纳米TiO的制备方法综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米TiO2的制备方法综述

1.引言

纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。其中纳米二氧化钛作为一类无机功能材料备受关注。氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。制备和开发纳米二氧化钛成为国内外科技界研究的热点。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。

2.气相法

气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。[3]

2.1 扩散火焰法

以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。典型的P25是德国的Deguss公司通过TiCl4氢氧火焰法制的,其反应方程式为: TiCl4(g)+2H2(g)+O2(g)→4Ti02(a)+4HC1(g) (1)

工艺流程见图1:

日本Aerosil公司和美国Cabot公司等也利用此方法制的了超细的纳米二氧化钛粉体。Jang等人分别用五路管径将空气与Ar,O2,Ar/TiCl4加入到经过改进的火焰反应器中,并且利用改变气体浓度来对二氧化钛的粒径和晶型进行控制。从前期文献可见,当反应器火焰的温度在1000℃一1700℃范围内时,可制得粒径在12nm-29nm范围的二氧化钛,所含锐钛矿所占的比例在28%-75%,产量最高可达到20g/h。 Katzer等人将N2 ,CH4 ,Ar/TiCl4与氧气混合使其反应,且通过对电极电场的控制来调整火焰的温度和结构,进而控制纳米二氧化钛的粒径和晶型。

此方法制备的纳米二氧化钛具有小粒径、高纯度、良好的分散性和大的表面活性、较小的团聚现象等优点,但是此过程要求温度较高,工艺参数的控制要比较精确,且对设备材质的要求比较严格,生产成本相对较高。[3]

2.2 TiCl4气相氧化法

该方法用的原料是TiC14和O2,化学反应式为:

TiCl4(g)+O2(g)→Ti02(s)+C12(g) (2)

利用N2携带TiC14蒸气,预热到435℃后经套管喷嘴的内管进入高温管式反应器,O2预热到870℃后经套管喷嘴的外管也进入反应器,TiC14和O2在900℃-1400℃下反应,生成的纳米Ti02微粒经粒子捕集系统,实现气固分离。

该工艺目前关键是要解决喷嘴和反应器的结构设计及Ti02粒子遇冷壁结疤的问题。其优点是自动化程度高,可制备优质的粉体。

施利毅等人在外径4.8cm、内径3.9cm和加热段长95.0cm的刚玉高温反应器中,利用TiC14/A1C13高温气相氧化反应合成金红石型纳米Ti02颗粒。通过氧气预热、反应器尾部冷凝等措施控制产物粒径,制备的类球形金红石型纳米Ti02粒径分布为30nm-50nm。他们还研究发现Ti02颗粒中金红石相含量随反应温度变化出现最大值,并随停留时间延长而增大,加入A1C13能增加Ti02表面的氧空位,促使锐钛相向金红石相转化,使金红石相含量较未掺铝时大幅度提高。当反应温度1100℃、进料中A1C13和TiC14摩尔比为0.25、停留时间为1.73s 时,可得到纯金红石相纳米Ti02颗粒。

添加剂对Ti02晶型有明显的影响,Akhtar等研究发现加入硅、磷、硼等卤化物将导致气相合成Ti02的金红石相含量下降;Vemury等研究则发现,在燃烧反应器中加入A1C13能提高金红石相含量,但Ti02粒子间烧结加剧,粒径增大,难以获得纳米尺度Ti02颗粒。[1]

2.3 雾化水解法

雾化水解法采用钛醇盐为前驱物,利用静电超声等手段将其雾化成极其微小的液滴,再随载气进入反应器中,经过短时间的水解,最后得到二氧化钛粉末。该工艺最早是由美国麻省理工学院开发成功的,可以用来生产单分散的球形纳米TiO2,化学反应式是:

n(TiOR)4(g)+4nH20(g) → nTi(OH)4(s)+4nROH(g) (3)

n Ti(OH)4(s) → nTi02?H20(s)+nH2O(g) (4)

n Ti02?H20(s) → nTi02(s)+nH20(g) (5)

其基本流程见图2:

Ahonen等人将雾化水解法和溶胶凝胶法相互融合,经

过雾化的液滴可以在颗粒范围内直接水解获得胶状体,通

过烘干锻烧得到粉末。利用雾化水解法制备二氧化钛过程

迅速、纯度高、粒径大小可控、分散性好,可以达到自动

化、连续化的生产,但因制备过程中温度限制,若得到金

红石型二氧化钛则还要通过高温锻烧过程。[3]

图2:雾化水解法工艺流程图2.4 热等离子法

热等离子法制备二氧化钛的基本原理:由氢气、氢气或

者氮气组成的高温等离子流中所存在的大量高活性的离子原子或者分子快速地附着在前体的表面,经历熔融气化最后成核生长,由于周围环境的温度与等离子体的温度有很大的差别,所以会急速冷却得到高纯度的纳米二氧化钛颗粒。等离子体的组成几乎相等,粒子的温度近乎一致,属于低热等离子体。当前利用此方法制备二氧化钛的等离子体主要有射频等离子体法(RF)、微波等离子体法(MC) 和电弧等离子体法(DC)三种。

近些年来,利用热等离子方法制备纳米二氧化钛广泛受到人们的关注。Li等人将TiC 作为前体物质,利用RF方法在射流Ar-H2-CO2与射流Ar-O2中进行氧化,进而制得的二氧化钛粒径范围在10-50 nm。研究发现,利用改变射流的组成和氧气通入的位置可以控制二氧化钛的粒径,而且通过增加气体流量或者降低氧气的浓度会使二氧化钛的晶型向金红石型转变,用此方法制备的二氧化钛粒径小、纯度高,但很难实现大规模、工业化生产。[3]

相关文档
最新文档