基于Matlab的LSB信息隐藏技术

合集下载

信息隐藏实验三LSB图像信息隐藏剖析

信息隐藏实验三LSB图像信息隐藏剖析

实验三:LSB图像信息隐藏一、实验目的了解信息隐藏中最常用的LSB算法的特点,掌握LSB算法原理,设计并实现一种基于图像的LSB隐藏算法;了解如何通过峰值信噪比来对图像进行客观评价,并计算峰值信噪比值。

二、实验环境(1)Windows 7操作系统;(2)MATLAB R2012b版本软件;(3)BMP格式灰度图像文件。

三、原理简介任何多媒体信息在数字化时都会产生物理随机噪声,而人的感官系统对这些随机噪声并不敏感。

替换技术就是利用这个原理,通过使用秘密信息比特替换随机噪声,从而实现信息隐藏目的。

在BMP灰度图像的位平面中,每个像素值为8比特二进制,表示该点亮度。

图像高位平面对图像感官质量起主要作用,去除图像最低几个位平面并不会造成画面质量的明显下降。

利用这个原理可用秘密信息(或称水印信息)替代载体图像低位平面以实现信息嵌入。

本算法选用最低位平面来嵌入秘密信息。

最低位平面对图像的视觉效果影响最轻微,但很容易受噪声影响和攻击,可采用冗余嵌入的方式来增强稳健性加以解决,即在一个区域(多个像素)中嵌入相同的信息,提取时根据该区域中的所有像素判断。

四、实验步骤1. 隐藏提取及测试算法分为三个部分实现:(1)隐藏算法;(2)提取算法;(3)测试脚本。

1)隐藏算法源代码hide_lis.m如下:function o = hide_lsb(block,data,I)%function o = hide_lsb(block,data,I)%隐藏提取及测试%block:隐藏的最小分块大小%data:秘密信息%I:原始载体si = size(I);lend = length(data);N = floor(si(2)/block(2));%将图像划分为M*N个小块M = min(floor(si(1)/block(1)),ceil(lend/N));o = I;for i = 0 : M-1 %计算每小块隐藏的秘密信息rst = i*block(1) + 1;red = (i+1)*block(1);for j = 0 : N-1 %计算每小块隐藏的秘密信息的序号idx = i*N + j + 1;if idx > lendbreak;end%取每小块隐藏的秘密信息bit = data(idx);%计算每小块水平方向起止位置cst = j*block(2) + 1;ced = (j+1)*block(2);%将每小块最低位平面替换为秘密信息o(rst:red,cst:ced) = bitset(o(rst:red,cst:ced),1,bit);endend2)提取算法源代码dh_lsb.m如下:function out = dh_lsb(block,I)%function out = dh_lsb(block,I)%源代码dh_lsb.m如下:%block:隐藏的最小分块大小%I:携密载体si = size(I);%将图像划分为M*N个小块N = floor(si(2)/block(2));M = floor(si(1)/block(2));out = [];%计算比特1判决阀值:每小块半数以上元素隐藏是比特1时,判决该小块嵌入信息为1thr = ceil((block(1)*block(2) + 1)/2);idx = 0;for i = 0 : M-1%计算每小块垂直方向起止位置rst = i*block(1) + 1;red = (i+1)*block(1);for j = 0 : N-1%计算每小块将要数据的秘密信息的序号idx = i*N + j + 1;%计算每小块水平方向起止位置cst = j*block(2) + 1;ced = (j + 1)*block(2);%提取小块最低位平面,统计1比特个数,判决输出秘密信息 tmp = sum(sum(bitget(I(rst : red,cst : ced),1)));if (tmp >= thr)out(idx) = 1;elseout(idx) = 0;endendend3)测试脚本源代码test.m如下:fid = 1;len = 10;%随机生成要隐藏的秘密信息d = randsrc(1,len,[0 1]);block = [3,3];[fn,pn] = uigetfile({'* .bmp','bmp file(* .bmp)';},'选择载体');s = imread(strcat(pn,fn));ss = size(s);if (length(ss) >= 3)I = rgb2gray(s);elseI = s;endsi = size(I);sN = floor(si(1)/block(1))*floor(si(2)/block(2));tN = length(d);%如果载体图像尺寸不足以隐藏秘密信息,则在垂直方向上复制填充图像if sN < tNmultiple = ceil(tN/sN);tmp = [];for i = 1 : multipletmp = [tmp;I];endI = tmp;end%调用隐藏算法,把携密载体写至硬盘stegoed = hide_lsb(block,d,I);imwrite(stegoed,'hide.bmp','bmp');[fn,pn] = uigetfile({'*.bmp','bmp file(*.bmp)';},'选择隐蔽载体');y = imread(strcat(pn,fn));sy = size(y);if (length(sy) > 3)I = rgb2gray(y);elseI=y;end%调用提取算法,获得秘密信息out = dh_lsb(block,I);%计算误码率len = min(length(d),length(out));rate = sum(abs(out(1:len)-d(1:len)))/len;y = 1 - rate;fprintf(fid,'LSB:len:% d\t error rate:% f\t error num:% d\n',len,rate,len*rate);2. 计算峰值信噪比(1)峰值信噪比定义:2,2,,,,max ()x y x y x y x yx y p PSNR XY p p =-∑(2)峰值信噪比函数。

LSB图片信息隐藏隐藏实验

LSB图片信息隐藏隐藏实验

上海电力学院高级程序设计(C)课程设计报告LSB信息隐藏实验题目:院系:计算机科学与技术学院专业年级:信息安全2012级学生姓名:涂桂花学号:指导教师:魏为民2015年4月14日目录一、实验目的 0二、实验内容和步骤 01. 操作环境 02. 系统配置 03. 操作步骤 04. 程序源代码 (3)三、实验结果 (3)1. 测试图片 (3)2. 测试结果 (3)3.截屏 (4)四.实验小结 (4)1. 遇到的问题总结合分析: (4)2. 未解决的问题 (4)3. 实验效果和分析 (4)4. 总结: (4)附件: (5)上 海 电 力 学 院实 验 报 告 课程名称实验项目 姓名 学号 班级 专业同组人姓名 指导教师 魏为民 实验日期 一、实验目的1.用MATLAB 函数实现LSB 信息隐藏和提取。

2.了解信息隐藏的作用和实现方法原理。

3.学会分析了解隐藏算法。

二、实验内容和步骤如操作环境、系统配置、操作步骤、程序源代码等。

1.操作环境操作系统 Windows 7 旗舰版 64位 SP1 ( DirectX 11 )2.系统配置处理器 AMD E1-2100 APU with Radeon HD Graphics 双核3.操作步骤1) 打开MATLAB 软件,新建文件夹名为“ LSB ”。

2) 在“Command Window ”窗口里输入“guide ”,回车。

a. 如下图所示建立图形界面。

将5个push button 控件的“String ”属性设置为下图相应显示的名字,Tag 属性设置为pbt+String 名的格式。

将4个axec 控件的Tag 属性设置为如下图所显示的名字。

3) 分别右键点击5个push button 控件,View Callbacks->CallBacks.给每个控件添信息安全 LSB 信息隐藏实验 涂桂花 20123333 2012252 信息安全 无加Callback代码。

基于LSB算法的图像信息隐藏与检测

基于LSB算法的图像信息隐藏与检测

基于LSB算法的图像信息隐藏与检测数字图像隐写分析基于LSB算法的图像信息隐藏与检测学院名称计算机科学与技术学院专业班级学⽣姓名学号指导教师2016.05.01基于LSB算法的图像信息隐藏与检测摘要:LSB替换隐写基本思想是⽤嵌⼊的秘密信息取代载体图像的最低⽐特位,原来的的7个⾼位平⾯与替代秘密信息的最低位平⾯组合成含隐藏信息的新图形。

⽂章⾸先简单叙述了BMP位图⽂件的⽂件格式,然后根据24位真彩⾊BMP位图格式与显⽰⽅式的特殊性,直接改变图像中像素的最后⼀位值来嵌⼊秘密⽂件,提出了⼀种对⽂字信息进⾏加密的有效⽅案。

关键词:LSB,信息隐藏,信息安全,BMP位图Image information hiding and detection based on LSBalgorithmAbstract: LSB replacement steganography basic idea is to use the embedded secret information to replace the image of the lowest bits, the original 7 high plane and the least significant bit plane of alternative secret information into new graphics containing hidden information.This paper simple describes the BMP file format of the bitmap file, and then according to the 24 true color BMP bitmap format and the particularity of display mode, directly change the values of pixels in the image of the last to embed secret files, puts forward a effective scheme of text information is encrypted.Key words: LSB, Information hiding,information security,bit map file⽬录第1章绪论 (5)1.1 LSB算法原理 (5)第2章 LSB隐写实现 (7)2.1 LSB隐藏过程 (7)2.2 LSB隐写实例效果 (8)第3章 LSB信息提取 (10)3.1 LSB信息提取过程 (10)3.2 LSB信息提取实例效果 (10)参考⽂献 (13)第1章绪论1.1 LSB算法原理LSB是L.F.Turner和R.G.van Schyndel等⼈提出的⼀种典型的空间域信息隐藏算法。

本科毕业设计-基于lsb的信息隐藏技术的实现

本科毕业设计-基于lsb的信息隐藏技术的实现

引言信息隐藏将在未来网络中保护信息不受破坏方面起到重要作用,信息隐藏是把机密信息隐藏在大量信息中不让对手发觉的一种方法。

信息隐藏的方法有很多种,基于图象的信息隐藏检测技术是隐写分析技术的基础,对于保障网络信息安全和提高信息隐藏算法的安全性具有重要意义。

最低有效位算法LSB(Least significant bit)是一种简单而通用的信息隐藏方法,大部分的多媒体文件(如图像、音频和视频文件等)都可作为LSB算法中的载体。

本文讨论以图像为载体的LSB隐藏算法。

第一章绪论1.1 信息隐藏技术的来源随着互联网的迅速发展,网上提供服务越来越丰富,人们如今可以通过因特网发布自己的作品、重要信息和进行网络贸易等,但是随之而出现的问题也十分严重:如作品侵权更加容易,篡改也更加方便。

计算机和通信网技术的发展与普及,数字音像制品以及其他电子出版物的传播和交易变得越来越便捷,但随之而来的侵权盗版活动也呈日益猖獗之势。

因此如何既充分利用因特网的便利,又能有效地保护知识产权,已受到人们的高度重视。

信息隐藏技术作为网络安全技术的一个重要新兴课题,内容涉及数据隐藏、保密通信、密码学等相关学科领域,作为隐蔽通信和知识产权保护等的主要手段,正得到广泛的研究与应用。

为了打击犯罪,一方面要通过立法来加强对知识产权的保护,另一方面必须要有先进的技术手段来保障法律的实施。

信息隐藏技术以其特有的优势,引起了人们的好奇和关注。

人们首先想到的就是在数字产品中藏入版权信息和产品序列号,某件数字产品中的版权信息表示版权的所有者,它可以作为侵权诉讼中的证据,而为每件产品编配的唯一产品序列号可以用来识别购买者,从而为追查盗版者提供线索。

此外,保密通信、电子商务以及国家安全等方面的应用需求也推动了信息隐藏研究工作的开展。

中国自古就有这样的谚语,叫做“耳听是虚,眼见为实”,“百闻不如一见”,英语中也有“Seeing is believing”的说法。

这些都表明人们往往过分相信自己的眼睛,而这正是信息隐藏技术得以存在和发展的重要基础,在这一研究领域,大量事实告诉人们:眼见不一定为实!1.2信息隐藏技术的发展1.2.1历史上的隐写术现代信息隐藏技术是由古老的隐写术(Steganography)发展而来的,隐写术一词来源于希腊语,其对应的英文意思是“Covered writing”。

基于matlab的信息隐藏代码实现

基于matlab的信息隐藏代码实现

Matlab期中作业标题:基于matlab的信息隐藏代码实现姓名:********班级:********学号:********目录摘要----------------------------------------------------------------------------------------------------------------------------- - 2 -前言----------------------------------------------------------------------------------------------------------------------------- - 2 -一、图像隐藏技术的研究现状 ------------------------------------------------------------------------------------ - 2 -二、实现图像隐藏的主要算法 ------------------------------------------------------------------------------------ - 4 -三、基于行列变换的图像置乱与反置乱算法 ---------------------------------------------------------------- - 4 -3.1 图像置乱算法 ----------------------------------------------------------------------------------------------------- - 4 -3.2 图像反置乱算法-------------------------------------------------------------------------------------------------- - 5 -四、基于m序列的图像加密与解密算法----------------------------------------------------------------------- - 5 -五、相关程序代码及运行结果 ------------------------------------------------------------------------------------ - 5 -5.1 源代码 --------------------------------------------------------------------------------------------------------------- - 5 -5.2 运行结果 ------------------------------------------------------------------------------------------------------------ - 7 -六、参考文献------------------------------------------------------------------------------------------------------------ - 8 -七、总结 ------------------------------------------------------------------------------------------------------------------ - 8 -摘要【摘要】近几年来,国际上提出一种新的关于信息安全的概念——信息隐藏技术。

实验三 基于LSB的信息隐藏算法

实验三 基于LSB的信息隐藏算法

实验三基于LSB的信息隐藏算法一、实验目的该实验为验证性实验。

目的是通过实验使学生掌握经典信息隐藏算法,在Matlab环境下,编写基于图像的LSB信息隐藏算法程序。

用Matlab函数实现LSB信息隐藏及提取,并进行分析。

二、实验要求1、实验前要做好充分准备,包括:复习实验所涉及的知识点,掌握Matlab 编程语言和调试环境。

2、实验时注意记录实验过程中产生的数据、出现的问题及解决问题的方法。

3、理论联系实际,认真分析实验结果,回答思考题。

4、实验后完成实验报告,并附相关截图。

三、实验环境计算机(安装Visual C++ 6.0和Matlab 6.5以上版本)四、实验原理隐秘算法核心是将我们选取的像素点的最不重要位依次替换成秘密信息,以达到信息隐秘的目的。

嵌入过程包括选择一个图像载体像素点的子集{j1,…,j l(m)},然后在子集上执行替换操作像素c ji←→m i,即把c ji的LSB与秘密信息m i进行交换(m i可以是1或0)。

一个替换系统也可以修改载体图像像素点的多个比特,例如,在一个载体元素的两个最低比特位隐藏两比特、三比特信息,可以使得信息嵌入量大大增加但同时将破坏载体图像的质量。

在提取过程中,找出被选择载体图像的像素序列,将LSB(最不重要位)排列起来重构秘密信息,算法描述如下: 嵌入过程:for(i=1;i<=像素序列个数;i++)s i←c ifor(i=1;i<=秘密消息长度;i++)//将选取的像素点的最不重要位依次替换成秘密信息s ji←c ji←→m i提取过程:for(i=1;i<=秘密消息长度;i++){ i←→j i //序选取m i←LSB(c ji)}五、实验内容与步骤1、随机选取图像载体像素,实现隐秘消息的嵌入与提取(1)隐秘消息的嵌入%文件名:randlsbhide.m%函数功能:本函数将完成随机选择LSB的信息隐秘,载体选用灰度BMP图%输入格式举例:[ste_cover,len_total]=randlsbhide(′glenna.bmp′,′message.txt′,′scover.bmp′,2001)%参数说明:%input是信息隐蔽载体图像%file是秘密消息文件%output是信息隐秘后的生成图像%key是随机间隔函数的密钥function[ste_cover,len_total]=randlsbhide(input,file,output,key)%读入图像矩阵cover=imread('lena.bmp');ste_cover=cover;ste_cover=double(ste_cover);%将文本文件转换为二进制序列f_id=fopen('1.txt','r');[msg,len_total]=fread(f_id,'ubit1');%判断嵌入消息量是否过大[m,n]=size(ste_cover);if len_total>m*nerror('嵌入消息量过大,请更换图像');end%p作为消息嵌入位数计数p=1;%调用随机间隔函数选取像素点[row,col]=randinterval(ste_cover,len_total,2001);%在LSB隐秘消息for i=1:len_totalste_cover(row(i),col(i))=ste_cover(row(i),col(i))-mod(ste_cover(row(i),col(i)),2)+msg (p,1);if p==len_totalbreak;endp=p+1;endste_cover=uint8(ste_cover);imwrite(ste_cover,'lena2.bmp');%显示实验结果subplot(1,2,1);imshow(cover);title('原始图像');subplot(1,2,2);imshow('lena2.bmp');title('隐藏信息的图像');(2)编写函数比较两幅图像区别%文件名:compare.m%函数功能:本函数完成显示隐秘前后两幅图像的区别%输入格式举例:F=compare(′blenna.bmp′,′scover.bmp′) %参数说明:%original是原始载体图像%hided是隐秘后的图像%F是差值矩阵function F=compare(original,hided)%读取原始载体图像矩阵W=imread('lena.bmp');W=double(W)/255;%读取隐秘后图像矩阵E=imread('lena2.bmp');E=double(E)/255;%将两图像矩阵相减,显示效果F=E-W;%注意,MATLAB中矩阵相减只支持double型imshow(mat2gray(F))(3)隐秘消息的提取%文件名:randlsbget.m%函数功能:本函数将完成提取隐秘于LSB上的秘密消息%输入格式举例:result=randlsbget(′scover.jpg′,56,′secret.txt′,2001) %参数说明:%output是信息隐秘后的图像%len_total是秘密消息的长度%goalfile是提取出的秘密消息文件%key是随机间隔函数的密钥%result是提取的消息function result=randlsbget(output,len_total,goalfile,key)ste_cover=imread('lena2.bmp');ste_cover=double(ste_cover);%判断嵌入消息量是否过大[m,n]=size(ste_cover);frr=fopen('2.txt','a');%p作为消息嵌入位数计数器,将消息序列写回文本文件p=1;%调用随机间隔函数选取像素点[row,col]=randinterval(ste_cover,128,2001);for i=1:128if bitand(ste_cover(row(i),col(i)),1)==1fwrite(frr,1,'bit1');result(p,1)=1;elsefwrite(frr,0,'bit1');result(p,1)=0;endif p==128break;endp=p+1;endfclose(frr);2、顺序选取图像载体像素,实现隐秘消息的嵌入与提取(1)隐秘消息的嵌入%文件名:lsbhide.m%函数功能:本函数将完成在LSB上的顺序信息隐秘,载体选用灰度BMP图%输入格式举例:[ste_cover,len_total]=lsbhide(′glenna.bmp′,′message.txt′,′scover.bmp′)%参数说明:%input是信息隐蔽载体图像,为灰度BMP图%file是秘密消息文件%output是信息隐秘后生成图像%ste_cover是信息隐秘后图像矩阵%len_total是秘密消息的长度,即容量function[ste_cover,len_total]=lsbhide(input,file,output,key)%读入图像矩阵cover=imread('lena.bmp');ste_cover=cover;ste_cover=double(ste_cover);%将文本文件转换为二进制序列f_id=fopen('1.txt','r');[msg,len_total]=fread(f_id,'ubit1');%判断嵌入消息量是否过大[m,n]=size(ste_cover);if len_total>m*nerror('嵌入消息量过大,请更换图像');end%p作为消息嵌入位数计数p=1;%调用随机间隔函数选取像素点%[row,col]=interval(ste_cover,len_total,2001);%在LSB隐秘消息for f1=1:mfor f2=1:nste_cover(f1,f2)=ste_cover(f1,f2)-mod(ste_cover(f1,f2),2)+msg(p,1); if p==len_totalbreak;endp=p+1;endif p==len_totalbreak;endp=p+1;endste_cover=uint8(ste_cover);imwrite(ste_cover,'lena2.bmp');%显示实验结果subplot(1,2,1);imshow(cover);title('原始图像');subplot(1,2,2);imshow('lena2.bmp');title('隐藏信息的图像');(2)调用函数compare.m比较两幅图像区别%文件名:compare.m%函数功能:本函数完成显示隐秘前后两幅图像的区别%输入格式举例:F=compare(′blenna.bmp′,′scover.bmp′) %参数说明:%original是原始载体图像%hided是隐秘后的图像%F是差值矩阵function F=compare(original,hided)%读取原始载体图像矩阵W=imread('lena.bmp');W=double(W)/255;%读取隐秘后图像矩阵E=imread('lena2.bmp');E=double(E)/255;%将两图像矩阵相减,显示效果F=E-W;%注意,MATLAB中矩阵相减只支持double型imshow(mat2gray(F))(3)隐秘消息的提取%文件名:lsbget.m%函数功能:本函数将完成提取隐秘于LSB上的秘密消息%输入格式举例:result=lsbget(′scover.bmp′,56,′secret.txt′) %参数说明:%output是信息隐秘后的图像%len_total是秘密消息的长度%goalfile是提取出的秘密消息文件%result是提取的消息function result=lsbget(output,len_total,goalfile,key)ste_cover=imread('lena2.bmp');ste_cover=double(ste_cover);%判断嵌入消息量是否过大[m,n]=size(ste_cover);frr=fopen('2.txt','a');%p作为消息嵌入位数计数器,将消息序列写回文本文件p=1;%调用随机间隔函数选取像素点[row,col]=interval(ste_cover,128,2001);for f1=1:128for f2=1:128if bitand(ste_cover(f1,f2),1)==1fwrite(frr,1,'bit1');result(p,1)=1;elsefwrite(frr,0,'bit1');result(p,1)=0;endif p==128break;endp=p+1;endif p==128break;endp=p+1;endfclose(frr);实验小结:通过实验使我们掌握经典信息隐藏算法,在Matlab环境下,编写基于图像的LSB 信息隐藏算法程序。

LSB图像信息隐藏实验

LSB图像信息隐藏实验

学号:姓名:专业年级班级:实验室:组别:实验日期:课程名称保密技术实验实验课时实验项目名称和序号1.LSB图像信息隐藏实验同组者姓名实验目的1. 掌握对图像的基本操作。

2. 能够用 LSB 算法对图像进行信息隐藏3. 能够用 LSB 提取算法提取隐藏进图像的信息4. 能够反映 jpeg 压缩率与误码率之间的关系实验环境Windows+matlab实验内容和原理1.用 MATLAB 函数实现 LSB 信息隐藏和提取2.分析了 LSB 算法的抗攻击能力3.能随机选择嵌入位(考虑安全性因素)实验步骤方法关键代码实验算法 1:LSB 嵌入1.读取一副 256*256 大小的图片,判断是否为 RGB 图像。

若为 RGB 图像,则读取图像的一层信息(如 R 层)。

通过读取图像的尺寸大小来判断是否为RGB图像。

RGB图像是三维多彩图,size有3个参数,最小参数是3,只要判断读取到的图像大小大于2,就确定读入的是RBG图像2.以二进制形式读取要嵌入到图片里的消息。

并读取消息的长度(嵌入消息的长度不能超过图像位数)。

3.产生与消息长度一致的一串随机数(不能相同)。

自定义一个randinterval函数来实现伪随机数的生成产生的伪随机数是代表消息要隐藏的像素位置(行和列的信息)随机数代码:function [row,col]=randinterval(matrix,count,key)%randinterval.m%参数说明%matrix是载体矩阵,即要隐藏信息的图层%cout为要嵌入信息的像素数量%key为自定义秘钥,随机种子[m,n] = size(matrix);interval1 = floor(m * n/(count+eps)) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小不能把秘密信息隐藏进去');endrand('seed',key);a = rand(1, count);row = zeros([1 count]);col = zeros([1 count]);r = 1;c = 1;row(1,1) = r;col(1,1) = c;for i =2:countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小不能把秘密信息隐藏进去');endc = mod(c, n);if c == 0c = 1;endendrow(1, i) = r;col(1, i) = c;end4.按照产生的随机数的序列依次将图片层的最后一位改为消息的信息。

基于LSB的工程图信息隐藏方法

基于LSB的工程图信息隐藏方法

、 、
Au
to
CA D

特序 列 填 充 到 这 些 像 素 的最 低 位 上

t
S ig n if i c

a n
t
B it
) 隐写 方 法 是 出现 较 早

特或j
比 特信 息
可 以 使 得 信 息嵌 入 量 大大增加 但 同时




种 时域 隐写 技术 其 实 现 比较 容 易
, ,
LSB
方 法 虽 然抗
却将 破 坏 载 体 图 像 的 质 量 在 提取 过 程 中 找 出被选择 载 体 图 像 的 像 素序 列 将
J,


不 同 分 为 空 域 隐藏算 法 和 变 换 域 隐藏 算 法 空 域 隐 藏 算 法 采 用 直 接 改 变 图像 元 素值 的 力法 的 亮 度 或 色度 中加 入 隐 藏 的 内容
只 需 对 隐秘 载 体进 行 很 小 的


( 2 )提 取 过 程
fo
r
=


收 是在 图 像 元 素


般 是 先用 软件 设 计 出 三 维 模 型 然 后 再 转 换 出

最 低 比特 位 ( L S B ) 隐写 方 t
j :就
各 个 零件 的二

维丁 程 图

Au
to
CA D
是 当今 最流 行 的二 维绘

藏算 法

首 先读 取 出图片 中每 个 点 的 像 素值 把 信 息 的 比

图软件 它 在 二 维 绘 图领 域拥 有 广 泛 的用 户群
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要随着科技的发展,信息安全技术已经成为不可忽略的因素。

而网络的普及及应用,让多媒体技术得到了广泛的发展,因此图像及视频的安全变得越来越重要。

本文正是在这种时代背景下,介绍一种关于图像处理的信息隐藏技术。

用于进行隐蔽通信的图像信息隐藏算法可以分为两大类:基于空域的信息隐藏算法和基于变换域的信息隐藏算法。

基于空域信息隐藏算法中的典型算法是LSB算法,该算法的主要特点是在载体图像中嵌入的隐藏信息数据量大,但是嵌入位置固定,安全性差,嵌入的隐藏信息易被破坏,鲁棒性不高;基于变换域信息隐藏算法中的典型算法是离散余弦变换域的信息隐藏算法,该算法嵌入信息能够抵御多种攻击,具有较好的鲁棒性,并且嵌入方式多种多样,增加了攻击者提取的难度,具有一定的安全性,但是该类算法嵌入的隐藏信息数据量较小,不适合于进行大数据量的隐蔽通信。

下面对LSB算法原理及LSB算法实现进行了介绍,最后使用MATLAB 对其隐藏过程进行了仿真。

[关键词]信息安全隐藏嵌入信息I目录一、设计要求 (3)二、设计的目的 (3)三、设计的具体实现 (3)3.1 信息隐藏及时空域信息隐藏概述 (3)3.2 LSB上的信息隐秘 (4)3.2.1 LSB上信息隐秘的原理 (4)3.2.2 LSB上的信息隐秘的过程 (5)3.3运用LSB实现秘密消息的隐藏 (6)3.4运用LSB实现秘密消息的差异对比 (9)3.5运用LSB实现秘密消息的提取 (12)3.6信息隐藏的拓展 (15)四、心得体会 (16)五、参考文献 (16)一、设计要求1.复习《信息安全技术导论》中有关LSB的相关知识。

2.对其算法进行详细研究与理论分析。

3.利用MATLAB编写程序并仿真结果。

4.设计报告中应包括具体设计原理、设计的详细说明书以及最终结果。

二、设计的目的1.了解并掌握LSB信息隐藏和提取的方法,具备初步的独立分析和设计能力;2.提高综合应用所学的理论知识和方法独立分析和解决问题的能力;3.训练用MATLAB软件编写程序并仿真。

三、设计的具体实现3.1 信息隐藏及时空域信息隐藏概述信息隐藏技术主要由下述两部分组成:(1)信息嵌入算法,它利用密钥来实现秘密信息的隐藏。

(2)隐蔽信息检测/提取算法(检测器),它利用密钥从隐蔽载体中检测/恢复出秘密信息。

在密钥未知的前提下,第三者很难从隐秘载体中得到或删除,甚至发现秘密信息。

空域隐藏技术是指将秘密信息嵌入数字图像的空间域中,即对像素灰度值进行修改以隐藏秘密信息。

时空域信息隐藏分为:LSB与MSB,LSB对应的中文意思是:最不重要位,有时也称为最低有效位或简称最低位。

MSB,是最重要位。

这里主要介绍最不重要位LSB。

3.2 LSB上的信息隐秘3.2.1 LSB上信息隐秘的原理LSB方法通过调整载体图像像素值的最低若干有效位来来实现数据的嵌入,使所隐藏信息在视觉上很难被发觉,而且只有知道秘密信息嵌入的位置才能正确提取出秘密信息。

显然,LSB隐藏算法最低位被改变的概率是50%,它在原始图像里面引入了极小的噪声,在视觉上是不可见的。

实际上,对于24bit真彩色图像,我们在其最低两位甚至三位来隐藏信息使视觉上仍然是不可见的,对于灰度图像,改变其最低两位也能取得较好的效果。

另外,在LSB方法中,也可以不采用直接嵌入的方法,根据异或的可逆准则,采用替换的准则来实现信息的隐藏。

在嵌入数据位时,嵌入的是数据位与1或者0的异或值。

基于异或的运算也有许多改进的算法,在嵌入的过程中,首先计算每个像素灰度值的每一位的异或值,并把所得到的结果与要嵌入的信息进行异或运算,然后,把像素灰度值的最低位全部清零或置为1,再根据异或运算结果的值来改变最低位的信息,实际上,这相当于对信息进行了一层加密处理,嵌入的不再是原始信息,而是原始信启、的另外一种表达形式,不知道密钥的攻击者很难从中提取出信息。

LSB算法具有非常弱的鲁棒性。

对于许多变换,即使是有益的,也都是很脆弱的。

有损压缩典型的有损压缩如JPEG,就很有可能彻底破坏隐藏的信息。

因为LSB算法试图利用人类视觉系统的漏洞,而有损压缩算法所依赖的,是对附加噪声的不敏感性,正是利用它来减少数据量的。

几何变换 移动像素尤其是改变像素在原栅格中的位置都有可能破坏嵌入的消息。

任何其它的图像变换如模糊、滤波等,通常都会破坏隐藏的数据。

3.2.2 LSB 上的信息隐秘的过程最低有效位(Least Significant Bits ,LSB )方法是最早提出来的最基本的空域图像信息隐藏算法,许多其它的空域算法都是从它的基本原理进行改进扩展的,使得LSB 方法成为使用最为广泛的隐藏技术之一。

现在有一些简单的信息隐藏软件大多是运用LSB 和调色板调整等相关技术将信息隐藏在24bit 图像或256色图像中,如ide and Seek ,StegoDos ,White Noise Storm ,S-tools 等经典信息隐藏软件。

隐秘算法核心是将我们选取的像素点德尔最不重要位依次替换成秘密信息,以达到信息秘密的目的。

嵌入过程包括选择一个图像载体像素点的子集{j 1,…,j m l )(},然后在子集上执行替换操作像素m c i ji ↔,即把c ji 的LSB 与秘密信息m i 进行交换(m i 可以是1或0)。

一个替换系统也可以修改载体图像像素点的多个比特,例如,在一个载体元素的两个最低比特位隐藏两比特、三比特,可以使得信息嵌入量大大增加但同时将破坏载体图像的质量。

在提取过程中找出被选择载体 描述图像的像素序列,将LSB (最不重要位)排列起来重构秘密信息,算法描述如下:嵌入过程:for (i=1;i<=像素序列个数;i++)c si i ↔for (i=1;i<=秘密消息长度;i++)i j j m c s i i −→←−−←提取过程:for (i=1;i<=秘密消息长度;i++){j i i↔ )(c LSB m ji i ←}接下来我们具体应用这三个算法来实现秘密消息的隐藏与提取及对比。

3.3运用LSB 实现秘密消息的隐藏程序流程图如下:3-1 信息隐藏流程图主要算法嵌入隐藏信息的算法实现文件名:lsbhide.m参数说明:c:\wanghan.bmp是信息隐藏载体图像。

C:\1.txt是秘密消息文件。

c:\wanghan1.bmp是信息隐秘后生成图像。

ste_cover是信息隐秘后图像矩阵。

len_total是秘密消息长度,即容量。

嵌入算法如下:3-2 信息隐藏程序代码嵌入隐藏信息算法运行结果:原始图像隐藏信息后的图像3-3 运行程序后的结果得到的结果如图3-3所示,很明显,通过肉眼是看不出两幅图有什么差别的,也就是说隐秘算法的不可见性还是比较好的。

3.4运用LSB实现秘密消息的差异对比程序流程图如下:3-4 对比的流程图主要算法文件名:compare.m函数功能:完成显示隐秘前后两幅图像的区别。

算法如下:3-5 对比程序实现隐秘前后两幅图像区别的运行结果如图3-5所示:3-6 运行对比程序后的差异图像3.5运用LSB实现秘密消息的提取程序流程图如下:3-7 提取秘密信息流程图主要算法文件名:lsbget.m函数功能:完成提取隐秘于LSB上的秘密信息参数说明:c:\wanghan1.bmp是信息隐秘后图像。

100是秘密消息的长度。

c:\1.txt是提取出的秘密消息文件。

result是提取的消息。

提取算法如下:3-8 差异的程序结果分析:原始图像矩阵W为:3-9 原始图像矩阵W 隐藏后信息图像矩阵E为:3-10 隐藏后矩阵E原始信息和隐藏后信息矩阵差值F下图所示:3-11 差异矩阵F由图形对比可知,在相应的比特位嵌入秘密信息来实现信息隐藏。

但最低位的隐藏很容易被识别和攻破,因此下面介绍信息隐藏的拓展。

3.6信息隐藏的拓展由前面信息隐藏的介绍,我们知道最低位的隐藏不会影响图像的识别,因此我们可以在相应的位数进行信息填充。

比如最后两位,这样的话嵌入信息较多,相应的图像失真度较大。

并且也容易被攻破,但随机序列相对来说就比较安全。

一个品质良好的随机序列可以在信息安全诸多领域发挥不可估量的作用。

在信息隐藏中,最直接的一个例子就是通过随机序列控制秘密信息的嵌入规则。

一个没有随机序列控制的隐藏算法是没有安全性可言的。

随机选取像素点,将消息隐秘与LSB,如果顺序选取像素点进行信息隐秘,势必会造成图像各部分统计特征的不一致,而导致严重的安全问题。

载体的第一部分和第二部分,也就是修改的部分和没有修改的部分,具有不同的统计特性,增大了攻击者对秘密通信怀疑的可能性。

为了解决这个问题,可以随机间隔选取像素序列。

此嵌入与提取算法与顺序隐秘的算法基本相同,只是在选取图像序列时不再顺序而是随机间隔的选取。

四、心得体会本文从图像信息隐藏算法方面对图像信息隐藏技术进行了讨论,并且详细地探讨了基于LSB时空域的图像信息隐藏技术,给出了相应的MATLAB程序,对实验结果进行了分析讨论。

在使用Matlab的过程中,尽管从没学过,但依然通过它解决了一些编程的问题,也明白了MATLAB的使用及算法的含义。

五、参考文献1.王丽娜,郭迟,李鹏主编.信息隐藏技术实验教程.武汉大学出版社,2004;2.刘振华,尹萍主编.信息隐藏技术及应用[M].北京,科学出版社,2002;3.何超英主编.MATLAB应用与实验教程.北京,电子工业出版社,2010;4.陈克非,黄征主编.信息安全技术导论.北京,电子工业出版社,2010;。

相关文档
最新文档