2019-2020学年度最新高三数学一轮复习第15讲平面向量的数量积及应用教案

合集下载

【新】2019-2020学年度高三数学一轮复习第15讲平面向量的数量积及应用教案

【新】2019-2020学年度高三数学一轮复习第15讲平面向量的数量积及应用教案
页码 / 总页数
想象和联 想总是 与汉语 学习联 系在一 起的, 听、说 、读、 写都离 不开想 象和联 想。例 如,在 阅读文 本的过 程中, 人们可 以想到 以前学 过的关 于春天 的古诗 ,并再 现文本 的内容 和场景 。在阅 读过程 中,语 言和文 字的内 容有意 识地与 自己的 生活体 验和感 知相结 合。这 种练习 将大大 提 高学生的 阅读能 力和理 解能力 。将其 应用于 写作, 可以有 效地提 高学生 的写作 水平。
问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能
力和解决实际问题的能力。
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的
数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,
分值 5~9 分。

平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三
页码 / 总页数
想象和联 想总是 与汉语 学习联 系在一 起的, 听、说 、读、 写都离 不开想 象和联 想。例 如,在 阅读文 本的过 程中, 人们可 以想到 以前学 过的关 于春天 的古诗 ,并再 现文本 的内容 和场景 。在阅 读过程 中,语 言和文 字的内 容有意 识地与 自己的 生活体 验和感 知相结 合。这 种练习 将大大 提 高学生的 阅读能 力和理 解能力 。将其 应用于 写作, 可以有 效地提 高学生 的写作 水平。
|a| 的绝对值称为射影;
(3)数量积的几何意义: a · b 等于 a 的长度与 b 在 a 方向上的投影的乘 积。
(4)向量数量积的性质 ①向量的模与平方的关系: a a a2 | a |2 。 ②乘法公式成立
在课堂上 老师的 对文本 的理解 老师的 理解,老 师的知 识和生 活经验 ,学生 可能有 自己的 理解,站 在一个 小角度 理解文 本,也许 会更好 的理解 学生,所 以学生 敢在教 室里的 意见。 这些课 堂活动 可以刺 激学生 的思维 ,锻炼 他们的 能力。 所以,学 生应该 更多,提 问,讨论 ,使各 种课堂 活动,精 彩纷呈 。

2019-2020年高考数学一轮复习专题5.3平面向量的数量积讲

2019-2020年高考数学一轮复习专题5.3平面向量的数量积讲

r
rr
【1-1 】已知 | a | 5,| b | 3,且 a b 12, 则向量在向量上的投影等于
.
【答案】 【解析】∵,而在上的投影为
rr
r |a|
rr cos< a,b >=
arb
=
-12
=-4ቤተ መጻሕፍቲ ባይዱ
.
|b| 3
【 1-2 】已知平行四边形 ABCD中,AC为一条对角线, 若= (2,4) ,= (1,3) ,则·=
题组一 常识题
1.已知在△ ABC中, B 是最大内角, A→B· B→C<0,则△ ABC的形状是 ____________.
【解析】设 A→B与 B→C的夹角为 θ,则 A→B·B→C= | A→B| ·| B→C|cos θ <0,得 cos θ <0 ,所以
cos B= cos( π- θ)>0 ,所以 B 为锐角.又 B 是三角形的最大内角,所以△ ABC为锐角三角 形.
ABC= 150° .
8.已知向量 a,b 的夹角为 60°,且 | a| = 1,|2 a+ b| = 7,则 | b| = ________.
2
2
2
【解析】由 |2 a+b| = 7,两边同时平方得 4a + 4a· b+b = 7,即 | b| + 2| b| - 3= 0,
解得 | b| = 1 或 | b| =- 3( 舍去 ) .
.
【答案】 8
【解析】∵四边形 ABCD是平行四边形,∴+=,∴=-= ( - 1,- 1) .又=-= ( - 3,-
α=β= 90°, | F| = 12 N, | F1| = 24 N ,
题组二 常错题

新教材老高考适用2023高考数学一轮总复习第三节平面向量的数量积与平面向量的应用pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第三节平面向量的数量积与平面向量的应用pptx课件北师大版
b<0,反之不成立(θ为π时不成立).
对点演练
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1)两向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向
量.(
)
(2)在△ABC 中,向量 , 的夹角为∠ABC.( × )
(3)(a·b)c=a(b·c).( × )
2.已知向量a,b满足a·(b+a)=2,且a=(1,2),与a方向相同的单位向量为e,则向
常用结论
1.平面向量数量积运算的常用公式:
(1)(a+b)·
(a-b)=a2-b2.
(2)(a±b)2=a2±2a·
b+b2.
2.当a与b同向时,a·
b=|a||b|;当a与b反向时,a·
b=-|a||b|.
3.a与b的夹角θ为锐角,则有a·
b>0,反之不成立(θ为0时不成立);a与b的夹角
为钝角,则有a·
余弦值为
.
答案
1
2
解析 由已知,得 a·
b=-4+4=0,(a+c)·
b=a·
b+b·
c=b·
c=-10,
|b|=
42
2
+ (-2) =2 5,所以 cos
·
θ=
||||
=
-10
1
=- .
2 5×2 5 2
考向3.平面向量的垂直
典例突破
例4.(2021全国甲,理14)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则
第七章
第三节 平面向量的数量积与平面向量的应用



高考数学(人教版,理科)一轮总复习精品课件:53平面向量的数量积及其应用30页PPT

高考数学(人教版,理科)一轮总复习精品课件:53平面向量的数量积及其应用30页PPT

A.322
B.3
15 2
C.-322
D.-3
15 2
因为������������ =(2,1),������������ =(5,5),所以向量������������ 在������������ 方向上的投影为
|������������|cos<������������, ������������>=|������������|·������������·������������
θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的投影. 想一想 b 在 a 上的投影是向量吗?
答案:不是,b 在 a 上的投影是一个数量|b|cos<a,b>,它可以为正, 可以为负,也可以为 0.
第五章
5.3 平面向量的数量积及其应用
考纲要求 梳理自测 探究突破 巩固提升
第五章
5.3 平面向量的数量积及其应用
考纲要求 梳理自测 探究突破 巩固提升
3.平面向量数量积的性质
已知非零向量 a=(a1,a2),b=(b1,b2)
性质
几何表示
定义
a·b=|a||b|cos<a,b>
a·a=|a|2 或|a|= ������·������
模 若 A(x1,y1),B(x2,y2),则������������=(x2-x1,y2-y1)
4.若向量 a,b 满足|a|=1,|b|=2 且 a 与 b 的夹角为π3,则|a+b|=
.
∵|a+b|2=(a+b)2=a2+2a·b+b2=12+2×1×2×cosπ+22=7.
3
∴7|a+b|= (������ + ������)2 = 7.

2019-2020年广西高考人教A版 数学一轮复习课件:5.3 平面向量的数量积与平面向量的应用

2019-2020年广西高考人教A版 数学一轮复习课件:5.3 平面向量的数量积与平面向量的应用

7 8
.
思考求向量数量积的运算有几种形式?
-18-
考点1
考点2
考点3
解析:(1)法一(基向量法):
如图所示,选取������������, ������������为基底,则������������ = ������������ + ������������ + ������������ = ������������ +
故������������ ·������������ =
1 ������������ + 3 ������������
2
4
·(������������

������������ )=34
������������ 2

1 4
������������
·������������

1 2
������������ 2
,
������������
=
2���������2��� -������������ .
所以������������ ·������������ = 4������������2-������������ 2
4
=36������������42
-������������
2
=4,
同理,������������ ·������������ = 4������������2-������������2=-1,
解题心得1.求两个向量的数量积有三种方法: (1)当已知向量的模和夹角时,利用定义求解,即a·b=|a||b|cos θ(其 中θ是向量a与b的夹角). (2)当已知向量的坐标时,可利用坐标法求解,即若 a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2. (3)利用数量积的几何意义.数量积a·b等于a的长度|a|与b在a的方 向上的投影|b|cos θ的乘积. 2.解决涉及几何图形的向量数量积运算问题时,可利用向量的加 减运算或数量积的运算律化简.但一定要注意向量的夹角与已知平 面角的关系是相等还是互补.

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b 的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤x21+y21·x22+y22. 3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2高频考点二 用数量积求向量的模、夹角例2、(1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D. (2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3.答案 (1)D (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)·BC →|BA →|·|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ×1+1×2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223 (2)C 解析 (1)∵|a |=3e 1-2e 22=9+4-12×1×1×13=3,|b |=3e 1-e 22=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8, ∴cos β=83×22=223.(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4, 所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A .-43 B .-45 C.45 D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形 答案 (1)12 (2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →) =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1.∴()avs4alco1(f(1,2)-|AB →|)|AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形.高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( )A .2 2B .2 3C .4 2D .4 3答案 D解析 由|OA →|=|OB →|=OA →·OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2sin π3=4 3.1.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠= ,则BD CD ⋅=( )(A )232a -(B )234a - (C ) 234a (D ) 232a 【答案】D 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅()22223cos602BA BC BA a a a +⋅=+=故选D.【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以 221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=,选C.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B 【答案】D 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=,则||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=,且AD BC ⊥,而22(2)4AD a a b a b =++=+,所以()4C a b +⊥B ,故选D.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以11PB t-=(,-4),1PC -=(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. BA1.(2014·北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.【答案】5【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5. 2.(2014·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.【答案】±3【解析】因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.3.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【答案】2 234.(2014·全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22 【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1.6.(2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______. 【答案】16【解析】因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16 .7.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】C【解析】建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,① CE →·CF →=(λ-1,3(λ-1))·(μ-1,3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322 D .-31529.(2013年高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1] B.[]2-1,2+2 C .[1,2+1] D .[1,2+2]解析:由a ,b 为单位向量且a ·b =0,可设a =(1,0),b =(0,1),又设c =(x ,y ),代入|c -a -b |=1得(x -1)2+(y -1)2=1,又|c |= x 2+y 2,故由几何性质得12+12-1≤|c |≤12+12+1,即2-1≤|c |≤ 2+1.答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解析:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈[0,π2]时,sin ⎝⎛⎭⎫2x -π6取最大值1.所以f (x )的最大值为32.11.(2013年高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值.解析:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x )=3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12. 因此,f (x )在[0,π2]上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2×2×2×12=12,|a +b |=2 3. 2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( ) A .2 3 B. 3 C .0 D .- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m ,a ·b =12+32×32+m 2×cos π6, ∴3+3m =12+32×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( )A.32B.22C.52D.72 答案 A4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫avs4alco1(o(AC ,sup6(→))+13CB →)·⎝⎛⎭⎫avs4alco1(o(AB ,sup6(→))+13BC→)=⎝⎛⎭⎫avs4alco1(f(2,3)AC →+13AB →)·⎝⎛⎭⎫avs4alco1(f(1,3)AC →+23AB →)=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →·(PB →+PC →)的值为________.答案 -4解析 由题意得,AP =2,PM =1, 所以PA →·(PB →+PC →)=PA →·2PM → =2×2×1×cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132.8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0,∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32y -b , ∴⎩⎨⎧ x -a =32x ,y =32y -32b ,∴⎩⎨⎧ a =-x 2,b =y 3.∴b >0,y >0, 把a =-x 2代入①,得-x 2⎝⎛⎭⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).12.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22,所以A =π4,或A =3π4.因为b >a ,所以A =π4.f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12, 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. ∴所求范围是⎣⎢⎡⎦⎥⎤32-1,2-12. 13.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12. 又0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.。

2020年高考数学(文)一轮复习专题5.3 平面向量的数量积及应用(讲)(原卷版)

专题5.3平面向量的数量积及应用1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题。

知识点一平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.知识点二平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a||b|cos θ叫做a 与b 的数量积,记作a·b 投影|a|cos θ叫做向量a 在b 方向上的投影,|b|cos θ叫做向量b 在a 方向上的投影几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积知识点三平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论几何表示坐标表示模|a|=a·a |a|=x 21+y 21夹角cos θ=a·b |a||b|cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥b 的充要条件a ·b =0x 1x 2+y 1y 2=0|a ·b|与|a ||b |的关系|a ·b|≤|a ||b ||x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)知识点四向量数量积的运算律交换律a ·b =b ·a 分配律(a +b)·c =a ·c +b ·c 数乘结合律(λa)·b =λ(a ·b)=a ·(λb)考点一平面向量的数量积的运算【典例1】(2019·高考全国卷Ⅱ文数)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=()A .-3B .-2C .2D .3【方法技巧】1.数量积公式a ·b =|a ||b |cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a ·b =x 1x 2+y 1y 2求解,较为简捷、明了.2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.【举一反三】(2018·全国卷Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a·(2a -b)=()A .4B.3C .2D .0【变式1】(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为()A.-15B.-9C.-6D.0考点二平面向量的垂直【典例2】【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且 a b ,则m =__________.【方法技巧】1.当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.2.数量积的运算a ·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .【变式2】(2018·北京卷)设向量a =(1,0),b =(-1,m ).若a ⊥(ma -b ),则m =________.考点三平面向量的模【典例3】【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=()B.2D.50【方法技巧】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【变式3】(2019·河南安阳一中调研)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.考点四求向量的夹角【典例4】【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为()A .π6B .π3C .2π3D .5π6【方法技巧】1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=a·b |a||b|求解.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式4】【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.考点五平面向量与三角函数【典例5】(2017·江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.【方法技巧】平面向量与三角函数的综合问题的解题思路:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式5】(2019·河北石家庄模拟)已知A,B,C分别为△ABC的三边a,b,c所对的角,向量m=(sin A,sin B),n=(cos B,cos A),且m·n=sin2C.(1)求角C的大小;(2)若sin A,sin C,sin B成等差数列,且CA→·(AB→-AC→)=18,求边c的长.。

高考数学全程一轮复习第五章平面向量与复数第三节平面向量的数量积及其应用课件




巩固训练2
(1)(多选)[2024·广东广州模拟]已知向量a=(1,2),b=(-2,1),则
(
)
A.(a-b)⊥(a+b)
B.(a-b)∥(a+b)
C.|a-b|=|a+b|
D.b-a在a上的投影向量是a
答案:AC
(2)[2024·安徽合肥模拟]已知非零向量a,b,c满足a⊥(b+c),|b|=
+b)⊥c,且c=(-1,1),∴(2a+b)·c=-(2m+1)+3m-2=0,解得m=3.故选B.
角度四 投影向量
例 5 [2024·江苏常州模拟]已知平面向量a,b,满足|a|=2,b=(1,
1),|a+b|= 10,则a在b方向上的投影向量的坐标为(
)
A.(
2
2
, )
2
2
C.(-1,-1)
4.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=________.
a·c+b·c
5.平面向量数量积的性质及坐标表示
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
数量积

夹角
a⊥b的充要条件
|a·b|与|a||b|的关系
问题思考·夯实技能
两个向量的数量积大于0(或小于0),则夹角一定为锐角
提示:不一定.当两个向量的夹角为0(或π)时,数量积也大于0(或小于0).
【问题2】 由a·b=0一定可以得出a=0或b=0吗?
提示:不能推出a=0或b=0.因为当a·b=0时,还有可能a⊥b.
关键能力·题型剖析
题型一 平面向量数量积的运算
与b的夹角为π时不成立).

2020届高考理科数学一轮复习讲义:第五章§5.2 平面向量的数量积及其应用


λ
使得

为△ABC
的内心;
a →PA+b P→B+c P→C = 0⇔P 为△ABC 的内心. (2) | →PA | = | P→B | = | P→C | ⇔P 为△ABC 的外心. (3)→GA+G→B+G→C = 0⇔G 为△ABC 的重心. (4)→PA·P→B = P→B·P→C = P→C·→PA⇔P 为△ABC 的垂心.
量,且 | a | = | b | = | a-b | ,则 a 与 a+b 的夹角为 .
解题导引
(1) 写出 a 与 b 的坐标,由夹角为锐角得 cos〈 a,b〉 > 0 且
cos〈 a,b〉 ≠1,从而转化为关于 λ 的不等式,解不等式求其范围. (2)由 | a | = | b | 得 | a | 2 = | b | 2,由 | b | = | a - b | 得 a · b =
对应学生用书起始页码 P83
一、求解平面向量模的方法
利用向量数量积求解长度问题是向量数量积的重要应用, 求解平面向量模长的常用方法如下:
(1) | a | = a·a .
(2) | a±b | = (a±b) 2 = a2 ±2a·b+b2 .
(3) 若 a = ( x,y) ,则 | a | = x2 +y2 或 | a | 2 = x2 +y2 . (1) (2019 广东珠海一中 12 月调研,6) 平面向量 a,b
4 = 12.所以 | a+2b | = 2 3 . 解法二( 坐标 法) : 根 据 已 知 条 件 建 立 恰 当 的 坐 标 系, 由 题
意,不妨取



2,0)
,b

æ
ç

高考数学一轮总复习教学课件第五章 平面向量、复数第3节 平面向量的数量积及平面向量的应用


1.平面向量数量积的有关概念
向量的
夹角
数量积
的定义
已 知两 个 非 零 向 量 a , b , O 是平 面上的 任意一 点 , 作


=a,=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b
的夹角
已知两个非零向量a与b,它们的夹角为θ,把|a||b|
cos θ叫做向量a与b的数量积(或内积),记作a·b,即
A.20
C.20
)
B.-20

D.-20







解析:由题意知<,>=120°,故·=||·||·cos<,


>=-5×8× =-20.故选 B.

3.已知向量a=(2,2),b=(0,-3),则a与b的夹角的余弦值为(

A.-


C.

B.


解析:(2)因为a=(3,1),b=(2,2),
所以a+b=(5,3),a-b=(1,-1),
则|a+b|= + = ,|a-b|= + = ,(a+b)·(a-b)=5×1+3×(-1)=2,
(+)·(-)
所以 cos<a+b,a-b>=
|+||-|
=




||cos∠PAB 表示在上的投影向量的数量,所以结合图形可知,
当 P 与 C 重合时投影向量的数量最大,当 P 与 F 重合时投影向量的数量




最小.又·=2 ×2×cos 30°=6,·=2×2×cos 120°=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,则∠与的夹角;
与同向;
与反向;
时,与垂直,记⊥;
与,它们的夹角为,则·=︱︱·︱叫做与的数量积(或内积)。

规定
︱cos=在
·等于的长度与在

=
与同方向时,与
与其它任何非零向量之间不谈夹角这一问题。

·=
与的夹角为90与垂直,记作⊥。

⊥·=O
(1)若向量a=(1,
1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=()
A.6B.5
C.4 D.3
(2)
(20xx·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,
垂足为P,且AP=3,则·=________.
(1) 8a-b=8(1,1)-(2,5)=(6, 3),
所以(8a-b)·c=(6,3)·(3,x)=30.
即18+3x=30,解得x=4.
(2)法一:∵=+=++=++=+++=2++,又由AP⊥BD得⊥且
⊥,
∴·=0,且·=0于是·=·(2++)=22=2||2=18.
法二:·=·(+)
=·(++)
=2·+·
=2||·|,
=2×||·||·|| ||
=2×||2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cos θ求解;
以题试法典题导入
由题悟法
以题试法
典题导入
由题悟法以题试法
典题导入
由题悟法以题试法
与反向;
时,与垂直,记⊥;
·=︱︱·︱︱cos叫做与的数量积(或内积)。

规定
︱cos称为向量在方向上的投影。


=
·=
与的夹角为90与垂直,记作⊥。

⊥·=O
的有向线段的起点和终点的坐标分别为。

相关文档
最新文档