气敏传感器
气敏传感器的原理

气敏传感器的原理
气敏传感器的原理是利用气敏材料的电学性能随环境气体浓度的变化而发生改变。
气敏材料通常是一种半导体材料,其电阻随着环境气体浓度的变化而发生变化。
当环境气体浓度较低时,气敏材料的电阻较高;当环境气体浓度增加时,气敏材料的电阻逐渐减小。
这是因为当有害气体接触到气敏材料表面时,会发生在表面吸附和体内扩散的过程,导致电子和离子的迁移,从而改变材料的电阻。
气敏传感器一般采用两种不同的工作模式来检测环境气体浓度:阻性传感模式和电容传感模式。
在阻性传感模式下,气敏材料作为电阻器的一部分,其电阻值会随环境气体浓度的变化而改变。
此时,通过测量气敏材料两端的电压或电流,可以间接得知环境气体浓度的变化。
在电容传感模式下,气敏材料作为电容器的一部分,当气敏材料表面吸附气体时,会改变电容器之间的电容值。
通过测量电容器的电容值,可以判断环境气体浓度的变化。
总之,气敏传感器利用气敏材料的电学性能随环境气体浓度的变化而改变的原理,实现对环境气体浓度的检测和监控。
气敏传感器主要参数

气敏传感器主要参数一、背景介绍气敏传感器是一种能够感知周围气体浓度变化的设备,广泛应用于环境监测、安全控制、工业自动化等领域。
在选择气敏传感器时,了解其主要参数是非常重要的。
二、响应时间响应时间是气敏传感器对气体浓度变化的快速反应能力。
常见的气敏传感器响应时间一般在毫秒级别,对于一些应用场景,如燃气泄漏检测,需要快速响应的传感器。
因此,在选择气敏传感器时,要对其响应时间进行评估。
三、灵敏度灵敏度是气敏传感器检测气体浓度变化的能力。
灵敏度通常表示为对应浓度变化的电信号输出。
传感器的灵敏度越高,可以检测到更小浓度的气体。
因此,在选择气敏传感器时,要考虑所需检测气体的浓度范围,并选择合适的灵敏度。
四、选择性选择性是指气敏传感器对不同气体的响应能力。
不同的气敏传感器对不同气体的选择性不同。
在一些特定应用场景中,可能需要针对性地选择具有特定选择性的传感器。
因此,在选择气敏传感器时,要了解其选择性能力。
五、工作温度范围工作温度范围是指气敏传感器能够正常工作的温度范围。
传感器的工作温度范围应与实际应用环境的温度范围相匹配。
在选择气敏传感器时,要注意其工作温度范围,以免因温度过高或过低影响传感器的性能。
六、精度精度是指气敏传感器输出值与实际浓度值之间的差异程度。
传感器的精度越高,输出值与实际浓度值的差异越小,表示其测量结果更加准确。
在一些对测量结果精度要求较高的应用中,要选择具有较高精度的传感器。
七、功耗功耗是指气敏传感器在工作时所消耗的电能。
传感器的功耗越低,可以延长其使用寿命,减少更换电池的频率。
在一些需要长时间连续工作的应用中,选择低功耗的传感器尤为重要。
八、稳定性稳定性是指气敏传感器输出值在长期使用下的重复性和一致性。
传感器具有良好的稳定性时,其输出值在相同条件下具有较小的扩散。
在一些长期监测的应用中,选择具有较好稳定性的传感器可以减少定期校准和维护的频率。
九、线性度线性度是指气敏传感器输出值与浓度变化之间的线性关系。
气敏传感器

1.2 主要特性参数
1.回路电压 测试气敏传感器的回路所加的电压称为回路电压。
2.标定气体电压
在标定气体中,气敏传感器负载电阻的电压称为标定气体电压,
用UCS 表示。显然,UCS 与传感器工作电阻 RS、负载电阻 RL 及回路电压UC
有关,即
U CS
UC RL RS RL
(6-1)
3.洁净空气电压
(a)实物 (b)引脚图 (c)符号
f—加热电极; A、B—气敏电极
按照结构的不同,电阻型半导体式气敏传感器的敏感元件又可分为烧结型、薄膜型和厚膜型
(1)烧结型气敏元件。 工艺最成熟,且应用最广泛。
(2)薄膜型气敏元件。
优点:颗粒较小,且具有灵 敏度高、响应速度快、机械 性能好和成本低等。
图6-4 烧结型气敏元件的结构
洁净空气电压是指在洁净空气中气敏传感器负载电阻上的电压,用 UO 表示。
UO 与固有电阻 R0、负载电阻 RL 及回路电压UC 的关系可表示为
UOUC RL R0 RL Nhomakorabea(6-2)
4.固有电阻和工作电阻
固有电阻 表示气敏传感器在正常空气条件下(或洁净空气条件下)的阻 值,又称正常电阻;工作电阻 则表示气敏传感器在一定浓度的检测气体中的 阻值。
传感器原理与应用
1.1 工作原理和分类
1.半导体式气敏传感器
按照半导体物理特性的不同,可将其分为电阻型和非电阻型两类。
电阻型半导体式气敏传感器中,气敏半导体材料吸附气体时,其阻值会产生 变化,利用这一原理,便可通过测量阻值的变化而检测气体的成分或浓度。
(a)
(b)
(c)
图6-3 电阻型半导体式气敏传感器
图6-5 薄膜型气敏元件的结构
气敏传感器

蜂鸣器
R1
气敏传感器
R3
SCR
~U
R6
R2
R4
W
R5
氖管 NTC电阻
PTC电阻 氖管 B R2
R3
BCR BZ 蜂鸣器 R4
~U
气敏传感器
R1
图为正温度系数热敏电阻(R2)的延时电路。 刚通电时,其电阻值也小,电流大部分经热敏电阻回到变压 器,蜂鸣器(BZ)不发出报警。当通电1~2min后,阻值急剧 增大,通过蜂鸣器的电流增大,电路进入正常的工作状态。
3.2 应用举例
例1:家用可燃性气体报警器电路。
B
R
~220V 氖管Biblioteka 气敏传感器BZ 蜂鸣器
家用可燃性气体报警器电路
图是设有串联蜂鸣器的应用电路。随着环境中可燃性气体浓 度的增加,气敏元件的阻值下降到一定值后,流入蜂鸣器的 电流,足以推动其工作而发出报警信号。
例2:实用酒精测试仪(测试驾驶员醉酒的程度)。
(2)薄膜型
在石英基片上蒸发或溅射一层半导体薄膜
制成(厚度0.1μm以下)。上下为输出电极和加
热电极,中间为加热器。 金属氧化物 输出极 加热器
薄膜型
加热电极
2.3 工作原理
元件加热到稳定状态,当有气体吸附时,吸附分子在气敏元 件表面自由扩散(物理吸附),一部分吸附分子被蒸发掉,一部 分吸附分子产生热分解固定在吸附处(化学吸附)。 当半导体的功函数大于吸附分子的离解能,吸附分子向半导 体释放电子成为正离子吸附,半导体载流子数增加,半导体 电阻率减少,阻值降低。具有正离子吸附倾向的气体被称为 还原性气体(例H2、CO、炭氢化合物和酒类等)。 当半导体的功函数小于吸附分子的电子亲和力,吸附分子从 半导体夺走电子成为负离子吸附,半导体载流子数减少,电 阻率增大,阻值增大。具有负离子吸附倾向的气体被称为氧 化性气体(例O2、NOx等)。
气敏传感器实训报告心得

一、引言气敏传感器作为一种重要的检测元件,在环境保护、工业生产、医疗健康等领域发挥着重要作用。
为了深入了解气敏传感器的原理、应用及其在实际工作中的应用,我们参加了为期两周的气敏传感器实训。
通过本次实训,我对气敏传感器有了更深刻的认识,现将实训心得体会如下。
二、实训内容1. 气敏传感器原理及分类实训中,我们首先学习了气敏传感器的原理和分类。
气敏传感器是一种能够将气体浓度转化为电信号的传感器,主要分为半导体型、金属氧化物型和催化燃烧型三种。
半导体型气敏传感器具有体积小、响应速度快、成本低等优点,广泛应用于工业、环保等领域。
2. 气敏传感器制作工艺实训过程中,我们亲手制作了一个简单的气敏传感器。
首先,我们了解了气敏传感器的制作工艺,包括传感器元件的选取、电路设计、封装等环节。
然后,我们按照指导老师的指导,完成了传感器的制作。
3. 气敏传感器性能测试在完成传感器制作后,我们对其性能进行了测试。
测试内容包括灵敏度、响应时间、恢复时间等。
通过对比实验数据,我们分析了传感器性能的影响因素,并提出了优化方案。
4. 气敏传感器应用案例分析实训过程中,我们还学习了气敏传感器在环保、工业、医疗等领域的应用案例。
通过这些案例,我们了解到气敏传感器在实际工作中的应用价值,以及如何针对不同应用场景选择合适的传感器。
三、实训心得体会1. 提高动手能力本次实训让我深刻体会到动手能力的重要性。
在制作气敏传感器过程中,我学会了如何使用各种工具和仪器,掌握了传感器的制作工艺。
这些技能将在今后的学习和工作中发挥重要作用。
2. 培养团队合作精神实训过程中,我们小组共同完成了传感器的制作和测试。
在这个过程中,我们相互协作,共同解决问题。
通过这次实训,我深刻体会到团队合作精神的重要性,以及如何在团队中发挥自己的优势。
3. 深化专业知识通过实训,我对气敏传感器的原理、分类、制作工艺、性能测试等方面的知识有了更加深入的了解。
这些知识将为我今后的学习和工作奠定坚实的基础。
气敏传感器用途

气敏传感器用途气敏传感器是一种能够感知气体浓度的传感器,它可以将气体的浓度转化为电信号输出。
气敏传感器的用途非常广泛,下面将从以下几个方面介绍气敏传感器的用途。
1. 空气质量监测气敏传感器可以用于监测室内和室外的空气质量。
在室内,气敏传感器可以监测有害气体的浓度,如甲醛、苯等有害物质的浓度,以保障人们的健康。
在室外,气敏传感器可以监测环境中的污染气体的浓度,如二氧化硫、氮氧化物等,以评估空气质量,并为环境保护部门提供数据支持。
2. 工业安全监测气敏传感器可以用于工业场所的安全监测。
在化工厂、煤矿等危险场所,气敏传感器可以监测可燃气体的浓度,如甲烷、乙炔等,及时发现并预警潜在的爆炸危险。
同时,气敏传感器也可以监测有毒气体的浓度,如硫化氢、氰化氢等,以保障工人的生命安全。
3. 智能家居气敏传感器可以应用于智能家居系统中,实现对家庭环境的监测和控制。
通过安装气敏传感器,可以实时监测室内空气中的有害气体浓度,如一氧化碳、烟雾等,当浓度超过安全阈值时,系统可以自动报警并采取相应的措施,如打开新风系统、关闭燃气阀门等,以保障家人的安全。
4. 智慧城市建设气敏传感器可以用于智慧城市建设中的环境监测。
通过在城市各个角落安装气敏传感器,可以实时监测环境中的有害气体浓度,并将数据传输到中心控制系统,以实现对城市空气质量的动态监测和评估。
这些数据可以用于城市规划和环境政策的制定,以改善城市居民的生活质量。
5. 农业温室控制气敏传感器可以应用于农业温室中,实现对温室环境的监测和控制。
通过安装气敏传感器,可以实时监测温室内的二氧化碳浓度、湿度等参数,并根据监测到的数据调节温室的通风、加湿等系统,以提供最适宜的生长环境,提高农作物的产量和质量。
总结:气敏传感器的用途非常广泛,主要包括空气质量监测、工业安全监测、智能家居、智慧城市建设和农业温室控制等领域。
随着技术的不断进步,气敏传感器的应用将会越来越广泛,为人们的生活和工作带来更多的便利和安全。
气敏传感器

气敏传感器气敏传感器是一种检测特定气体的传感器,用来检测气体类别、浓度和成分。
它主要包括半导体气敏传感器、接触燃烧式气敏传感器和电化学气敏传感器等,其中用的最多的是半导体气敏传感器。
它的应用主要有:一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂(R11、R12)的检测、呼气中乙醇的检测、人体口腔口臭的检测等等。
它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。
由于气体种类繁多, 性质各不相同,不可能用一种传感器检测所有类别的气体,因此,能实现气-电转换的传感器种类很多,按构成气敏传感器材料可分为半导体和非半导体两大类。
目前实际使用最多的是半导体气敏传感器,因此本文主要讲述半导体气敏元件的有关原理及应用。
半导体气敏传感器是利用待测气体与半导体表面接触时,产生的电导率等物理性质变化来检测气体的。
按照半导体与气体相互作用时产生的变化只限于半导体表面或深入到半导体内部,可分为表面控制型和体控制型,前者半导体表面吸附的气体与半导体间发生电子接受,结果使半导体的电导率等物理性质发生变化,但内部化学组成不变;后者半导体与气体的反应,使半导体内部组成发生变化,而使电导率变化。
按照半导体变化的物理特性,又可分为电阻型和非电阻型,电阻型半导体气敏元件是利用敏感材料接触气体时,其阻值变化来检测气体的成分或浓度;非半导体式气敏元件则是根据气体的吸附和反应,使其某些关系特性发生改变,来对气体进行直接或间接的检测,如二极管伏安特性和场效应晶体管的阈值电压变化来检测被测气体的。
表1为半导体气敏元件的分类:表1 半导体气敏元件的分类气敏传感器是暴露在各种成分的气体中使用的,由于检测现场温度、湿度的变化很大,又存在大量粉尘和油雾等,所以其工作条件较恶劣,而且气体对传感元件的材料会产生化学反应物,附着在元件表面,往往会使其性能变差。
气敏传感器

• 缺点:
– 稳定性差,老化较快,气体识别能力不强,各器件之间的特性 差异大等。
SnO2半导体气敏元件特点
(1)气敏元件灵敏度特性 烧结型、薄膜型和厚膜型SnO2气敏器件对 气体的灵敏度特性如右图所示。气敏元件 的阻值RC 与空气中被测气体的浓度C成对 数关系: log RC=m logC+n 式中n与气体检测灵敏度有关,除了随材料 和气体种类不同而变化外,还会由于测量 温度和添加剂的不同而发生大幅度变化。 m为气体的分离度,随气体浓度变化而变 1 化,对于可燃性气体, m 1 。
气敏传感器的分类
类 型 原 理 检测对象
还原性气体、城市排 放气体、丙烷气等
特
点
半导体式
若气体接触到加热的金属 氧化物(SnO2 、Fe2O3 、ZnO2 等), 电阻值会增大或减小
灵敏度高,构造与电路简 单,但输出与气体浓度不 成比例 输出与气体浓度成比例, 但灵敏度较低
接触燃烧式
可燃性气体接触到氧气就会 燃烧,使得作为气敏材料的铂 丝温度升高,电阻值相应增大
还 原型
吸 气时
图 7-20 N型半导体吸附气体时器件阻值变化图
规则总结:
• 氧化型气体+N型半导体:载流子数下降, 电阻增加 • 还原型气体+N型半导体:载流子数增加, 电阻减小 • 氧化型气体+P型半导体:载流子数增加, 电阻减小 • 还原型气体+P型半导体:载流子数下降, 电阻增加
7.2.3 半导体气敏传感器类型及结构
7.2 气 敏 传 感 器
7.2.1 概述 气敏传感器是用来检测气体类别、浓度和成分的传 感器。它将气体种类及其浓度等有关的信息转换成电信 号,根据这些电信号的强弱便可获得与待测气体在环境
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.优点: 优点: 制作工艺简单、成本低、功耗小、 制作工艺简单 、 成本低 、 功耗小 、 可以在高电压下使 可制成价格低廉的可燃气体泄漏报警器。 用、可制成价格低廉的可燃气体泄漏报警器。 国内QN型和MQ型气敏元件. QN型和MQ型气敏元件 国内QN型和MQ型气敏元件. 缺点: 2.缺点: 热容量小,易受环境气流的影响; 热容量小,易受环境气流的影响; 测量回路与加热回路间没有隔离,互相影响; 测量回路与加热回路间没有隔离,互相影响; 加热丝在加热和不加热状态下会产生涨缩, 加热丝在加热和不加热状态下会产生涨缩 , 易造成接 触不良。 触不良。
13.1.7烧结型SnO2气敏元件结构
烧结型SnO 气敏元件是以多孔陶瓷SnO 烧结型SnO2气敏元件是以多孔陶瓷SnO2为基 料粒度在1μm以下 以下) 添加不同物质, 材 ( 料粒度在 1μm 以下 ) , 添加不同物质 , 采用传统制陶方法,进行烧结。 采用传统制陶方法,进行烧结。 烧结时埋入测量电极和加热线, 制成管芯, 烧结时埋入测量电极和加热线 , 制成管芯 , 最后将电极和加热丝引线焊在管座上, 最后将电极和加热丝引线焊在管座上,外加 二层不锈钢网而制成元件。 二层不锈钢网而制成元件。 主要用于检测还原性气体、 主要用于检测还原性气体 、 可燃性气体和 液体蒸气。工作时需加热到300 左右. 300℃ 液体蒸气。工作时需加热到300℃左右. 按其加热方式又可分为直热式和旁热式两 按其加热方式又可分为 直热式和旁热式两 种。
LPG,CO,城市煤气,酒精
使用温度(℃) 200~300 200~300 200~300 250~30 还原性气体 还原性气体 碳氢系还原性气体
250~300 500~800 200~300
13.1.6 SnO2气敏元件的结构
气敏元件分类: SnO2气敏元件分类: 主要有三种类型: 主要有三种类型: 烧结型、 烧结型、 薄膜型 厚薄型。 厚薄型。 其中烧结型气敏元件是目前工艺最成熟, 其中烧结型气敏元件是目前工艺最成熟,应用最广 泛的元件,这里仅对其结构加以介绍。 泛的元件,这里仅对其结构加以介绍。
13.1.4 SnO2的气敏效应
1.经实验发现,多晶SnO 1.经实验发现,多晶SnO2 经实验发现 对多种气体具有气敏特性。 对多种气体具有气敏特性。 2.多孔型 多孔型SnO 半导体材料, 2.多孔型SnO2半导体材料, 其电导率随接触的气体种 类而变化。 类而变化。 一般吸附还 原性气体时电导率升高。 原性气体时电导率升高。 而吸附氧化性气体时其电 导率降低。 导率降低。 这种阻值变 化情况如图10 17所示 10- 所示。 化情况如图10-17所示。
由于氧吸附力很强,因此, 气敏元件在空气中放置时, 由于氧吸附力很强,因此,SnO2气敏元件在空气中放置时 ,其表面上总 是会有吸附氧的,其吸附状态均是负电荷吸附状态。这对N 是会有吸附氧的 , 其吸附状态均是负电荷吸附状态 。 这对 N 型半导体来 形成电子势垒,使器件阻值升高。 说,形成电子势垒,使器件阻值升高。 气敏元件接触还原性气体如H CO等时 等时, 当SnO2气敏元件接触还原性气体如H2、 CO 等时,被测气体则同吸附氧发 生反应,如图10 20c所示,减少了On 吸附密度,降低了势垒高度, 10On生反应,如图10-20c所示,减少了On- 吸附密度,降低了势垒高度,从 而降低了器件阻值。 而降低了器件阻值。 在添加增感剂( pd)的情况下,它可以起催化作用从而促进上述反应, 在添加增感剂(如pd)的情况下,它可以起催化作用从而促进上述反应, 提高了器件的灵敏度。增感剂作用如图10 20d所示。 10提高了器件的灵敏度。增感剂作用如图10-20d所示。
气敏传感器
13.1 概述
13.1.1
1.产生原因: 产生原因: 为了确保安全,需对各种可燃性气体、有毒性气体进行检测。 为了确保安全,需对各种可燃性气体、有毒性气体进行检测。目前 实用气体方法很多, 实用气体方法很多,其中接触燃烧法和用半导体气敏传感器检测法 具有使用方便、 具有使用方便、费用低等特点。 2.发展过程: 发展过程: 半导体气敏元件是60年代初期研制成功的,最先研制的是S 60年代初期研制成功的 半导体气敏元件是60 年代初期研制成功的,最先研制的是SnO2 薄膜元 它是利用加热条件下S 件。它是利用加热条件下SnO2薄膜电阻随接触的可燃性气体浓度增 加而下降,实现对可燃性气体检测。 加而下降,实现对可燃性气体检测。 继而又发现在SnO 烧结体中添加Pt pd等贵重金属可提高灵敏度 Pt或 等贵重金属可提高灵敏度。 继而又发现在 SnO2 烧结体中添加 Pt 或 pd 等贵重金属可提高灵敏度 。 1968年诞生了商品半导体气敏元件 其后, 年诞生了商品半导体气敏元件, 1968年诞生了商品半导体气敏元件,其后,其它材料的半导体气敏 元件也相继投放市场。 元件也相继投放市场。 常用的气敏元件: 3. 常用的气敏元件: SnO2半导体气敏元件,目前以TGS型和QM-N5型气敏元件为主. 半导体气敏元件,目前以TGS型和QM- 型气敏元件为主. TGS型和QM
13.1.2 SnO2半导体气敏元件特点
( 1 ) 气敏元件阻值随气体浓度变化关系为指数变化关 因此,非常适用于微量低浓度气体的检测。 系。因此,非常适用于微量低浓度气体的检测。 材料的物理、 化学稳定性较好, ( 2 ) SnO2 材料的物理 、 化学稳定性较好 , 与其它类型 气敏元件(如接触燃烧式气敏元件)相比,SnO2气敏元 气敏元件(如接触燃烧式气敏元件) 相比, 件寿命长、稳定性好、耐腐蚀性强。 件寿命长、稳定性好、耐腐蚀性强。 气敏元件对气体检测是可逆的,而且吸附、 ( 3 ) SnO2 气敏元件对气体检测是可逆的 , 而且吸附 、 脱附时间短,可连续长时间使用。 脱附时间短,可连续长时间使用。 元件结构简单,成本低,可靠性较高, ( 4 ) 元件结构简单 , 成本低 , 可靠性较高 , 机械性能 良好。 良好。 对气体检测不需要复杂的处理设备。 ( 5 ) 对气体检测不需要复杂的处理设备 。 可将待检测 气体浓度可通直接转变为电信号,信号处理电路简单。 气体浓度可通直接转变为电信号,信号处理电路简单。
13.1.7(1)直热式SnO2气敏元件 直热式SnO
直热式元件又称内热式,这种元件的结构示意图如图10-18 所示。 组成: 元件管芯由三部分组成:SnO2基体材料、加热丝、测量丝, 它们都埋在SnO2基材内。 工作时加热丝通电加热,测量丝用于测量元件的阻值。
13.1.8(1)直热式SnO2气敏元件特点 直热式SnO
13.1.10 SnO2气敏元件的工作原理C
氧吸附在半导体表面时,吸附的氧分子从半导体表面获得电子, 氧吸附在半导体表面时,吸附的氧分子从半导体表面获得电子,形成受主型表面 能级, 能级,从而使表面带负电 e→On10-21) 1/2 O2(气)+ne→On- 吸附 (10-21)
式中On- 吸附——表示吸附氧;On——表示吸附氧 ——电子电荷 电子电荷; 式中On- 吸附——表示吸附氧;On- 吸附 ;e——电子电荷; On ;n——个数。 ——个数。 个数
13.1.9(2)旁热式SnO2敏元件 旁热式SnO
这种元件的结构示意图如图10-19所示。 其管芯增加了一个陶瓷管,在管内放进高阻加热丝,管外涂 梳状金电极作测量极,在金电极外涂SnO2材料。
13.1.9(2)旁热式SnO2敏元件特点 旁热式SnO
这种结构克服了直热式的缺点, 其测量极与 这种结构克服了直热式的缺点 , 加热丝分开, 加热丝不与气敏元件接触, 加热丝分开 , 加热丝不与气敏元件接触 , 避 免了回路间的互相影响; 元件热容易大, 免了回路间的互相影响 ; 元件热容易大 , 降 低了环境气氛对元件加热温度的影响, 低了环境气氛对元件加热温度的影响 , 并保 持了材料结构的稳定性。 持了材料结构的稳定性。 QM目 前 国 产 QM-N5 型 气 敏 元 件 , 日 本 弗 加 罗 TGS#812 813型气敏元件采用这种结构 812、 型气敏元件采用这种结构。 TGS#812、813型气敏元件采用这种结构。
13.1.10 SnO2气敏元件的工作原理B
烧结型SnO2气敏元件的气敏部分,就是这种 N型SnO2材料晶粒形成的多孔质烧结体,其 结合模型可用图10-20表示。
13.1.10 SnO2气敏元件的工作原理C
这种结构的半导体,其晶粒接触界面存在电子势垒, 其接触部(或颈部)电阻对元件电阻起支配作用。 显然,这一电阻主要取决于势垒高度和接触部形状, 亦即主要受表面状态和晶粒直径大小等的影响。
13.1.10 SnO2气敏元件的工作原理A
烧结型SnO 烧结型 SnO2 气敏元件是表面电阻控制型 气敏元件。 气敏元件。制作元件的气敏材料多孔质 烧结体。在晶体中如果氧不足, SnO2 烧结体 。 在晶体中如果氧不足 , 将 出现两种情况:一是产生氧空位, 出现两种情况:一是产生氧空位,另一 种是产生锡间隙原子。但无论哪种情况, 种是产生锡间隙原子。但无论哪种情况, 在禁带靠近导带的地方形成施主能级。 在禁带靠近导带的地方形成施主能级。 这些施主能级上的电子, 这些施主能级上的电子,很容易激发到 导带而参与导电。 导带而参与导电。
13.2.1
SnO2主要性能参数 A
3、响应时间trcs 响应时间t 把从元件接触一定浓度的被测气 体开始到其阻值达到该浓度下稳 定阻值的时间,定义为响应时间, 定阻值的时间,定义为响应时间, 表示。 用trcs表示。 4、恢复时间trcc 恢复时间t 把气敏元件从脱离检测气体开始, 把气敏元件从脱离检测气体开始, 到期阻值恢得到正常空气中阻值 的时间,定义为恢得时间,用 表示。 trcc表示。 实际上, 实际上,常用气敏元件从接触或 脱离检测气体开始, 脱离检测气体开始,到其阻值或 阻值增量达到某一确定值的时间, 阻值增量达到某一确定值的时间, 例如, 例如,气敏元件阻值增量由零变 化到稳定增量的63%所需的时间, 63%所需的时间 化到稳定增量的63%所需的时间, 定义为响应时间和恢复时间。 定义为响应时间和恢复时间。