电容式传感器
电容式传感器

电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容式传感器介绍

电容式传感器介绍
电容式传感器原理
电容式传感器分类
电容式传感器发展趋势
电容式传感器应用实例
电容式传感器原理
电容式传感器定义
电容式传感器是一种通过检测电容变化来测量物理量的传感器。
电容式传感器主要由两个平行电极板组成,其中一个电极板固定,另一个电极板可以移动。
当被测物体靠近或远离固定电极板时,两个电极板之间的电容会发生变化,从而实现对被测物体的测量。
01
工业自动化:用于检测和控制生产过程中的各种参数
02
消费电子:应用于手机、电脑等电子产品的触摸屏和按键控制
03
汽车电子:用于汽车安全气囊、刹车系统等安全设备的控制
04
医疗设备:用于医疗设备的检测和控制,如心电图仪、血压计等
电容式传感器分类
变极距式电容传感器
工作原理:通过改变两个极板之间的距离来改变电容量
4
谢谢
01
变介质式电容传感器
01
原理:利用介质的介电常数变化来检测目标物
02
应用:广泛应用于液位、压力、流量等测量领域
03
特点:结构简单、灵敏度高、响应速度快
04
局限性:受介质特性影响较大,需要选择合适的介质材料
电容式传感器应用实例
触摸屏应用
1
智能手机:电容式触摸屏广泛应用于智能手机,实现多点触控操作。
02
集成化:电容式传感器将与其他传感器进行集成,实现多参数测量,提高测量效果。
微型化:电容式传感器将向微型化方向发展,便于安装和使用,降低成本。
04
节能、环保
低功耗设计:降低能耗,提高能源利用率
1
环保材料:使用环保材料,减少对环境的影响
电容式传感器

0 r1 L0 b0
d0
当L=0时,传感器的初始电容 C 0
0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
C C C 0 ( r 2 1) L 电容变化量与电介质移动量L呈线性关系 C0 C0 L0
4. 变极距型电容传感器
初始电容 C 0 若极距缩小△d
d ) C0 0 r s d C C 0 C 2 d d d d 1 1 d d C 0 (1
0 r s
d
非线性关系
若△d/d<<1时,则上式可简化为
d C C0 C0 d
最大位移应小于间距的1/10
差动式改善其非线性 差动式
1 1 Xc d C S
被测量与d 成线性关系 无需满足 d d
3.4 电容式传感器
3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 电容式传感器的工作原理 电容式传感器主要性能 电容式传感器的特点和设计要点 电容式传感器等效电路 电容式传感器测量电路 电容式传感器的应用 容栅式传感器
由于电容传感器电容量一般都很小,电源频率即使采用几兆赫, 容抗仍很大,而R很小可以忽略,因此
1 1 1 LC 1 j L R j L jCe jC jC jC
2
Ce
C 1 2 LC
C C Ce Ce Ce 2 1 LC 1 2 L(C C ) C C C C C Ce Ce 2 2 1 L(C C ) 1 L(C C ) 1 2 LC
电容式传感器

因此其固有频率很高,适用于动态信号的测量。 ④机械损失小。电容式传感器电极间相互吸引力十分微小,
又无摩擦存在,其自然热效应甚微,从而保证传感器具有较 高的精度。
上一页 下一页 返回
第三节 电气火灾消防知识
(3)接触不良引起过热如接头连接不牢或不紧密、动触点压 力过小等使接触电阻过大,在接触部位发生过热而引起火灾。
(4)通风散热不良大功率设备缺少通风散热设施或通风散热 设施损坏造成过热而引发火灾。
(5)电器使用不当如电炉、电熨斗、电烙铁等未按要求使用, 或用后忘记断开电源,引起过热而导致火灾。
上一页 下一页 返回
第一节 安全用电知识
正确使用绝缘操作用具,应注意以下两点:
(1)绝缘操作用具本身必须具备合格的绝缘性能和机械强度。
(2)只能在和其绝缘性能相适应的电气设备上使用。
2.绝缘防护用具
绝缘防护用具则对可能发生的有关电气伤害起到防护作用。 主要用于对泄漏电流、接触电压、跨步电压和其他接近电气 设备存在的危险等进行防护。常用的绝缘防护用具有绝缘手 套、绝缘靴、绝缘隔板、绝缘垫、绝缘站台等,如图7-3所示。 当绝缘防护用具的绝缘强度足以承受设备的运行电压时,才 可以用来直接接触运行的电气设备,一般不直接触及带电设 备。使用绝缘防护用具时,必须做到使用合格的绝缘用具, 并掌握正确的使用方法。
3.变介电常数式电容传感器 因为各种介质的相对介电常数不同,所以在电容器两极板间
插入不同介质时,电容器的电容量也就不同,利用这种原理 制作的电容传感器称为变介电常数式电容传感器,它们常用 来检测片状材料的厚度、性质,颗粒状物体的含水量以及测 量液体的液位等。
电容式传感器

电容量发生变化。
ΔC
o
传感器的输出特性 不是线性关系,而是如图所示的双曲线Δ关系。
(a)
(b)
工程上常采用以下两种近似处理方法: C
① 近似线性处理
② 近似非线性处理
ΔC
o
Δ
分析表明,提高传感器的灵
敏度和减小非线性误差是相互矛
1
盾的。在实际应用中,为了解决
这一矛盾,常采用如图所示的差
2
动结构。
12
3
1-被测带材; 2-轧辊; 3-电容极板
传感器与测试技术
1-电镀层(定极板);
5
1
2-膜片(动极板);
3-焊接密封圈;
p1
p2
4-隔离膜;5-硅油
4
2
3
2.电容式加速度传感器
加速度传感器均采用弹簧-质量-阻尼系统将被测加速度变换成力或 位移量,然后再通过传感器转换成相应的电参量。下图所示为电容式加速 度传感器的结构示意图。电容式加速度传感器的频率响应快、量程范围大, 阻尼物质采用空气或其他气体。
如图所示。
l
l
ax
x x
hx h
(a)
(a)测量介质厚度
(b)
(b)测量介质位置
d DБайду номын сангаас
(c)
(c)测量介质液位
1.2 电容式传感器的应用
1.电容式压差传感器
下图所示为电容式压差传感器的结构示意图,由一个金属膜片动极板和 两个在凹形玻璃圆盘上电镀成的定极板组成。电容式压差传感器的分辨率很 高,不仅用来测量压差,也可用来测量真空或微小绝对压力(0~0.75 Pa), 响应速度为100 ms。
传感器与测试技术
电容式传感器

电容式传感器
电容式传感器是把被测量的变化转换为电容量 变化的一类传感器。实质上是一个具有可变参数 的电容器。最常用的是平行板电容传感器和圆柱 形电容传感器。
可用来测量压力、力、位移、振动、液位、 成份含量等。
1.1 平行板电容式传感器工作原理
设两极板相互覆盖的有效面积为S(m2),两极板间 的距离为d0(m),极板间介质的介电常数为ε(F/m)。若 忽略板极边缘的影响,平板电容器的电容量C(F)为:
式中:f0为等效电路谐振频率,
f0
2
1 LC
一般当f≤10MHz时,还可忽略L的影响,并且 实际使用时,只要使用条件能保证与传感器标定时 的接线条件,L可不考虑。
ZC
(RS
RP
)
1 2 RP2C 2
j( RP2C 1 2 RP2C 2
L)
由于传感器的并联电阻Rp很大,串联电阻RS很
小,忽略这两项,则等效阻抗ZC为:
ZC 1 jL jC
因此,电容传感器的等效电容Ce可由下式求得:
1 1 jL jCe jC
Ce
C
1 2LC
1
(
C f
f0 )2
2.变介质圆柱形电容式传感器(变介电常数型)
当被测液体的液面在 同心圆柱形电极间发生变 化时,将导致电容的变化。
此时,相当于两个同 轴圆柱形电容C0、C1并联:
C
C0
C1
20 (h
ln R2
x)
21x
ln R2
2 0 h
ln R2
2
(1
ln
0
R2
)x
R1
R1
R1
R1
电容式液位计属于该类。输出电容与液面高度呈线性关系。
简述电容式传感器的工作原理及分类

简述电容式传感器的工作原理及分类1. 引言大家好,今天咱们聊聊电容式传感器。
这玩意儿其实很有意思,感觉就像是给我们生活加了点神奇的调料。
电容式传感器是利用电容的变化来检测各种物理量,比如距离、压力、湿度等,听起来是不是挺酷的?别急,让我慢慢给你道来。
2. 工作原理2.1 基本原理电容式传感器的核心在于“电容”,它的基本原理其实不复杂。
电容就像一个小小的储存器,能存储电荷。
它由两个导体和一个绝缘体构成,导体之间的距离和面积会影响电容的大小。
想象一下,如果你把这两个导体之间的距离拉近,电容就会增加;如果拉远,它就会减少。
这就像拉开了跟好朋友的距离,感觉远了点,但心还是连着的!传感器利用这个原理,检测到的电容变化就能转化为电信号,从而告诉我们所需的信息。
2.2 应用领域这玩意儿可不止是好玩,还在很多地方派上了用场呢!比如在手机屏幕上,电容式触摸屏就是用这种原理,轻轻一碰就能反应,真是科技的魔力。
此外,在工业领域,电容式传感器也能监测液位、压力等等,帮助工厂提高效率。
这就像是在忙碌的城市中,一位默默无闻的守护者,时刻关注着每一个细节。
3. 分类3.1 按照工作方式电容式传感器其实还有不少分类,按照工作方式可以分为接触式和非接触式。
接触式传感器需要和被测物体接触,像是在测量物体的表面距离;而非接触式传感器则是远程“观察”,就像是个好奇的小侦探,远远地就能知道情况。
这两者各有千秋,接触式通常精度高,但可能受环境影响;而非接触式则灵活多变,适合各种环境。
3.2 按照测量对象再者,根据测量对象,我们也可以把电容式传感器分为位置传感器、压力传感器和湿度传感器等等。
位置传感器就像是小道消息,随时掌握物体的移动;压力传感器则是个“忍者”,默默监测压力的变化,及时发出警报;湿度传感器则在关心空气的湿润程度,给植物、房间等提供最适宜的环境。
它们的身影无处不在,构成了我们生活的“无形卫士”。
4. 小结综上所述,电容式传感器的工作原理和分类其实并不复杂,充满了趣味性。
教案项目电容式传感器

教案项目:电容式传感器一、教学目标1. 了解电容式传感器的原理和应用。
2. 掌握电容式传感器的接线方式和基本操作。
3. 能够分析电容式传感器的测量数据并进行误差处理。
二、教学内容1. 电容式传感器概述定义:电容式传感器是一种利用电容变化来检测物体或物质的传感器。
特点:灵敏度高、响应速度快、非接触式测量等。
2. 电容式传感器的工作原理电容的定义和公式:电容是电荷存储的能力,C = Q/V。
电容式传感器的测量原理:通过测量电容的变化来检测物体或物质的变化。
3. 电容式传感器的接线方式和基本操作接线方式:电容式传感器通常有单端式和差分式两种接线方式。
基本操作:如何连接电源、信号输出、接地等。
4. 电容式传感器的测量数据分析和误差处理测量数据分析:如何分析电容式传感器的输出信号,并进行数据处理和显示。
误差处理:常见的误差类型和处理方法,如系统误差、偶然误差、粗大误差等。
三、教学方法1. 讲授法:讲解电容式传感器的原理、接线方式和基本操作。
2. 实践操作法:学生亲自动手进行电容式传感器的接线和操作,并进行测量数据分析和误差处理。
3. 问题解答法:针对学生提出的问题进行解答和讨论。
四、教学准备1. 教具:电容式传感器、示波器、信号发生器等。
2. 教材或讲义:关于电容式传感器的相关知识。
五、教学步骤1. 引入:介绍电容式传感器在工业和科研中的应用,激发学生的兴趣。
2. 讲解电容式传感器的原理和接线方式,并展示示例图片。
3. 学生进行实践操作,接线和操作电容式传感器,并记录测量数据。
4. 学生进行分析数据,识别和处理误差。
5. 学生提出问题,教师进行解答和讨论。
六、教学评估1. 学生自评:学生对自己的学习过程和掌握情况进行评价,包括理解程度、操作技能等。
2. 同伴评价:学生之间互相评价,互相学习,提高彼此的操作技能和解决问题的能力。
3. 教师评价:教师对学生的学习情况进行评价,包括理论知识的掌握和实际操作能力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5 运算放大器电路
由前述已知,极距变化型电容传感器的极距变化 与电容变化量成非线性关系,这一缺点使电容传 感器的应用受到一定限制。为此采用比例运算放 大器电路可以得到输出电压u g 与位移量的线性关系。
C0 ug =-u 0 0 A
输出电压ug与电容传感器间隙 成线性关系。这种电路用于位移测量传感器。
4.温度影响
环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系, 从而引入温度干扰误差。温度影响主要包括温度对结构尺寸和对介质的影响两 方面。
24
四、电容式传感器的研究现状
1.PT800型压力变送器
PT系列产品中的标准型号,内置陶瓷电容式传感器。可以自由选 配模拟、数字现场显示表头。有多种过程连接件,可以现场调零 点、满量程。广泛用于自动化工业中对液体、气体和蒸汽的测量。
27
9
1.2.2 角位移型
当动板转动一角度时,与定板之间的覆盖面积就发生 变化,导致电容量随之改变。
覆盖面积
A
r2
2
其中, 为覆盖面积对应的中心角,r为极板半径。
r 2 所以,电容量为 C 2
C r 2 灵敏度S 常数 2
由上式可知,角位移型电容传感器的输出C与输入也为线性关系。
电容式传感器
目录
一、电容式传感器的工作原理及分类
二、电容式传感器的测量电路
三、电容式传感器在应用中的注意事项
四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C为
0 A C
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起 电容器电容量C的变化,从而达到从被测参数到电容的变换。
22
三、电容式传感器在应用中的注意事项
1.克服寄生电容的影响
电容式传感器由于受结构与尺寸的限制,其电容量都很小(pF到几十pF), 属于小功率、高阻抗器件,因此极易外界干扰,尤其是受大于它几倍、几十 倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重 影响感器的输出特性,甚至会淹没有用信号而不能使用。消灭寄生电容影响, 是电容式传感器实用的关键。
10
虽然面积变化型电容传感器在理想情况下灵敏度为常 数,不存在非线性误差,但实际上因为电场边缘效应 的影响仍存在一定的非线性误差,且灵敏度较低。
面积变化型一般用于测量角位移或较大的线位移。
11
1.3 介质变化型电容传感 器 对于图所示的液位测量用介质变化型
电容传感器,传感器的总电容C等于 上、下两部分电容C1和C 2的并联,即
其测量原理可表示为:
被测量 电容式传感器、A或 变化 电容C变化 测量电路 电压、电流、频率
总得来说,电容式传感器是将被测量的变化转换成电容量 变化的器件
4
通常我们限定、A、 三个参数中的两个保持不变,只改变其 中的一个参数,使电容产生变化,所以电容式传感器可分为: 极距变化型,面积变化型,介质变化型三类。
18
2.2 直流极化电路
此电路又称为静压电容传感器电路, 多用于电容传声器或压力传感器。
图所示电路,弹性膜片在外力(气压, 液压等)作用下发生位移,使电容量发生变化。 电容器接于具有直流极化电压E 0的电路中, 电容的变化由高阻值电阻R转换为电压变化。
电压输出为
0 A d dC ug RE0 RE0 dt 2 dt
26
3. 电容式CR601A型液位变送器
可将各种液位参数的变化转换成标准电流信号,远传至操作控制室, 供二次仪表或计算机装置进行集中显示、报警或自动控制。其良好的 结构及安装方式,可适用于高压、强腐蚀、易结晶、易堵塞、防冷结 等特殊条件下液位的连续检测,可广泛应用于电力、冶金、化工、食 品、制药等各行业和污水处理、锅炉汽包、煤粉包等场所的液位测量。
此时,电桥输出电压 当Cx改变时, 容的变化值 电桥有输出电压,从而课测得电
17
(2)差动接法
变压器电桥测验电路一般采用差 动连接,如图b所示。C1和C2一 差动形式接入相邻两个桥臂,另 外两个桥臂为初次线圈。在交流 电路中,C1和C2的阻抗非别为:
则有: 故,当输出为开路时,电桥空载输出电压为:
显然,输出电压与膜片位移速度成正比,因此这种传 感器可以测量电流(或液流)的振动速度,进而得到 压力。
19
2.3 谐振电路
电容传感器的电容Cx 作为谐振电路调谐电容的一部分。 此谐振回路通过电压耦合,从稳定的高频振荡器获得震荡电压。 当传感器电容量C x发生变化时,谐振回路的阻抗发生相应变化, 并被转换成电压或电流输出,经放大、检波,即可得到输出。
2 0 l h 2 x 0l C C1 C2 a bh D D ln ln d d
2 x 1 0 C 灵敏度S b =常数 h D ln d
由上式可知,这种传感器的灵敏度为常数,电容C理论上与液位h 成线性关系,只要测出传感器电容C的大小,就可得到液位h的值。
5
1.1 极距变化型电容传感器
电容器的极板面积为A,初始极距为0,极板间介质的介电常数为 A C0 电容器的初始电容量为
0
间隙0减小 时,电容量增加C,即
C C0 C
A 0
C0
1
1
0 C 1 0
2 3 C 1+ + + + C0 0 0 0 0 n + 0
介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定 。 12
13
二、电容式传感器的测量电路
电容传感器将被测物理量转换为电容量的变化后, 由后续电路转换为电压、电流或频率信号。
14
2.1 电桥型电路
将电容传感器作为桥路的一部分,由电容变化转换为 电桥的电压输出,通常采用电阻、电容或电感、电容 组成的交流电桥。
25
2.MS8000系列加速度计
瑞士COLIBRYS公司生产的应用广泛的加速度传感器系列产品,适用 于 惯性测量和倾斜测量中多个领域。此系列产品具有结构坚固、功耗低、 偏差稳定性优异等特点,保证了杰出的输出可靠性。MS8000为微硅电容 式传感器,由一片经过微机械处理的硅芯片,用于信号调整的低功率 ASIC,用于存储补偿值的微处理器,及温度传感器组成。此产品功耗低, 经过标定,结构坚固,输出稳定。 新的电子配置为复位提供固态电源, 为过电提供全面保护。
谐振电路比较灵敏,但缺点是工 作点不易选好,变化范围也较窄, 传感器连接电缆的分布电容影响 也较大。
20
2.4 调频电路
如图所示,传感器电容式振荡器谐振回路的一部分,当输入 量使传感器电容量发生变化时,振荡器的振荡频率发生变化, 频率的变化经过鉴频器变为电压变化,再经过放大后由记录 器或显示仪表指示。 这种电路具有抗干扰性强,灵敏度高等优点,可测0.01um的位 移变化量。但缺点是电缆分布电容的影响较大,使用中有一些 麻烦。 21
C = ,此时可认为是线性的。 C0 0
也就是说,在 / 0 很小时,才有近似的线性输出。
C C0 A 灵敏度S 2 0 0
7
极距变化型电容传感器的特点:动态特性好,灵 敏度和精度较高(可达纳米级),适用于较小位 移的精密测量,一般用来测量微小的线位移或由 于力、压力、振动等引起的极距变化。
图所示的电桥型电路,是一种电感、电容组成的桥 路,电桥的输出为一调幅波,经放大、相敏解调、 滤波后获得输出,再推动显示仪表。
15
2.1 电桥型电路 如下图所示为电容传感器介入变压器电桥测量 电路,它可分为单笔接法和差动接法两种
16
(1)单臂接法
如图(a)所示为单臂接法的变压器桥式 测量电路,高频电源经变压器街道电容桥 的一个对角线上,电容C1、C2、C3和 Cx构成电桥的四个臂,其中Cx为电容传 感器 当传感器为工作时,交流电桥处于平衡 状态, 有:
8
1.2 面积变化型电容传感器
1.2.1直线位移型
当动板沿x方向移动时,相互覆盖面积发生了变化,电容量随 之改变,其输出特性为:
bx C
其中,b为极板宽度,x为位移, 为极板间距。
C b 灵敏度S 常数 x
由上式可知,面积变化型线位移传感器的输出C与其输入 (极板覆盖面积的改变)呈线性关系。
C0
0
6
由上式可知,被测参数引起的极距变化 与电容的变化C之间的关系 是非线性的,由非线性引起的误差为
2 3 n
= + + 0 0
当 0 1时,可略去高次项,即
+ 0
2.克服边缘效应的影响
实际上当极板厚度h与极距d之比相对较大时,边缘效应的影响就不能忽略; 边缘效应不仅使电容传感器的灵敏度降低,而且产生非线性。
23
3.克服静电引力的影响
电容式传感器两极板间因存在静电场,而作用有静电引力或力矩。静电引力 的大小与极板间的工作电压、介电常数、极间距离有关。通常这种静电引力很 小,但在采用推动力很小的弹性敏感元件情况下,须考虑因静电引力造成的测 量误差。