温度计TJ ,用来检测烘房温度。
当加热器通电时,烘房加热升温;通风机通电时,烘房通风。
当烘房的温度升至需要温度时,电接点温度计的接点闭合;当烘房的温度低于需要温度时,电接点温度计的接点断开。
当按下启动按钮后,要求烘干机按图2所示的过程循环往复地工作,直至按下停止按钮时为止。
二.设计任务1.设计和绘制电气控制原理图或PC I/O接线图、功能表图和梯形图,编写指令程序清单。
2.选择电气元件,编制电气元件明细表。
3.设计操作面板电器元件布置图。
4.上机调试程序。
5.编写设计说明书。
20世纪70年代,诞生了两种改变整个世界及商业管理模式的计算机。
一类计算机,是由Richard Morley在1972年发明的,如今称之为可编程逻辑控制器(PLC)。
它最初并没有像个人计算机那样得到名称上的广泛认同,但是却给制造业带来了同样意义重大的冲击。
PLC通常被称为工厂级别的个人计算机。
可编程逻辑控制器(PLC)具有以下鲜明的特点:一、系统构成灵活,扩展容易,以开关量控制为其特长;也能进行连续过程的PID回路控制;并能与上位机构成复杂的控制系统,如DDC和DCS等,实现生产过程的综合自动化。
二、使用方便,编程简单,采用简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知识,因此系统开发周期短,现场调试容易。
另外,可在线修改程序,改变控制方案而不拆动硬件。
三、能适应各种恶劣的运行环境,抗干扰能力强,可靠性强,远高于其他各种机型。
本烘干机设计报告基于西门子STEP 7-MicroWIN V4.0的PLC开发平台,介绍了烘干机的基本原理与设计方法,并给出了程序实现的编程方法与梯形图程序及指令表程序,其目的是通过原理与设计实践结合的方式,深入浅出地介绍PLC的课题设计。
全书分为五章,第一章简要地介绍了烘干机的基本概念和组成。
第二章介绍了设计任务和设计要求。
第三章介绍了烘干机的设计顺序功能。
第四章介绍了控制系统的软件设计。
第五章介绍了控制系统的软件调试。
本报告在编写过程中,湖南工程学院的赖指南教授对书稿进行了详尽的审阅,提出了许多宝贵意见。
湖南工程学院电气信息系的老师们和测控0901班同学们对本设计给予了大力支持和帮助。
在此,谨向他们表示最诚挚的谢意。
由于技术发展迅速,应用广泛,限于编者水平,缺点错误在所难免,敬请读者批评指正。
作者2012年12月第1章烘干机概述 (1)1.1 控制对象的用途 (1)1.2基本结构 (1)1.3控制方法 (1)第2章设计任务和设计要求 (2)2.1 电气元件的选择 (2)2.1.1按钮 (2)2.1.2 旋转开关 (3)2.2 PLC之I/O接线 (3)2.4 烘干机工作的功能顺序 (4)第3章确定控制方案 (6)3.1 PLC控制与传统继电器控制方案 (6)3.2 PLC控制与单片机控制方案 (7)3.3 PLC控制方案 (7)3.4 方案确定 (8)第4章控制系统的软件设计 (10)4.1 主程序的设计 (10)4.2 公用子程序的设计 (10)4.3 手动子程序的设计 (11)4.4 自动子程序的设计 (11)第5章控制系统的软件调试 (14)结束语 (16)心得体会 (16)致谢 (16)参考文献 (17)附录(程序指令表) (18)第1章烘干机概述1.1 控制对象的用途先进的热风循环系统使工作室温度分布均匀。
低噪声风机系统创造了安静的工作环境。
密封电热管加热,性能稳定,寿命长。
底部装有轨道并配有供装载工件或试件的台车,工作效率高。
进、排气装置,可调节工作室的换气量。
独立控制台,即可就近控制,也可集中到控制室统一控制。
可选用进口高精度智能程序控温仪表控温,可预设多段程序控温曲线。
智能控温仪表控温,控制灵敏可靠。
超温保护装置能发出信号并切断加热电源,保护设备及工件的安全。
1.2基本结构电热器用于对烘房内提升温度。
通风电动机将烘房内对烘干物品所产生的蒸汽排出烘房达到烘干的目的。
1.3控制方法为满足检测所设计的程序以及对设备的检查和紧急控制等要求,本设计在设计过程中提供了三种工作模式,手动模式、单周运行模式以及连续运行模式。
手动模式用于检测程序是否能达到预期目的以及用于对设备一步步的操作的模式。
单周模式用于PLC对此设备谨作一次工作循环回路,更好的控制烘房内的情况。
连续模式用于对烘房内长时间的烘干工作,能多次循环烘干工作,而不用多次的繁杂的操作。
第2章 设计任务和设计要求2.1 电气元件的选择2.1.1按钮按钮是一种常用的控制电器元件,常用来接通或断开‘控制电路’(其中电流很小),从而达到控制电动机或其他电气设备运行目的的一种开关。
按钮是一种人工控制的主令电器。
主要用来发布操作命令,接通或开断控制电路,控制机械与电气设备的运行。
按钮的工作原理很简单(见图1)对于常开触头(图a ),在按钮未被按下前,电路是断开的,按下按钮后,常开触头被连通,电路也被接通;对于常闭触头(图b ),在按钮未被按下前,触头是闭合的,按下按钮后,触头被断开,电路也被分断。
由于控制电路工作的需要,一只按钮还可带有多对同时动作的触头(图c)。
按钮的用途很广,例如车床的起动与停机、正转与反转等;塔式吊车的起动,停止,上升,下降,前、后、左、右、慢速或快速运行等,都需要按钮控制。
按钮由按键、动作触头、复位弹簧、按钮盒组成。
是一种电气主控元件。
按钮(SB )助记符。
有些功能的按钮有特定的助记符。
本设计中要求按钮有启动(SB1)、预停(SB2)、急停(SB3)三个。
这里选择中国浙江红波公司生产的Φ22 LAS1-A 系列按钮,图样参数如图2。
启动(SB1)选绿色按钮、图1 按钮工作原理示意图2 按钮预停(SB2)、急停(SB3)选红色按钮。
2.1.2 旋转开关旋转开关是以旋转手柄来控制主触点通断的一种开关。
旋转开关的结构形式也有两种,分别是单极单位结构和多极多位结构。
单极单位旋转开关在应用中常与转轴式电位器共同使用,而多极多位旋转开关多用于工作状态线路的切换。
设计中选择工作模式的开关(SA)即选择中国浙江红波公司生产的Φ22图3 旋转开关LAS1-A系列圆形旋转开关。
开关图样大小参数如图3。
2.2 PLC之I/O接线列出如下表各输入输出点:手动(SA) I0.0 启动(SB1) I0.3 升温(KM1) I0.6单周(SA) I0.1 预停(SB2) I0.4 通风(KM2) I0.7连续(SA) I0.2 急停(SB3) I0.5 温度检测器(SQ) 1.0电热器(YV1) Q0.0 通风电动机(YV2) Q0.1由上表各输入输出画出如图4 I/O接线图:通 信端口0通 信端口11M0.00.20.30.40.52M 1.00.60.71.31.41.53L 1.11.20.1ML+M I V M B+1L 0.00.20.30.12L 0.40.50.60.71.01.1N L1AC SA总线接口DC24VCPU 224XP CN /AC/DC/Relay 模 块A+YV1YV2··AC220V PE FU QS N L1SB1SB2SB3KM1KM2SQ2.4 烘干机工作的功能顺序由课题要求,再考虑单周、连续的情况,以及预停操作画出如下图5合适的顺序功能图。
图4 PLC 的I/O 接线图图5 烘干机自动程序顺序功能图第3章确定控制方案3.1 PLC控制与传统继电器控制方案PLC控制与继电器控制相比较(1)逻辑控制继电器控制是利用各电器件机械触点的串、并联组合成逻辑控制。
采用硬线连接, 连线多而复杂, 对今后的逻辑修改、增加功能很困难。
而PLC中逻辑控制是以程序的方式存储在内存当中, 改变程序, 便可改变逻辑。
连线少、体积小、方便可靠。
(2)控制速度依靠机械触点的吸合动作来完成控制的继电器控制系统, 工作频率低, 工作速度慢。
而PLC由于采用程序指令控制半导体电路来实现控制, 稳定、可靠, 运行速度大大提高了。
(3)顺序控制继电器控制是利用时间继电器的滞后动作来完成时间上的顺序控制。
时间继电器内部的机械结构易受环境温度和湿度变化的影响, 造成定时的精度不高。
在PLC内部是由半导体电路组成的定时器以及由晶体振荡器产生的时钟脉冲计时, 定时精度高。
使用者根据需要, 定时值在程序中便可设置, 灵活性大, 定时时间不受环境影响。
(4)灵活性可扩展性继电器系统安装后, 受电器设备触点数目的有限性和连线复杂等原因的影响, 系统在今后的灵活性、扩展性很差。
而 比具有专用的翰人和输出模块, 理论上连接可以无穷多。
连线少, 灵活性可扩展性好。
(5)计数功能继电器控制可实现逻辑功能, 但不具备计数的功能。
PLC内部有特定的计数器, 可实现对生产设备的步进控制。
(6)可靠性和可维护性继电器控制使用大量的机械触点, 触点在开闭时会产生电弧, 造成损伤并伴有机械磨损, 使用寿命短, 运行可靠性差, 不易维护。
而PLC采用微电子技术, 内部的开关动作均由无触点的半导体电路来完成。
体积小, 寿命长, 可靠性高, 并且能够随时显示给操作人员, 及时监视控制程序的执行状况, 为现场调试和维护提供便利。
3.2 PLC控制与单片机控制方案(1)PLC是建立在单片机之上的产品,单片机是一种集成电路,两者不具有可比性。
(2)单片机可以构成各种各样的应用系统,从微型、小型到中型、大型都可,PLC是单片机应用系统的一个特例。
(3)不同厂家的PLC有相同的工作原理,类似的功能和指标,有一定的互换性,质量有保证,编程软件正朝标准化方向迈进。
这正是PLC获得广泛应用的基础。