多维数据分析基础与方法

合集下载

多维数据分析方法详解概要

多维数据分析方法详解概要

15
5.转轴(pivot or rotate)
转轴就是改变维的方向。
交换“时 间”和 “经济性 质”轴
16
3.3 维度表与事实表的连接
维度表和事实表相互独立,又互相关联并 构成一个统一的架构。 构建多维数据集时常用的架构: 星型架构 雪花型架构 星型雪花架构 在SQL Server 2000中,这些架构的中 心都是一个事实数据表。
维的一个取值称为该维的一个维度成员(简称维 成员)。 如果一个维是多级别的,那么该维的维度成员是 在不同维级别的取值的组合。 例如,考虑时间维具有日、月、年这3个级别, 分别在日、月、年上各取一个值组合起来,就得 到了时间维的一个维成员,即“某年某月某日”。
8多维数据集ຫໍສະໝຸດ 例93.2 多维数据分析方法
6
4. 维的级别(Dimension Level)
人们观察数据的某个特定角度(即某个维)还可 以存在不同的细节程度,我们称这些维度的不同 的细节程度为维的级别。 一个维往往具有多个级别. 例如描述时间维时,可以从月、季度、年等不同 级别来描述,那么月、季度、年等就是时间维的 级别。
7
5. 维度成员(Dimension Member)
3
1. 多维数据集(Cube)
多维数据集由于其多维的特性通常被形象 地称作立方体(Cube), 多维数据集是一个数据集合,通常从数据 仓库的子集构造,并组织和汇总成一个由 一组维度和度量值定义的多维结构。 SQL Server 2000中一个多维数据集最 多可包含128个维度和1024个度量值。
某个维度表不与事实表直接关联,而是与 另一个维表关联。 可以进一步细化查看数据的粒度。 维度表和与其相关联的其他维度表也是靠 外码关联的。 也以事实数据表为核心。

多维分析操作方法

多维分析操作方法

多维分析操作方法多维分析是一种用于处理和分析多维数据的统计方法,在数据挖掘、商业智能、市场调研等领域都有广泛的应用。

多维分析的目的是通过对数据集合中的各个维度之间的关系进行探索,从而揭示出数据中存在的模式和规律。

在进行多维分析时,可以采用多种操作方法来处理数据和生成分析结果。

一、数据预处理在进行多维分析之前,必须首先进行数据预处理,以确保数据的准确性和一致性。

数据预处理的主要任务包括数据清洗、数据集成和数据变换等。

1. 数据清洗:通过去除数据中的错误、缺失和冗余等问题,保证数据的完整性和正确性。

2. 数据集成:将来自不同来源的数据进行整合,创建一个统一的数据集合,便于后续的分析和处理。

3. 数据变换:对原始数据进行变换,使其更适合进行多维分析。

常见的数据变换方法包括聚合、离散化、标准化等。

二、维度选择和维度约简在多维分析中,通常会面临维度过多的问题,因此需要对维度进行选择和约简,以减少分析的计算量和复杂度。

常见的方法包括:1. 主成分分析:通过线性变换将原始数据转换为一组新的正交变量,即主成分,用于表示原始数据的大部分变异性。

2. 因子分析:通过寻找一组潜在因子,将多个观测变量进行组合,得到一个更小的一维或二维因子空间。

3. 独立成分分析:通过寻找一组相互独立的成分,将原始数据进行解耦,找出数据中的隐藏模式和结构。

三、关联和分类分析关联和分类分析是多维分析中常用的操作方法,用于探索数据中的相关规律和潜在分类。

1. 关联分析:通过寻找数据中的关联规则和频繁项集,揭示出数据中的相互依赖和关联性。

常用的关联分析方法有Apriori算法和FP-Growth算法等。

2. 分类分析:通过将数据样本分为不同的类别,找出数据中的潜在分类结构。

常用的分类分析方法有决策树、朴素贝叶斯、支持向量机等。

四、聚类和异常检测聚类和异常检测是多维分析中常用的数据处理方法,用于发现数据中的聚类结构和异常点。

1. 聚类分析:通过将数据分为不同的聚类,找出数据中的相似性和簇结构。

多维度数据分析方法与应用

多维度数据分析方法与应用

多维度数据分析方法与应用随着互联网普及和数据技术的不断发展,数据分析变得越来越重要。

数据分析可以帮助企业了解消费者群体,优化产品设计,提高生产效率,制定线上线下营销策略,甚至可以预测市场趋势。

然而,数据分析并不容易,需要一定的知识和技能。

本文将介绍多维度数据分析方法与应用。

一、多维度数据概述所谓多维度数据,指的是在数据仓库中存储的数据,通常包括以下几个方面:1. 事实表:即数据仓库中的主数据表,包含以数字为主的业务数据,例如销售额、访问量等。

2. 维度表:包含维度信息,例如时间、地点、产品类型等。

3. 桥表:连接事实表和维度表之间的表。

通过多个维度对数据进行分析,可以找出不同维度之间的关系,有助于企业了解消费者群体和市场趋势,优化产品设计和营销策略。

二、多维度数据分析方法1. 多维度数据分析OLAPOLAP(Online Analytical Processing)是一种用于多维数据分析的技术,可以分析事实表和维度表之间的关系,生成数据分析结果。

OLAP主要分为基于多维数据结构和基于关系型数据结构两种类型。

基于多维数据结构的OLAP在设计时已经考虑到了多个维度,方便数据分析和查询。

其主要优点是数据读取速度快,灵活性高,但是缺点是数据存储占用空间大,数据插入和更新速度慢。

基于关系型数据结构的OLAP则是利用多表连接来实现多维度数据分析,数据存储空间较小,但是查询速度相对较慢。

2. 数据挖掘数据挖掘指的是在大量数据中寻找未知的关联规则、趋势或模式的过程。

数据挖掘可以帮助企业发现隐藏在数据背后的知识,有助于优化产品设计和营销策略。

数据挖掘主要分为两种模式:监督式和非监督式。

监督式数据挖掘利用已知的标签来训练模型,例如利用顾客数据的购买历史来预测未来购买意愿;非监督式则是在不知道标签情况下,发现数据的内在规律。

3. 多元统计分析多元统计分析包括回归分析、聚类分析和主成分分析等,用于研究多个变量之间的关系。

多维数据分析的数据挖掘方法与实现

多维数据分析的数据挖掘方法与实现

多维数据分析的数据挖掘方法与实现随着互联网技术的不断发展,数据量的爆炸式增长以及数据种类和形式的多样化,传统的数据分析方法面临着巨大的挑战。

人们需要更加高效、智能化的数据分析方法来解决如何从海量数据中发现有用的信息、洞察趋势和规律的问题。

而此时,多维数据分析和数据挖掘的方法就成为了一种重要的解决方案。

一、什么是多维数据分析多维数据分析是一种能够从不同维度、角度对数据进行深入分析和洞察的方法。

它能够将海量数据进行分层次管理和分析,让人们能够以一种运用角度而不是搜索字符的方式来发现潜在的规律和行业趋势。

多维数据分析不再是简单的筛选和排序,而是将数据进行了一种维度的切片,使得数据能够在不同的角度和维度下展现出不同的特性和趋势,为人们提供了更加高效、精准和及时的数据支持。

二、多维数据分析的实现方法针对多维数据分析应用场景的不同,可以选择不同的数据分析方法。

目前比较常见的方法包括OLAP(联机分析处理)、数据挖掘、人工智能等。

1.OLAP(联机分析处理)OLAP(联机分析处理)是一种处理多维数据的技术。

将数据处理程序与数据库紧密集成,使得用户能够快速自由的对数据进行查询和分析。

用户可以通过图表、表格等方式来直观的展现数据,同时在查询数据时也不会对数据库造成太大的压力。

OLAP有一种叫做Rolap的实现方式,具体是应用一些基于存储的索引数据结构来增加分析效率。

2.数据挖掘数据挖掘是一种通过挖掘大量数据来发现其中规律、趋势的方法。

数据挖掘可以通过对数据进行聚类、分类、预测等操作来发现其中的信息和潜在的趋势。

此时,选择适当的算法和模型是十分重要的,比如k-means算法、朴素贝叶斯分类等。

3.人工智能人工智能是一种能够模拟人脑智慧的技术。

通过让计算机具有自主决策、学习、推理等能力,让计算机能够帮助人们更好的处理和分析大量的数据。

比如使用神经网络来进行数据分析,或者是通过机器学习来进行数据预测等。

三、多维数据分析的实践案例1.电商行业中的数据分析电商行业中的数据分析是很常见的应用场景。

多维组学数据的分析与挖掘方法

多维组学数据的分析与挖掘方法

多维组学数据的分析与挖掘方法随着科技的不断发展,人类对生物大数据的获取能力也随之提高。

在这些数据中,不仅包括基因组、转录组、蛋白质组等单一维度的数据,也包括多维度的组学数据。

这些数据能够同时反映出生命体系中不同层次的信息,帮助科学家更全面地理解生命的本质。

因此,对这些多维组学数据进行合理的分析和挖掘,已成为实现个性化医疗和精准治疗的重要手段。

一、多维组学数据多维组学数据是指在相同生物体系中,通过多种方法采集到的不同类型生物学信息的数据,包括基因组、转录组、蛋白质组、代谢组和表型等。

这些数据可以由不同技术平台获取,如基因芯片、RNA测序、质谱、核磁共振等。

多维组学数据的优点是它们能够同时反映不同层次的生物学变化,如基因表达、蛋白质活性、代谢扰动和表型改变等。

这些变化与疾病的发生和发展有关,因此,多维组学数据的分析和挖掘被广泛应用于生物医学研究和临床治疗中。

二、多维组学数据分析方法多维组学数据的分析方法可以分为两大类:数据降维和数据整合。

数据降维是指将多维数据降低到较低维度,以达到更好的可视化和处理效果。

数据整合则是利用不同数据集之间的相关性,将它们整合起来获得更为全面有效的信息。

1、数据降维数据降维方法包括主成分分析(PCA)、因子分析(FA)、独立成分分析(ICA)等。

其中,PCA是一种统计分析方法,常用于处理高维数据,将数据投影到低维空间上,以便进行可视化和处理。

FA则是一种多元统计方法,它可将许多相关变量减少到少数几个无关公因子,以便于进行更复杂的统计分析。

ICA则是从多维数据中提取独立成分的方法,常用于信号处理和神经科学研究中。

2、数据整合数据整合方法有多种,如属性选择、特征提取和集成学习等。

属性选择是将一些无关和冗余的属性从原始数据中去除,以提高数据质量和减少计算成本。

特征提取是将原始数据转换为具有类别相关性的特征集合,以应对高维数据复杂性的挑战。

而集成学习则是将多个模型组合起来共同完成一个任务,从而提高模型的泛化能力和鲁棒性。

多维数据分析

多维数据分析

多维数据分析——深入剖析数据的价值与意义随着信息时代的到来,庞大的数据海洋成为了当代社会最为重要的资源之一。

无论是政府部门,还是企业机构,乃至于个人用户都面临着数据处理和分析的难题。

然而,单纯的数据处理和简单的数据分析已经无法满足准确、快速获取信息的需求。

如今,作为一种能够深入剖析数据的手段,备受关注。

一、的基本原理与方法是一种将多个数据属性组合在一起分析的方法,利用多维数据库和 OLAP 工具,进一步拓展和加强了简单数据分析的能力。

它可以充分利用数据中的各种关联关系,帮助数据分析人员在不同的维度上进行数据细化和挖掘,从而更全面、更准确地了解数据本身所蕴含的信息。

在具体实现上,主要利用多维数据模型和一些专业的数据分析工具。

这些工具可以通过定义多维数据维度、指标和数据表格等内容,实现对数据各种不同维度信息的分类、整合和对比。

这不仅可以简化数据分析过程,更可以确保数据分析的准确性和有效性。

二、的应用场景由于拥有更强的数据细化和挖掘能力,因此在实际应用中具有广泛的适用场景。

以下是几个常见的例子:1.企业销售分析。

企业销售分析是中应用最为广泛的场景之一。

通过不同的维度分析销售情况,可以帮助企业诊断当前市场情况,调整销售策略,提高销售收益。

2.金融风险评估。

金融风险评估通常需要分析许多不同的因素,如市场走势、数据波动、客户风险等。

可以更准确地识别并分析这些因素,为投资决策和风险控制提供支持。

3.医疗数据分析。

医疗行业的数据非常庞大复杂,且往往需要涉及多个数据维度,如病人的年龄、性别、体重、病史、检测结果等。

通过,可以更好地理解病人的历史病历和当前状态,及时调整治疗方案。

三、的优势相对于简单数据处理和分析,有着更为明显的优势。

1.更深入地挖掘信息。

是一种结合了多个数据维度和多个角度的分析方式,可以帮助数据分析人员更全面、更深入地了解数据本身所蕴含的各种信息。

2.提高数据分析的精度和效率。

可以通过多个数据维度之间的相互分析,帮助数据分析人员找到隐藏在数据中的各种规律和异常,从而提高分析的精度和效率。

多维数据分析的方法

多维数据分析的方法

多维数据分析的方法随着科技的不断发展和社会的日益进步,我们的生活中到处都是数据。

数据是信息的载体,而正是这些信息为我们提供了各种各样的决策依据和预测结果。

然而,大部分数据都是分散而且复杂的,难以准确提取,因此需要使用多维数据分析方法来进行深度挖掘和分析。

本文将探讨多维数据分析的方法和技术,帮助读者更好地了解大数据背后的秘密。

多维数据分析的概念多维数据分析,也叫做MDA(Multidimensional Data Analysis),是一种关于数据分析的方法和技术,采用多个角度来分析数据。

这种方法基于关系数据库理论,可以描述和分析多维数据,包括离散和连续性变量。

它是从多个维度去描述和分析数据,在不同维度上揭示数据背后的规律。

多维数据分析主要涉及数据挖掘,统计学和人工智能等领域。

多维数据分析的用途多维数据分析的最主要用途是数据挖掘。

通过对多维数据进行分析,可以有效地发现数据中的异常点和规律。

多维数据分析可以从不同的维度来切入,找出不同维度之间的相互作用,为决策者提供更全面和可靠的数据分析结果。

多维数据分析可以用于市场研究、客户分析、风险评估、财务分析等领域。

1、统计分析法统计分析法是多维数据分析的基础方法之一,通过对数据的频率分布、分类总结、假设检验等统计学方法进行分析,从而得到数据的规律性,并可以对未来进行某种程度的预测。

2、聚类分析法聚类分析是一种数据挖掘方法,它可以将数据集中的对象按照某些特征进行分类,并标记相同的类别。

这种方法可以用来寻找数据集中的相关性,并从多维度的角度来分析数据。

3、因子分析法因子分析是一种通过变量分解和降维的方法,将多个变量转化为少量的复合性因子。

这种方法适用于检测数据中的共性和相关性,从而提炼出比单个变量更能反映数据本质的信息。

4、主成分分析法主成分分析是一种通过求解协方差矩阵的特征值和特征向量,将原始数据变为最小样本数的线性组合,从而降低数据维度的方法。

结论多维数据分析是数据分析的重要方法和技术,可以从多个维度来进行数据挖掘和分析。

多维数据分析基础

多维数据分析基础

多维数据分析基础多维数据分析是指按照多个维度(即多个⾓度)对数据进⾏观察和分析,多维的分析操作是指通过对多维形式组织起来的数据进⾏切⽚、切块、聚合、钻取、旋转等分析操作,以求剖析数据,使⽤户能够从多种维度、多个侧⾯、多种数据综合度查看数据,从⽽深⼊地了解包含在数据中的信息和规律。

多维数据分析以数据仓库为基础,按照维度模型来设计数据仓库。

在维度模型中,把存储度量的表称作事实表,把存储属性的表叫做维度表。

事实表存储的是可概括的数据,维度中包含属性和层次结构。

⽤户可以按照层次结构对数据进⾏聚合,从High Level上分析数据。

⼀,度量和度量值度量(Measure)是事实表中⼀个数值类型的属性,对数值进⾏聚合计算是有意义的,例如,学⽣的分数,计算学⽣的平均分数是有意义的。

度量值是指可概括的数值,是度量的值,度量值⼜被称作事实(fact),这也是“事实表”名称的由来。

从维度模型来看,事实表中除了维度的外键列和主键列之外,其他的列都是度量,这些列的值是度量值。

由此可以得出,事实表的构成是:主键列+维度外键+度量。

事实表存储数据的详细程度称作事实表的粒度,由于粒度是由事实表引⽤的外键列确定的,因此⼀个事实表只能有⼀个粒度,不同粒度的事实数据必须分别存储到不同的事实表中。

⼆,维度和层次结构维度是分析数据的⾓度,维度和维度之间是相互独⽴的。

在报表中,增加维度只是创建了⼀个新的、独⽴的细分度量值的⽅法。

从数据分析的⾓度来讲,增加维度是把度量值更细分,增加新的属性来分解数据。

属性是维度表的⼀列,主键属性(Primary Key Attribution)唯⼀地确定了维度表中的其他属性,属性值是int类型;由于主键属性不具有可读性,通常为维度表创建⼀个名称属性(Name Attribution),是字符类型,⽤于说明主键属性标识的实体。

维度表的每⼀⾏都是不同的实体,但是其名称属性可能是相同的,例如,⼈名。

由于主键属性是int类型,值是唯⼀的,占⽤的存储空间⼩,因此⼤量应⽤于事实数据中,作为外键列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
多维数据的存储方式
SQL Server 2005的Analysis 三种多维数据 存储方式: MOLAP(多维OLAP) ROLAP(关系OLAP) HOLAP(混合OLAP)
23
1.ROLAP
ROLAP的数据与计算结果直接由原来的关系数 据库取得,存储维度的数据以数据表形式存储在 OLAP服务器上。 ROLAP将支撑多维数据的原始数据、多维数据 集数据、汇总数据和维度数据都存储在现有的关 系数据库中,并用独立的关系表来存放聚集数据。 不存储型架构示意图
事实数据表
时间 书籍_id 出版社_id 书店_id
订购数量 书籍单价 书籍折扣 销售表
书籍 _id
书籍名 书籍类型 书籍出版日 作者_id 书籍维度表
作者 _id
作者名 性别 教育程度 作者维度表
21
3.星型雪花架构(Star-Snow Schema)
将星型架构和雪花式架构合并在一起使用,而成 为星型雪花架构。
39
2.快速开发应用程序
DB2 OLAP Server只需要最基本的编程经验, 就可以方便、快捷地设计和管理应用程序。 Application Manager(应用程序管理器)是 一种直观的数据模型生成程序,使用它可以创建 驻留在OLAP服务器上的商业数据的准确模型。 利用Essbase应用程序编程接口(API),可以 为DB2 OLAP服务器开发定制应用程序,满足 复杂的分析需求。
事实数据表
时间 书籍_id 出版社_id 书店_id
订购数量 书籍单价 书籍折扣 销售表
书籍 _id
书籍名 书籍类型 书籍出版日 作者_id 书籍维度表
出版社_id
出版社名 国家
城市
书店 _id
书店名 书店地址 业绩维度表
出版社维度表
19
2.雪花型架构 (Snow Schema)
某个维度表不与事实表直接关联,而是与 另一个维表关联。 可以进一步细化查看数据的粒度。 维度表和与其相关联的其他维度表也是靠 外码关联的。 也以事实数据表为核心。
3
1. 多维数据集(Cube)
多维数据集由于其多维的特性通常被形象 地称作立方体(Cube), 多维数据集是一个数据集合,通常从数据 仓库的子集构造,并组织和汇总成一个由 一组维度和度量值定义的多维结构。 SQL Server 2000中一个多维数据集最 多可包含128个维度和1024个度量值。
15
5.转轴(pivot or rotate)
转轴就是改变维的方向。
交换“时 间”和 “经济性 质”轴
16
维度表与事实表的连接
维度表和事实表相互独立,又互相关联并 构成一个统一的架构。 构建多维数据集时常用的架构: 星型架构 雪花型架构 星型雪花架构 在SQL Server 2005中,这些架构的中 心都是一个事实数据表。
28
SQL Server Analysis Services
Analysis Services提供了从数据仓库中 设计、构建及管理多维数据集的能力,同 时也可以让客户端取得OLAP数据。 我们从分析服务的特点、体系结构、存储 结构三个方面介绍分析服务。
29
1. 分析服务的特点
易用性; 灵活的数据存储模型; 伸缩性; 集成; 支持大量的API和函数; 分布式处理能力; 服务器端结构的高速缓存。
数据仓库与数据挖掘
信息管理教研室
多维数据分析基础与方法
多维数据分析基础 多维数据分析方法 维度表与事实表的连接 多维数据的存储方式 常用的服务器端分析工具 常用的客户端分析工具 各种工具的准备和安装 小结
2
多维数据分析基础
多维数据分析是以数据库或数据仓库为基础的, 其最终数据来源与OLTP一样均来自底层的数据 库系统,但两者面对的用户不同,数据的特点与 处理也不同。 多维数据分析与OLTP是两类不同的应用, OLTP面对的是操作人员和低层管理人员,多维 数据分析面对的是决策人员和高层管理人员。 OLTP是对基本数据的查询和增删改操作,它以 数据库为基础,而多维数据分析更适合以数据仓 库为基础的数据分析处理。
24
2.MOLAP
MOLAP使用多维数组存储数据,它是一种高性 能的多维数据存储格式。 多维数据在存储中将形成“立方体”的结构。 MOLAP存储模式将数据与计算结果都存储在立 方体结构中,并存储在分析服务器上。 该结构在处理维度时创建。 存取速度最快,查询性能最好,但占用磁盘空间 较多。
客户端体系结构的核心是数据透视表服务 (PivotTable Service)。 它与Analysis服务器交互,并为访问服务 器端的OLAP数据的客户端应用提供基于 COM的接口。
34
Analysis Services 客户端的体系结构
当不能连接到 OLAP服务器时可以使用
当不能连接到 OLAP服务器或者OLEDB 数据源时可以使用
沿着时间维上 卷,由“季度” 上升到半年
11
上卷(续)
上卷的另外一种情况是通过消除一个或多个维来 观察更加概况的数据。
消除“经济 性质”维度
12
2. 下钻(drill-down)
下钻是通过在维级别中下降或通过引入某个或某 些维来更细致的观察数据。
沿时间维 下钻
13
3. 切片(slice)
6
4. 维的级别(Dimension Level)
人们观察数据的某个特定角度(即某个维)还可 以存在不同的细节程度,我们称这些维度的不同 的细节程度为维的级别。 一个维往往具有多个级别. 例如描述时间维时,可以从月、季度、年等不同 级别来描述,那么月、季度、年等就是时间维的 级别。
7
5. 维度成员(Dimension Member)
30
2.分析服务的体系结构
31
1.服务器端体系结构
Analysis Services 提供服务器功能以创建和管理 OLAP 多维数据集及数据挖掘模型,并通过透视表服务为 客户端提供数据。 服务器端操作通常包括: 从关系数据库,通常是数据仓库,创建并处理多维数据 集。 以多维结构、关系数据库或二者的结合形式存储多维数 据集数据。 从多维数据集或关系数据库创建数据挖掘模型,通常是 在数据仓库中创建。 以多维结构、关系数据库或标准化 XML 格式的预测模 型标记语言 (PMML) 的形式存储数据挖掘模型的数据。
17
1. 星型架构
维度表只与事实表关联,维度表彼此之间 没有任何联系, 每个维度表中的主码都只能是单列的,同 时该主码被放置在事实数据表中,作为事 实数据表与维表连接的外码。 星型架构是以事实表为核心,其他的维度 表围绕这个核心表呈星型状分布。
18
星型架构示意图
时间
年 季度 月 时间维度表
OLAP立方的 OLE DB 数据源
客户端应用
带OLAP和数据挖掘支持 的OLE DB 多维数据 文件
MOLAP
数据透视表服务 带OLAP扩展的ADO
多维数据
数据挖掘模 型的数据源
客户端应用
本地数据挖 掘模型
Analysis 服务器
35
数据透视表服务的功能
为所有客户端应用程序进行在线和离线分析提供统一的与 OLAP服务器的连接点。 作为服务提供支持使用关系型数据库创建的多维数据,实 现多维数据展示功能。 支持SQL子集,并能将查询结果以数据透视表的形式显 示出来。 支持MDX(多维表达式)。 支持在客户端直接从关系型数据源中创建本地多维数据。 支持客户端从存放在分析服务器上的数据挖掘模型建立本 地的数据挖掘模型。 支持用户从数据源下载数据,并以多维结构保存在本地, 以便进行离线分析。
维的一个取值称为该维的一个维度成员(简称维 成员)。 如果一个维是多级别的,那么该维的维度成员是 在不同维级别的取值的组合。 例如,考虑时间维具有日、月、年这3个级别, 分别在日、月、年上各取一个值组合起来,就得 到了时间维的一个维成员,即“某年某月某日”。
8
多维数据集示例
9
多维数据分析方法
36
IBM DB2 OLAP Server
是IBM公司提供的一个用于构建多维数据分析功 能的软件, 提供了丰富的财务、数学和统计功能以及计算功 能, 可以对数据进行快速、直接的分析, 支持Web平台。 支持访问企业范围内的信息,可实现快速应用程 序开发和数据建模, 支持多用户的并发操作,并支持第三方分析工具, 以实现集成的开放式商业智能解决方案。
多维分析可以对以多维形式组织起来的数 据进行上卷、下钻、切片、切块、旋转等 各种分析操作,以便剖析数据,使分析者、 决策者能从多个角度、多个侧面观察数据 库中的数据,从而深入了解包含在数据中 的信息和内涵。
10
1. 上卷(Roll-Up)
上卷是在数据立方体中执行聚集操作,通过在维 级别中上升或通过消除某个或某些维来观察更概 括的数据。
在给定的数据立方体的一个维上进行的选择操作。 切片的结果是得到了一个二维的平面数据。
“时间=1 季度”
14
3. 切块(dice)
在给定的数据立方体的两个或多个维上进行的选 择操作。切块的结果是得到了一个子立方体。
(度量值=“正常” or “次级”) And (时间=“1 季度” or “2季 度”)
内容
源数据的副本 占用分析服务器存 储空间 使用多维数据集 数据查询 聚合数据的查询
MOLAP ROLAP HOLAP
有 大 无 小 无 小

快 快
较大
慢 慢

慢 快
使用查询频度
经常
27
不经常
经常
常用的服务器端分析工具
可以用作多维数据分析的服务器端工具很 多,其中常用的、功能比较强大的有: Microsoft公司的SQL Server Analysis Services(SQL Server分 析服务); IBM公司的DB2 OLAP Server (OLAP服务器)。
相关文档
最新文档