三大投影技术对比

合集下载

3LCD与DLP工程投影机讲解及效果对比

3LCD与DLP工程投影机讲解及效果对比

对角线 150寸
高2.02米
模拟相同的场景和安装条件
投射比 投影机距屏幕距离 投影机安装高度 垂直位移范围 需要倾斜安装角度
E社
60% -4.5°
P社
2.2:1 7.1m 4.02m 50% -6°
SONY
85% 0°
E社
P社
SONY F1200ZL 镜头 Z4015
倾斜安装
快速查看梯形校正副作用
0.76英寸
0.95英寸
1英寸
投射率高,耐光性强
新开发!
b.
c. 实现100%的sRGB色域范围*
屏幕
透镜
光学补偿部件
偏振片
偏振片
新开发液晶面板
减少光漏 线偏振光
高对比度图像
椭圆偏振光
线偏振光
入射光
*VPL-F1200ZL及F1205ZL中搭载
明亮丰富色彩 黑白高对比度
细节表达 精准的色彩表现
Sony
8,000lm/ 14,000h
A社
B社
3LCD 激光 3LCD 激光
1DLP 激光
12,000lm
8,000lm 1,0000lm/8500lm
10,000lm/ 10,000h
7,000lm/ 6,000h
7,000lm/ 7,500h
*每天开机8小时,一周开机5天
10000lm 8000lm
SONY 10,000lm恒定亮度模式
6100lm 工程投影机
5100lm 工程投影机
4200lm 工程投影机
5000lm
3500lm
普及性商教机 激光超短焦
20更18高年 激亮光度新品/更高附加价值/激光2机018的年发激光展新品= 索尼投影机的方向

三大电视技术的比较[1]

三大电视技术的比较[1]
数字电视,2008 年将用数字电视转播北京奥运
会。到2015 年,我国将全面实现数字化,完成
模拟向数字的过渡,停播模拟信号。届时,可以
收看数字电视的高端电视将可能成为城市消费
室一道绚丽风景但是从当前的技术条件来看,
当它做到像背投、等离子电视那样大时,大尺寸
液晶电视价格要贵许多。三星公司是液晶显示
LCD 技术的领先厂商,也是全球液晶显示屏产
品最大的供应商。随着去年第二季度在韩国启
LCD 、等离子电视PDP 以及背投PJ TV 电视
三种,其中背投电视根据其内部利用的投影机
种类,又可分为CRT 阴极射线管、LCD 液晶
和DLP 数码光显处理器三种。
液晶电视:挂在墙上的风景
液晶电视,又称LCD 电视,是利用液状晶
多。一般CRT 背投厚50CM 以上,而像DLP
数码光显电视厚度则在40CM 以下,和等离子
电视看起来没什么区别。因此,超薄DLP 数码
. 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
光明日报/ 2005 年/ 03 月/ 24 日/
等离子、液晶和背投


三大电视技术的比较
古晓风
3 条第六代、
动全球第六代液晶生产线后,液晶显示屏供应
者的唯一选择。最近许多读者来信说,面对等紧张得到缓解。2005 年还将增加6 条第五代、
离子、液晶和背投等高端电视这一连串陌生的2 条第七代液晶屏生产线。液晶屏
与CRT 背投相比,DLP 数码光显电视在

LCD与DLP投影机的区别

LCD与DLP投影机的区别

LCD与DLP投影机的区别LCD(Liquid Crystal Display)液晶投影机利用液晶的光电效应,即液晶分子的排列在电场作用下发生变化,影响其液晶单元的透光率或反射率,从而影响它的光学性质,产生具有不同灰度层次及颜色的图像。

由于液晶是介于液体和固体之间的物质,本身不发光,工作性质受温度影响很大,其工作温度为-55摄氏度至+77摄氏度DLP(Digital Light Processor)数字光输处理器投影仪以DMD(Digital Micormirror Device)数字微镜作为成像器件。

单片DMD由很多微镜组成,每个微镜对应一个像素点 ,DLP 投影机的物理分辨率就是由微镜的数目决定的。

DLP投影机的技术是一种全数字反射式投影技术。

其特点首先是数字优势。

数字技术的采用,使图像灰度等级提高,图像噪声消失,画面质量稳定,数字图像非常精确。

其次是反射优势。

反射式DMD器件的应用,使成像器件的总光效率大大提高,对比度亮度均匀性都非常出色。

DLP投影机清晰度高、画面均匀,色彩锐利。

DLP投影机分为单片DMD机(主要应用在便携式投影产品)两片DMD机 (应用于大型拼接显示墙)三片DMD机(应用于超高亮度投影机)HP的xb31和sb21均属于单片DMD机,和其他LCD投影仪相比,HP所采用DLP技术的投影仪明显体积要小得多,便于携带。

总结现在市场上大多数投影仪所使用的都是LCD或DLP技术。

比较一下这两种技术,DLP技术的优点是产生的图像对比度较高,光路系统设计的紧凑,因而在体积、重量方面占有优势,在显示文本、CAD模型、幻灯片时效果出众;而LCD投影仪的强项主要体现在亮度均匀性、色彩及细节的表现上,在回放高质量的动态视频图像表现要强于DLP投影仪。

投影技术投影机自问世以来发展至今已形成三大系列:LCD(Liquid Crystal Display)液晶投影机、DLP(Digital Lighting Process)数字光处理器投影机和CRT(Cathode Ray Tube)阴极射线管投影机。

CRT、LCD、 DLP和DLV

CRT、LCD、 DLP和DLV

CRT、LCD、 DLP和DLV投影仪成像原理洞悉投影技术在今天追求高效率、快节奏的现代办公中,投影机作为新型办公设备用户可以随处见到它的身影。

投影机不但可以应用于临时会议、技术讲座、网络中心、指挥监控中心,还可以与计算机、工作站等进行连接,或接驳录像机、电视机、影碟机以及实物展台等,可以说它是一种应用十分广泛的大屏幕影像设备。

下面,就让我们来认识一下各式各样的投影技术。

投影机主要技术有CRT(Crystal Ray Tube:阴极射线管)、LCD(Liquid Crystal Display:液晶显示器)和DLP(Digital Light Processor:数码光路处理器)三大类型。

CRT和LCD投影机采用透射式投射方式,DLP采用反射式投射方式。

CRT和LCD投影机技术成熟,应用时间较长,性能稳定。

而DLP投影机应用时间较短,技术有待于进一步完善,但是该投影机采用微镜反射投影技术,亮度和对比度明显提高,体积和重量明显减少,具有较强的生命力和久远的市场潜力。

元老: CRT扫描式投影机CRT投影机可以说是投影机的鼻祖。

CRT投影机也叫三枪投影机,其工作原理与CRT显示器没有什么不同,其发光源和成像均为CRT。

虽然CRT投影机的工作特征与LCD、DLP等投影机有本质区别,且CRT投影机与LCD投影机同属传输型投影机,但CRT投影机是本身发光,是由阴极射线电子束扫描击射在成像面上,使成像面上的荧光粉发光形成图像后,再传输到投影面上。

因此,CRT投影机具有CRT技术中成像的所有优点和缺点。

即CRT投影机分辨率高、对比度好、色彩饱和度佳、对信号的兼容性强,且技术十分成熟。

特别是CRT投影机在采用当前技术先进的CRT新型荫罩后,亮度也有了较大提高。

但CRT投影机毕竟是由成像面上荧光粉发光后再投影到屏幕上的,当有效扫描电子数增加到饱和状态时,再增加有效电子数,荧光粉发光量也增不了多少。

因此,与其它类型的投影机相比,在亮度方面,CRT投影机要低得多,这一直是困绕CRT投影机的主要因素。

简述投影的分类

简述投影的分类

简述投影的分类
投影是一种把圆形图像投射到直角平面上,以便于准确而方便地测量图像在空间中的位置和方向。

影分类有很多种,比如正投影、斜投影、射影投影和投影变换等。

正投影是把形状的三维空间信息,利用等距的直线垂直于视线的方向,直接投射到二维平面上的投影法。

正投影在建筑规划、地图绘制、建筑设计等领域有着广泛的应用,其优点是容易操作,准确表示三维图形在平面上的形状和大小,对于建筑结构、船舶设计等较复杂的物体来说,正投影是一种有用的投射方法。

斜投影类似于正投影,不同之处在于这种投影法把三维空间投射到二维平面上的直线不再是垂直于视线的等距直线,而是以一定的角度倾斜的直线。

斜投影的优点是能够比较准确地表示出三维物体的形状,在绘制工程图时,斜投影能够更好的表现三维物体的整体构成,并且可以更短的时间制作出准确的工程图。

射影投影把三维空间上的点投影到二维平面上的点,其中所有的直线都是射线,在它们相交的点处产生投影。

射影投影的优势在于能够精确表示出三维物体的形状,并且展现出物体真实的比例,这在建筑、管道等结构设计领域有着重要的意义。

投影变换是指把圆形投影投射到圆形平面上,以便可以在三维空间中测量点的位置和方向。

投影变换有着广泛的应用,比如在气象学、天文学、海洋科学等领域都有着广泛的应用,它能够表现出三维空间中物体在三维空间中的精确形状,变换后也能够准确表示出投影物体
在实际空间中的位置和方向。

以上就是投影的分类主要内容,它们都有着不同的优点和应用范围,但其基本原理是一致的。

如果使用正确的投影方式,可以避免大量的转换损失,从而节省时间和成本,提高绘图的准确性和效率。

投影技术分类

投影技术分类

投影技术分类投影机可以分为CRT、LCD、DLP三大类,其中占绝对主流地位的是LCD投影机,也就是大家常说的液晶投影机;DLP与CRT投影机也占有一定份额,但目前CRT投影机已濒临淘汰,所见不多了。

一,CRT三枪投影机CRT是英文Cathode Ray Tube的缩写,译作阴极射线管。

作为成像器件,它是实现最早、应用最为广泛的一种显示技术。

这种投影机可把输入信号源分解到R(红)、G(绿)、B(蓝)三个CRT管的荧光屏上,荧光粉在高压作用下发光,经过光学系统放大和会聚,在大屏幕上显示出彩色图像。

光学系统与CRT管组成投影管,通常所说的三枪投影机就是由3个投影管组成的投影机,由于使用内光源,也叫主动式投影方式。

CRT技术成熟,显示的图像色彩丰富,还原性好,具有丰富的几何失真调整能力;但其重要技术指标图像分辨率与亮度相互制约,直接影响CRT投影机的亮度值,到目前为止,其亮度值始终徘徊在300流明以下。

另外CRT 投影机操作复杂,特别是会聚调整繁琐,机身体积大,只适合安装在环境光较弱、而且相对固定的场所,移动性也不好。

对于CRT投影机而言,有两个重要的性能指标:会聚性能和聚焦性能。

会聚是指红绿蓝三种颜色在屏幕上的重合效果,因为CRT投影机有RGB三种CRT管发出的光,要想做到相同的像素完全会聚到一点,就必须校正图像的各种失真。

机器位置变化后,会聚也要重新调整,因此对会聚的要求,一是全功能,二是方便快捷。

会聚有静态会聚和动态会聚,其中动态会聚有倾斜,弓形,幅度,线性,梯形,枕形等功能,每一种功能均可在水平和垂直两个方向上进行调整。

而聚焦性能决定了最小像素的大小,像素越小,可达到的分辨率也就越高。

二,LCD液晶投影机LCD(Liquid Crystal Display)液晶投影机,可以分成液晶板投影机和液晶光阀投影机,前者是目前投影机市场上的主要产品。

液晶是介于液体和固体之间的物质,本身不发光,工作性质受温度影响很大,其工作温度为-55℃~+77℃。

常见投影方式

只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影”1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

两大投影技术3LCOS比拼3LCD全揭秘

两大投影技术3LCOS比拼3LCD全揭秘作为投影机产品的核心,其芯片基本决定了投影机的品质和特色,随着投影机市场的扩大,3片式的构架以更大优势基本占据了主要市场,这也将是投影机芯片未来的技术方向。

由于3DLP的高端价格难以企及,所以3LCD和3LCOS将是3片式结构战场上的主角。

先说3LCD三片式LCD(3LCD)采用体型极小的高穿透式高温多晶硅(High-T emperaturePolySilicon;HTPS)LCD显示面板,每一块HTPS都是由很多个像素组成,如分辨率为1024×768的HTPS就是由1024×768个像素组成以对应投射图像的像素点。

每一个像素又包含了信号线、控制线、TFT和开口区。

其中开口区包含了以特定方式排列的液晶分子,根据液晶分子在不同电压下排列方式的变化,改变透过像素光线的振动方向,并与偏振板相结合实现了从全黑到全白状态下不同灰阶的过渡。

每一个3LCD光路系统都是由3块HTPS构成。

将灯光源发出的光通过分色镜A分出红色光,再通过分色镜B分为绿色光和蓝色光,三种颜色的光分别投射到三块相对应的液晶板上,并经过中间的棱镜将三原色光进行混合后投射出不同颜色的图像。

3LCD技术的成像和色彩还原的特点是先将三原色同时进行充分的空间混合,再投射出不同色彩的图像,又称为同时空间混合还原。

3LCOS结构LCoS的结构是在硅片上利用半导体工艺制作驱动面板(亦称CMOS-LCD),然后在单晶硅片上通过研磨磨平,并镀上铝(Al)作为反射镜,形成了CMOS基板,再将CMOS基板与涂有透明电极的上玻璃基板粘合,并注入液晶,进行封装而成。

LCOS芯片从下向上的第一层是硅基的IC芯片,采用互补金氧化半导体(ComplementaryMetal-OxideSemiconductor;CMOS)工艺制造。

在CMOS上面为抛光的铝镀层,用于提供电极和光线反界面射面。

在铝金属层上要涂布液晶分子,并采用网格状的框架分割成像素。

投影仪显示技术对比

投影仪显示技术对比投影仪作为一种重要的多媒体设备,在商务演示、教育培训和家庭娱乐等领域发挥着重要作用。

随着科技的不断发展,投影仪显示技术也在不断创新和进步。

本文将对当前主流的三种投影仪显示技术进行对比,并对其特点和应用进行分析和评价。

一、液晶投影仪(LCD)液晶投影仪采用液晶作为光阀来控制光线的透过与否,通过三原色滤光片的组合来实现彩色显示。

这种技术具有成本低、色彩还原度高等特点,广泛应用于商务演示和教育培训等领域。

然而,液晶投影仪对比度较低,黑色表现不够突出,并且存在亮暗不均匀的问题。

二、DLP投影仪(数字光处理)DLP投影仪采用数字微镜阵列和可控微镜反射来控制光线的显示。

通过微镜片的开合控制,DLP投影仪可以实现高对比度、高亮度和宽色域的显示效果,并且具有快速响应的优势。

然而,DLP投影仪价格相对较高,且在长时间使用后可能出现“彩虹效应”的问题。

三、LCoS投影仪(液晶反射)LCoS投影仪采用了液晶与反射镜的结合,通过改变液晶分子的取向来控制光线的反射。

这种技术能够实现较高的对比度和色彩还原度,并且在消除“彩虹效应”方面表现出色。

然而,LCoS投影仪价格较高,且由于技术复杂度大,生产难度较大。

综上所述,不同的投影仪显示技术各有优劣。

液晶投影仪具有成本低、色彩还原度高等优点,适用于商务演示和教育培训等场景;DLP投影仪则具有高对比度、高亮度和快速响应的特点,适用于大型会议和影院等场景;而LCoS投影仪则在对比度和色彩还原度方面具有更高的表现,适用于高要求的专业场景。

在选择投影仪时,用户需要根据实际需求和预算来选择适合自己的显示技术。

同时,还需考虑其他因素,如投影距离、亮度、分辨率以及设备的可靠性和支持等。

总之,投影仪显示技术的对比可以帮助用户更好地选择合适的设备。

无论是液晶投影仪、DLP投影仪还是LCoS投影仪,都在不同的方面有着独特的优点和应用场景。

随着科技的进步,相信投影仪显示技术将继续创新和发展,为用户提供更好的视觉体验。

立体投影的四种投影技术以及其特点

⽴体投影的四种投影技术以及其特点近⼏年,随着科学技术的不断进步发展,⼆维的图像已经越来越不能够满⾜⼈们对视觉效果的需求了,⼈们希望有技术层次更⾼的图像展⽰技术出现。

随着不断的研究,三维技术越来越成熟完善,在⼈们⽣活中的应⽤也越来越多。

由于⽴体投影可以凭空给⼈们展现三维的⽴体图像,神奇展⽰,效果逼真,让⼈可以触⼿可及,可以给⼈们带来全新的视觉体验,所以在各个⾏业的应⽤⾮常受欢迎。

三维⽴体投影的四种投影技术以及其特点:1、主动式⽴体技术 主动式的⽴体投影采⽤了单接⼝120Hz输⼊,不会出现被动式⽴体软件弥补的问题。

主动式⽴体投影技术对环境的依赖不,在相同条件下,展⽰的效果更加逼真、⽣动。

主动式⽴体技术特点:1)成本低:可以使⽤普通的屏幕,如:⽩墙。

2)画⾯感:所制作出的画⾯感真实、⾊彩鲜艳,犹如⾝临其境般。

3)刷新率:主动式⽴体投影对投影机的刷新率要求很,低是120Hz。

主动式⽴体技术构成:投影机、主动眼镜、眼镜同步器、专业计算机2、被动式⽴体技术 被动式的⽴体投影运⽤两个投影的互相迭加,所以光强效果⽐较好,同时在眼镜的成本这个⽅⾯占很的优势。

如果参观者很多的话,被动式投影的优势就能体现出来,同时,被动式投影眼镜很轻薄,佩戴⽅便,成本也⽐较低。

被动式⽴体技术的特点1)对摄影机的要求条件很低,⽆论是任何投影机,都可以胜任。

2)⽴体眼镜⾮常轻薄,⼈们在佩戴时也会很⽅便,回收成本低。

3)不需要红外发射器。

被动式⽴体技术构成:投影机、眼镜、计算机3、红蓝⽴体技术 主要是采⽤红光、蓝光过滤,在张平⾯影像上,以浅蓝⾊及浅红⾊的⾊层所构成,但是两种⾊层并没有重叠,⽽且双双叠在主要影像的前景及背景,形成图像分离的效果。

红蓝⽴体技术构成特点1)成本低:制作的成本很便宜,特别是滤光镜⽚⽤户可以⾃⼰动⼿制造。

2)效果好:所制作的画⾯效果很好。

红蓝⽴体技术构成:投影机、前期制作软件和机器、播放⽤机器、眼镜4、光谱⽴体技术(INFITEC) 这是种分离光谱的技术,与红蓝⽚⽴体技术差不多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影机自问世以来发展至今已形成三大系列:LCD(Liquid Crystal Display)液晶投影机、DLP(Digital Lighting Process)数字光处理器投影机和CRT(Cathode Ray Tube)阴极射线管投影机。

LCD 投影机的技术是透射式投影技术,目前最为成熟。

投影画面色彩还原真实鲜艳,色彩饱和度高,光利用效率很高,LCD 投影机比用相同瓦数光源灯的DLP投影机有更高的ANSI流明光输出,目前市场高流明的投影机主要以LCD投影机为主。

它的缺点是黑色层次表现不是很好,对比度一般都在500:1左右徘徊,投影画面的像素结构可以明显看到。

DLP投影机的技术是反射式投影技术,是现在高速发展的投影技术。

它的采用,使投影图像灰度等级、图像信号噪声比大幅度提高,画面质量细腻稳定,尤其在播放动态视频有图像流畅,没有像素结构感,形象自然,数字图像还原真实精确。

由于出于成本和机身体积的考虑,目前DLP投影机多半采用单片DMD芯片设计,所以在图像颜色的还原上比LCD投影机稍逊一筹,色彩不够鲜艳生动。

CRT投影机采用技术与CRT显示器类似,是最早的投影技术。

它的优点是寿命长,显示的图像色彩丰富,还原性好,具有丰富的几何失真调整能力。

由于技术的制约,无法在提高分辨率的同时提高流明,直接影响CRT投影机的亮度值,到目前为止,其亮度值始终徘徊在300流明以下,加上体积较大和操作复杂,已经被淘汰。

技术类型及规格LCD的技术规格:根据LCD投影机产品结构、性能和成本的要求,液晶板具有不同的尺寸规格。

LCD液晶板的大小决定着投影机的大小,LCD液晶板规格越小,则投影机的光学系统就能做得越小,从而使投影机越小。

但是在很小的LCD上做到高分辨率,并且保持高亮度,其技术之难是可想而知的。

目前0.9英寸和0.7英寸的面板产量最大,比例达到70%以上,1.3英寸产品比例在15%左右,0.5英寸、0.79英寸、0.99英寸和1.0英寸面板也开始用于投影机产品。

在液晶板数量上,由于单片结构在性能和色彩方面的缺陷,目前已经基本被淘汰。

主流为3片式LCD投影机,由于在性能和色彩方面表现出色,在很长一段时间内,都代表了投影机产品发展的最成熟水平。

在同等亮度和分辨率的情况下,投影机体积越小价格相应越高。

DLP的技术规格:与LCD技术一样,DMD芯片尺寸是决定投影机体积和重量的重要因素,目前德州仪器也推出了0.55英寸、0.7英寸、0.9英寸和1.1英寸多种尺寸的芯片。

DLP 投影机最常见的结构有单片式和3片式两种,其中3片式结构主要应用于影院系统和高性能产品中,市场上常见的普通应用的产品全部是单片式结构,人们普遍谈论的DLP 技术和LCD 技术的比较,也主要是基于单片式DLP 技术和3片式LCD 技术之间的比较。

单片式DLP 投影机采用色轮来实现分色,3原色用同一个成像部件,与三原色各有一套成像系统的3片式LCD 投影机相比,单片式DLP 投影机在色彩饱和度方面一直要比3片LCD 投影机差。

第一代DLP 投影机的色轮转速为60Hz ,第二代DLP 产品的色轮转速提高了一倍,为120Hz ,新一代的DLP 投影机的色轮转速仍为120Hz ,不过色轮采用了6分色(以前采用3分色),相当于把转速又提高了一倍,达到了240Hz 。

因此目前的DLP 投影机的色彩表现已经得到了很大提高,但是与LCD 产品相比,大部分单片DLP 投影机产品的色彩表现还有差距。

ANSI流明投影机的亮度:“light out” 是投影机主要的技术指标, “light out”通常以光通量来表示,光通量是描述单位时间内光源辐射产生视觉响应强弱的能力,单位是流明。

投影机表示光通量的国际标准单位是ANSI 流明,ANSI 流明是美国国家标准化协会制定的测量投影机光通量的方法,测定环境如下:1) 投影机与幕之间距离:2.4米。

2) 幕为60英寸。

3) 用测光笔测量屏幕“田”字形九个交叉点上的各点照度,乘以面积,得到投影画面的9个点的亮度。

4) 求出9个点亮度的平均值,就是ANSI 流明。

亮度的比较:LCD 投影机属于透射式投影方式,主要依靠提高光源效率、减少光学组件能量损耗、提高液晶面板开口率和加装微透镜等技术手段来提高亮度。

DLP 技术属于反射式投影方式,其主要通过改进色轮技术、改变微镜倾角和减少光路损耗等手段提高亮度指标。

随着投影机产品的发展,各厂家不断推出具有更高亮度的投影机产品,投影机的亮度大多数已经达到2000ANSI流明以上。

各种品牌的投影机由于测定环境的不同,虽然ANSI流明相同,但实际的亮度不同。

投影机亮度在测试和用户使用中,与投影机距离屏幕的远近和屏幕视角,以及幕的增益指标有很大关系。

不同亮度的产品的差异主要表现在图像的清晰度、色彩的明锐度、亮暗部灰度层次上,也就是说,亮度高的产品的图像更清晰、色彩的明锐度更高、亮部和暗部的灰度表现更完整。

对于普通的文本应用,亮度差异对图像的影响并不明显。

不同的厂商对于亮度调节设置差异也比较大,大多数产品在亮度可调节范围内都可以清晰完整地显示图像,而部分产品在亮度调节到90%以上后,屏幕一片空白,这样的高亮度对于用户的实际应用显然没有什么实际意义。

投影机亮度和幕的选择:亮度是投影机产品输出到屏幕上的光线强度,也是投影图像的明亮程度。

一般情况下,投影机的亮度越高,投射到屏幕上的相同尺寸的图像越明亮,图像也就越清晰。

然而人眼能够感知的图像的明亮程度并不仅仅取决于投影机的亮度,与环境光强度、图像的尺寸都有很大关系。

环境光越强,人眼感知的图像的亮度相对就越暗淡。

因此用户一定要根据自己投影机使用的环境条件选择合适的亮度,并不一定是越亮越好。

因为在其他指标相同的情况下,亮度越高,投影机的价格也会越高,同时人眼感知图像的亮度会有一定范围,超过这个范围,人眼会感觉到不舒服,尤其是长时间观看亮度过高的图像会使人眼产生疲劳,并造成一定伤害。

需要提醒用户的是,用户除了要根据空间大小来选择亮度指标外,还要考虑使用环境的光线条件、屏幕类型等因素。

同样的亮度,不同环境光线条件和不同的屏幕类型都会产生不同的显示效果。

用户在选择投影机产品时,对于亮度指标要有一个余度。

由于投影机的亮度很大程度上取决于投影机中的灯泡,灯泡的亮度输出会随着使用时间而衰减,必然会造成投影机亮度的下降。

投影机产品在使用的2000小时后,亮度衰减很快,因此用户在选择投影机产品时,一定要对亮度指标有一个全面的考虑。

一般来说,在40-50平方米的家居或会客厅,投影机亮度建议选择800-1200流明之间,幕布对应选择60寸到72寸;在60-100平方米的小型会议室或标准教室,投影机亮度建议选择1500-2000流明之间,幕布对应选择80寸到100寸;在120-200平方米的中型会议室和阶梯教室,投影机亮度建议选择2000-3000流明之间,幕布对应选择120寸到150寸;在300平方米的大型会议室或礼堂,投影机多半要选择3000流明以上的专业工程用机,幕布则都在200寸以上。

ISO流明ISO21118投影机亮度标准简介:ISO(the Intern ati onal Organization for standardiztion)的中文名称是国际标准化组织,ISO是为实现国际标准化而成立的组织,ISO成员是通过技术活动的交流来发展国际标准的国际团体。

ISO/IEC21118:2005(E)文件里规定了关于投影机的各种标准,包括投影机的亮度检测标准,技术用语的标准,噪音测量等……随着日本投影机品牌销量在全球的增加,特别是中国市场的高占有率,并面对各产家在“ANSI”标称方面的极不规范性,2006年1月,日本成立了投影机厂商协会,一致要求采用了“ISO”标准来进行新的标定,从而诞生了新的测量标准----“ISO”标准。

而在ISO21118标准之前同时也是目前用得最多的投影机亮度标准是ANSI (American National Standards Institute是美国国家标准化协会的意思)。

由于早期的投影机主要产自美国及欧洲,如3M、BARCO等,而日本只是他们的生产基地,所以早期的投影机都是以美国的“ANSI”标准来测量的,随着时间的推移,人们也逐渐习惯了这种标称法,目前国内也大都用ANSI标准。

标准分辨率是指投影机投出的图像原始分辨率,也叫真实分辨率和物理分辨率。

和物理分辨率对应的是压缩分辨率,决定图像清晰程度的是物理分辨率,决定投影机的适用范围的是压缩分辨率。

物理分辨率即LCD液晶板的分辨率。

在LCD液晶板上通过网格来划分液晶体,一个液晶体为一个像素点。

那么,输出分辨率为1024 × 768 时,就是指在LCD液晶板的横向上划分了1024 个像素点,竖向上划分了768 个像素点。

物理分辨率越高,则可接收分辨率的范围越大,则投影机的适应范围越广。

通常用物理分辨率来评价液晶投影机的档次。

目前市场上应用最多的为SVGA(分辨率800×600)和XGA(1024×768),XGA的产品价格比SVGA的价格高3000-5000左右。

投影机的分辨率常见的还有两种表示方式,一种是以电视线(TV线)的方式表示,另外是以像素的方式表示。

以电视线表示时,其分辨率的含义与电视相似,这种分辨率表示方式主要是为了匹配接入投影机的电视信号而提供的。

以像素方式表示时通常表示为1024×768等形式,从某种意义上讲这种分辨率的限制是对输入投影机的VGA 信号的行频及场频作一定要求。

当VGA信号的行频或场频超过这个限制后,投影机就不能正常投影显示了。

投影分辨率的选择,可按实际投影内容决定购买何种档次的投影机,若所演示的内容以一般教学及文字处理为主,则选择SVGA(800×600),若演示精细图像(如图形设计)则要选购XGA(1024×768)。

由于现在笔记本和台式机的主流分辨率都以达到XGA(1024×768)的标准,建议在预算容许的情况下尽量选购XGA(1024×768)分辨率的投影机。

最大分辨率也称可显示的最高分辨率,它是指投影机可显示的输入信号的最高分辨率。

投影机通过图像处理算法,可对输入信号进行缩放处理,实现信号满屏显示,如果超出该范围投影机就无法正常显示画面。

早期的投影机都采取抽线算法, 即:线性压缩技术,但此算法有掉线问题。

目前各家厂商的产品现都已推出新算法用于压缩信号,即:智能压缩,它可解决掉线问题。

建议在其他性能指标相同的条件下,优先选择兼容较高分辨率的产品,这样可以适应更多的信号范围。

对比度是画面黑与白的比值,也就是从黑到白的渐变层次。

比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。

相关文档
最新文档