第四章:土壤物理性质
土壤物理性质(四)

土壤物理性质(四)(五)土壤力学性质与耕性土壤受外力作用(如耕作)时,显示出一系列动力学特性.统称土壤力学性质(又称物理机械性)。
主要包括黏结性、黏着性和塑性等。
耕性是上壤在耕作时所表现的综合性状,如耕作的难易,耕作质量的好坏,宜耕期的长短等。
土壤耕性是土壤力学性质的综合反映。
1.土壤黏结性和黏着性 (1)概念土壤黏结性是土粒与土粒之间因为分子引力而互相黏结在一起的性质。
这种性质使土壤具有反抗外力破裂的能力,是耕作阻力产生的主要缘由。
干燥土壤中,黏结性主要由土粒本身的分子引力引起。
而在潮湿时,因为土壤中含有水分,土粒与土粒的黏结经常是通过水膜为媒介的,所以事实上它是土粒-水膜-土粒之间的黏结作用。
同时,粗土粒可以通过细土粒(黏粒和胶粒)为媒介而黏结在一起,甚至通过各种化学胶结剂为媒介而黏结。
土壤黏结性的强弱,可用单位面积上的黏结力(g/cm2)来表示。
土壤的黏结力,包括不同来源和土粒本身的内在力。
有范德华力、库仑力以及水膜的表面张力等物理引力,有氢键的作用,还往往有如化学胶结剂(腐殖质、多糖胶和等)的胶结作用等化学键能的参加。
土壤黏着性是土壤在一定含水量范围内,土粒黏附在外物(农具)上的性质,即土粒-水-外物互相吸引的性能。
上壤黏着力大小仍以g/cm2等表示。
土壤开头展现豁着性时的最小含水量称为黏着点;上壤丧失黏着性时的最大含水量,称为脱黏点。
(2)结性与瓤着性的影响因素土壤赫结性和载着性均发生于土粒表面,同属表面现象,其影响因素相同,主要有土壤比表面大小和含水量凹凸两个方面。
1)土壤比表面及其影响因素土壤质地、黍占粒矿物种类和交换性阳离子组成,以及土壤团圆化程度等。
都是影响土壤黏结性和黏着性离子大小的因素。
土壤质地愈黏重,黏粒含量愈高,尤其是2:1型黏粒矿物含量高,交换性钠在交换性阳离子中占的比例大,而使土粒高度簇拥等,则黏结性与黏着性增加;反之,土粒团圆化降低了彼此间的接触面,所以有团粒结构的土壤就整体来说黏结力与黏着性削弱。
土壤性质

2土壤胶体构造:分晶型胶粒(无机胶体)和非晶型胶粒(有机胶体)。
土壤胶体微粒图:用双电层理论P60图1-23,P61图1-24,图1-25
双电层理论:胶体表面的电荷层与胶体周围由于静电吸力作用形成的反号电荷的离子层,构成双电层。其内层叫决定电位离子层,外层叫反离子层或补偿离子层。两层之间的距离,与一个粒子大小相当。双电层之间的电位呈直线迅速降低。反离子层内的反号离子并不是分布在同一个平面,距离胶体表面近的反号离子数量多,排列紧密,称为Stern层(非活性补偿离子层);随着离胶体距离增加,反号离子数量减少,以扩散状态分布,直至自由溶液,称活性补偿离子层或扩散层。Stern层以外的距离远远大于一个粒子的直径,电位也随着离胶体表面的距离的增加呈指数关系逐渐下降。Stern层(非活性补偿离子层)与自由溶液之间的电位降称电动电位(ζ)。它是表征双电层特征的重要指标,其值随扩散层厚度变化而变化,是可以测定出来的。决定电位粒子层与溶液之间的电位差为热力电位(ε),在一定的胶体系统内,其值不随扩散层厚度变化而变化。
c离子价数:介质中反号离子价数由原过来的1价变成2价,双电层的其他条件不变,这时胶体表面对离子的吸引力增加1倍,双电层厚度减小,ζ电位降低。
土壤胶体表面双电层厚度
溶液浓度N
双电层厚度(Å)
单价阳离子
双价阳离子
10-5
1000
500
10-3
100
50
10-1
10
5
同号离子对ζ电位的影响与胶体本身电位高低有关。胶体本身电位高,介质中同号离子被排斥在双电层固定层之外,同号离子价数变化对ζ电位无影响。胶体本身电位低时,双电层固定层内仍有同号离子存在,这时同号离子价数变化或数量变化,的都会影响ζ电位,即同号离子价数增高或离子浓度增加使ζ电位增高。
大学土管知识点总结大全

大学土管知识点总结大全第一章:土壤学基础知识1.1 土壤的定义与分类土壤是地球表面最上层由岩石颗粒、有机质、水和空气所组成的,支持生物生长的物质。
土壤根据其形成过程、化学性质、物理性质和生物性质可以分为多种类型,常见的有砂土、壤土、粘土、沙壤土等。
1.2 土壤的物理性质土壤的物理性质主要包括土壤颗粒的大小和形状、土壤的密度、孔隙度等。
这些性质对土壤的渗透性、通气性、保水性等有一定的影响。
1.3 土壤的化学性质土壤的化学性质包括土壤的酸碱度、土壤中的养分含量等。
这些性质对于土壤的肥力、养分供应等有着重要的作用。
1.4 土壤的生物性质土壤的生物性质主要指土壤中的微生物、腐解生物等。
这些微生物能够分解有机物、促进土壤的肥力等,对土壤的生态系统有着重要的作用。
第二章:土壤与植物2.1 土壤对植物的影响土壤中的养分、水分、氧气等对植物的生长有着直接的影响。
不同类型的土壤对植物的影响也有所不同,需要根据具体情况进行合理的土壤处理和管理。
2.2 土壤养分的供给土壤中的养分对于植物的生长发育至关重要。
常见的养分包括氮、磷、钾等,需要通过施肥等方式来进行补充。
2.3 土壤中的微生物土壤中的微生物对于植物的生长发育有着积极的影响。
它们可以分解有机物,促进植物的吸收养分等。
第三章:土壤改良与施肥技术3.1 土壤改良土壤改良是通过改变土壤的物理性质、化学性质、生物性质等,来提高土壤的肥力、改善土壤的透气性、保水性等。
通常采用的方法有耕作、施肥、植被覆盖等。
3.2 施肥技术施肥是为了保证植物充分获得所需的养分而对土壤进行的一种活动。
施肥的方式有化肥施用、有机肥施用等,需要结合实际情况进行选择。
第四章:土壤保护与治理4.1 土壤侵蚀土壤侵蚀是指风、水、人类等因素对土壤进行的剥蚀、冲刷等,导致土壤流失的过程。
土壤侵蚀对于土地的生产力有着严重的影响,需要采取措施加以防治。
4.2 土壤污染土壤污染是指土壤中出现的有毒物质,对土壤环境和人类健康带来危害的情况。
土壤的物理化学性质

土壤的物理化学性质壤是发育于地球陆地表面具有生物活性和孔隙结构的介质,是地球陆地表面的脆弱薄层土壤是各种陆地地形条件下的岩石风化物经过生物、气候诸自然要素的综合作用以及人类生产活动的影响而发生发展起来的。
接下来店铺为你整理了土壤的物理化学性质,一起来看看吧。
土壤的物理性质(1)土壤质地和结构土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。
根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径2.0~0.2mm)、细砂(0.2~0.02mm)、粉砂(0.02~0.002mm)和粘粒(0.002mm以下)。
这些大小不同的固体颗粒的组合百分比称为土壤质地。
土壤质地可分为砂土、壤土和粘土三大类。
砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。
粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。
壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。
土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。
它可分为微团粒结构(直径小于0.25mm)、团粒结构(0.25~10mm)和比团粒结构更大的各种结构。
团粒结构是土壤中的腐殖质把矿质土粒粘结成0.25~10mm直径的小团块,具有泡水不散的水稳性特点。
具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。
无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥力差,不利于植物根系扎根和生长。
土壤质地和结构与土壤的水分、空气和温度状况有密切的关系。
(2)土壤水分土壤水分能直接被植物根系所吸收。
土壤的物理性质

土壤的物理性质1、 土壤的温度:土壤的温度在土壤中的分布于变化时是土壤热量状况的反映。
土壤温度状况也是土壤系统分类中的重要诊断特性。
2、 土壤的孔隙(1) 土壤孔隙度: 土壤的孔隙状况取决于土壤的质地和土壤的结构,土壤的孔隙度在不同类型的土壤和同一类型土壤不同发生层中都是不相同的。
土壤孔隙度通常不直接测定,而是通过土壤相对密度和容量的数据来计算获取的。
%100-1⨯⎪⎭⎫ ⎝⎛=土壤相对密度土壤容量土壤孔隙度 (2) 影响土壤孔隙的因素土壤孔隙度、孔径大小和大小孔隙的比例,决定与土粒的粗细以及土粒排列和团聚的形式。
影响土壤孔隙状况的因素主要有以下几种。
a. 土壤质地b. 土粒排列松紧与土壤结构c. 有机物质(3) 土壤相对密度和容重以动态观点及非线性动力学理论和方法来探索地质环境演化在自然因素与人为因素双重的作用下环境产生变化, 而这些因素的变化在许多情况下是无序的,是一个非线性问题。
非线性动力学理论和方法研究,在国际上已成为热点问题。
要了解和掌握这些因素变化, 就要通过长期的连续的对环境各要素进行监测, 取得必要的资料,从而来认识它。
因此, 国际上非常重视建立不同级别的(即全球性的、国家级的、地区性的) 长期的环境监测网站。
收集环境变化记录资料, 作为全球环境变化研究的科学依据,也是地球系统科学的重要组成部分。
这种以研究环境和生态系统为目的的不同级别的长期监测网站的建立已成为国际性趋势。
例如美国的长期生态研究网络、亚洲—太平洋地区的全球变化网络、中国生态系统研究网络、欧洲全球变化研究网络等等(方精云等, 2000) [10 ] 。
以各类环境监测数据为基础, 采用动态观点及非线性动力学理论和方法, 综合性地来探索地质环境演化的特点和地质环境灾变预报的可能性。
212 从不同空间尺度研究地球环境演化着眼于地球是个复杂系统, 是个多层次结构,以及通过各圈层相互作用的演化过程, 来研究全球性环境变化。
既研究现代的, 也研究过去地质历史时期(如晚更新世以来, 尤其是全新世时期的古环境变迁) , 同时对21 世纪内全球变化趋势进行预测。
土壤的物理性质

土壤的物理性质
1.2土壤孔隙性
(4)计算土壤储水量及灌水(或排水)定额
设土层厚度1m,土壤含水量25%,容重为1.3 t/m3。
公 式
1hm2的1m土层储水量 =10000m2×1m×1.3 t/m3×25% =3250m3/hm2= 325mm
1.1土壤质地与土壤结构
土壤质地
物理性粘粒 (<0.01mm)%
物理性沙粒 (>0.01mm)%
组别
名称
灰化土类
草原土及 红黄壤土
碱土及 强碱化土
灰化土 类
草原土及 红黄壤土
碱土及 强碱化土
砂土
松砂土 紧砂土
壤土
砂壤土 轻壤土 中壤土 重壤土
粘土
轻粘土 中粘土 重粘土
0–5 5 – 10
10 – 20 20 – 30 30 – 40 40 – 50
90 – 80 80 – 70 70 – 60 60 – 50
90 – 80 80 – 70 70 – 55 55 – 40
40 –50
50 – 60 >65
50 –35
35 – 20 <20
40 –25
25 – 15 <15
100 – 95 95 – 90
90 – 85 85 – 80 80 – 70 70 – 60
土壤的物理性质
1.3土壤物理机械性质与耕性
土壤物理机械性质
土壤粘结性
土壤粘着性
土壤可塑性
土壤的物理性质
1.3土壤物理机械性质与耕性 土壤黏结性:土粒与土粒之间相互黏结在一起,抵抗机械破碎 的性能
土壤的物理性质:学习土壤的物理性质及其对植物生长的影响

• 根据土壤肥力监测数据,预测土 壤肥力的未来变化趋势
谢谢观看
THANK YOU FOR WATCHING
Docs
• 根据植物生长需要和土壤水分状 况,合理安排灌溉和排水措施
土壤水分管理:通过监测、预测和调控 等手段,实现对土壤水分的合理利用和
环境保护
• 土壤水分管理的方法:土壤水分监测 法、土壤水分预测法等
• 利用土壤水分监测设备,定期监 测土壤水分状况
• 根据土壤水分监测数据,预测土 壤水分的未来变化趋势
04 土壤空气与植物生长关系
• 土壤肥力变化的测定方法:土壤养分监测法、遥感法等 • 利用土壤养分监测设备,定期监测土壤中的养分含量和分布
土壤肥力变化对植物生长的影响:
• 影响植物种子的发芽和生长,影响植物的生长速度和产量 • 影响土壤中微生物活动,进而影响植物生长 • 影响土壤养分和水分循环,进而影响植物生长
土壤肥力的调节与管理
• 土壤密度:单位体积土壤的质量,单位:g/cm³ • 土壤密度的测定方法:浮力法 • 将土壤样品放入一个装满水的容器中,测量土壤样品在水中的浮力 • 根据浮力计算土壤的体积,然后将土壤样品烘干,测量其质量 • 计算土壤的密度:密度=质量/体积
• 土壤孔隙度:土壤中空隙体积与土壤总体积之比,单位:% • 土壤孔隙度的测定方法:排液法 • 将土壤样品放入一个装满水的容器中,测量土壤样品在水中的浮力 • 将土壤样品取出,称其质量,计算其体积 • 计算土壤的孔隙度:孔隙度=(1-土壤密度/土壤真密度)*100%
土壤层次结构对植物生长的影响:
• 影响土壤的肥力、水分和空气供应,进而影响植物生长 • 影响土壤微生物活动,进而影响植物生长 • 影响土壤侵蚀和排水能力,进而影响植物生长
第四章 土壤物理性质ppt课件

(三)孔隙的分级
1. 当量孔径 与土壤水吸力相当的孔隙直径称为当量孔径。 T=3/D D为孔隙直径(毫米)。T为水吸力,可理解为
土壤对水的吸力,单为厘米或百帕(hpa)。
第四章 土壤物理性质
第一节 土壤孔性
土壤液、气共同存在于土壤孔隙中。
一、土壤密度(soil density)
1. 概念 单位容积固体土粒(不包括粒间孔隙)的质
量。(g/cm3)
2. 影响土壤密度的因素 矿物组成、有机质含量、土壤质地。 土壤密度一般取平均值2.65g/cm3。
ቤተ መጻሕፍቲ ባይዱ 组分
石英 正长石 斜长石 白云母 黑云母 角闪石 辉石 纤铁矿
土壤密度与4℃时纯水密度之比,一般取2.65。
二、土壤容重(bulk density of soil)
1. 概念: 单位体积自然状态土壤体(原状土)(含粒 间孔隙)的重量(干重)。(g/cm3) 2. 土壤容重(soil bulk density)作用 (1)计算土壤孔隙度(soil porosity)
土粒在胶结物(有机质、碳酸钙、氧化铁)的作 用下,相互团聚在一起形成大小、形状、性质不同 的土团。
二、土壤结构体类型
1. 块状结构(cloddy structure)
形状:立方体型,纵轴和横轴大体相等,边面 不明显,内部紧实。
产生条件:熟化度较低的表层土壤或缺乏有机质 而粘重的底土多为块状结构。
大小划分:大块状结构,直径>10cm;小块状结构直 径5~10cm。
土粒后形成核状结构。 大 小 划 分 : 大 核 状 , 直 径 > 1 cm; 核 状 , 直 径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章土壤物理性质
主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。
并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。
如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。
第一节土壤质地
一、几个概念
1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒;
2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。
3、粒级:按一定的直径范围,将土划分为若干组。
土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。
土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。
4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。
5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。
如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等
二、粒级划分标准:
我国土粒分级主要有2个
1、前苏联卡庆斯基制土粒分级(简明系统)
将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。
2、现在我国常用的分级标准是:
这个标准是1995年制定的。
共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂;0.10~
0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒
三、各粒级组的性质
石砾:主要成分是各种岩屑
砂粒:主要成分为原生矿物如石英。
比表面积小,养分少,保水保肥性差,通透性强。
粘粒:主要成分是粘土矿物。
比表面积大,养分含量高,保肥保水能力强,但通透性差。
粉粒:性质介于砂粒和粘粒之间。
四、土壤质地分类
1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。
2、简明系统二级制,根据物理性粘粒的数量确定。
考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。
在我国较常用。
3、我国土壤质地分类系统:
结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。
对石砾含量较高的土壤制定了石砾性土壤质地分类标准。
将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。
五、土壤质地与土壤肥力性状关系
从两个方面来论述
1、土壤质地与土壤营养条件的关系
肥力性状砂土壤土粘土
保持养分能力小中等大
供给养分能力小中等大
保持水分能力小中等大
有效水分含量少多中-少
2、土壤质地与环境条件的关系
肥力性状砂土壤土粘土
通气性易中等不易
透水性易中等不易
增温性易中等不易
另外,土壤中石砾对土壤肥力有一定的影响。
第二节土壤结构
一、概念:
1、土壤结构:土壤颗粒的空间排列方式。
2、土壤结构性:土壤颗粒的空间排列方式所呈现出的稳定程度和孔隙状况。
稳定程度包括: 1)在自然状况下保持该结构的时间长短;
2)在人为条件下(耕作、施肥)保持该结构的时间长短
3、土壤结构体:单粒互相胶结在一起形成的团聚体。
二、土壤结构类型
根据土壤结构体的形状和大小,可分为立方体状(块状、核状、粒状、团粒)、柱状(棱柱状)、片状、板状等。
三、土壤结构形成的因素
1、需要一定数量和直径足够小的土粒,土粒愈细,数量越多,粘结力愈大;
2、使土粒聚合的阳离子
不同种类离子的聚合能力不同:Fe3+ <Al3+ <Ca2+ <Mg2+ <H+ <NH4+<K+<Na+聚合能力逐渐减小。
3、胶结物质
主要是各种土壤胶体。
无机胶体:粘土矿物、含水的氧化铁、氧化铝、氧化硅等;有机胶体包括腐殖质、有机质如多糖(线性的高分子聚合体)葡萄糖、胡敏酸等。
4、外力的推动作用
主要是促使较大土壤颗粒破碎成细小颗粒,同时促进小颗粒之间的粘结。
起外力推动作用的因素有三个方面:
土壤生物:根系的生长(穿插、挤压、分泌物及根际微生物)、动物的活动
大气变化:干湿、冻融交替
人为活动:耕作、施肥
四、土壤结构与土壤肥力
1、森林土壤的表层A1层,如没有被破坏,都有良好的团粒结构,还有粒状、块状结构
2、具有团粒结构或粒状的土壤,透气性、渗水性和保水性好,有利于根的生长
3、质地为砂土、砂壤土、轻壤土的土壤,土壤结构的影响较小;而质地为粘土、重壤土、中壤土或沉积紧实的砂土,土壤结构的影响较大。
土壤结构可以改变质地对土壤孔隙的影响。
多年施用有机肥可使砂土团聚成块,增加土壤保水能力;可使粘土疏松多孔。
第三节土壤比重、容重和孔隙度
一、土壤比重
1、概念:单位体积的土壤固体物质重量与同体积水的重量之比。
比重和密度在数值上接近,故有时不严格区分。
2、影响因素
土壤矿物质的种类、数量
有机质(腐殖质较小,在1.25—1.40之间)
3、一般土壤平均比重在2.65(2.6—2.7)左右
二、土壤容重:
1、概念:单位原状土壤体积的烘干土重g/cm3
2、影响容重的因素:土壤矿物质、土壤有机质含量和孔隙状况
一般矿质土壤的容重为1.33 g/cm3
3、容重的用途:
计算土壤重量,以及土壤水分、有机质和各种养分的重量;W=V*容重
计算总孔隙度:P=(1-容重/比重)*100
4、容重与坚实度的关系:在同等条件下,容重小的土壤疏松,而容重大的土壤坚实。
5、极限容重与适宜容重
极限容重:土体坚实以致根系不能生长的最大容重值。
适宜容重:土壤结构性与孔隙状况适宜植物扎根生长时的容重。
以上两者均取决于土壤质地和根系本身,无固定数值。
6、计算题:一亩地,耕层深度为20cm,土壤容重为1.15g/cm3,比重为2.65
1)、计算耕层土重和总孔隙度。
2)、已知现在土壤含水量为5%,要求灌水后达到25%,应补充多少水?
3)、经测定,土壤有机质含量为2%,计算土壤有机质的重量。
三、土壤孔隙度
1、定义:单位原状土壤体积中土壤孔隙体积所占的百分率。
总孔隙度不直接测定,而是计算出来。
总孔隙度=(1-容重/比重)*100%
2、孔隙的类型分级:孔隙的真实直径是很难测定的,土壤学所说的直径是指与一定土壤吸力相当的孔径,与孔隙的形状和均匀度无关。
根据孔隙的粗细分为三类:
(1)非毛管孔隙(大):孔隙直径大于0.02mm,水受重力作用自由向下流动,植物幼小的跟可在其中顺利伸展,气体、水分流动
(2)毛管孔隙:孔隙直径在0.02—0.002毫米之间,毛管力发挥作用,植物根毛(0.01)可伸入其中,原生动物和真菌菌丝体也可进入,水分传导性能较好,同时可以保存水分,水分可以被植物利用
(3)非活性毛管孔隙:小于0.002毫米,即使细菌(0.001—0.05mm)也很难在其中居留,这种孔隙的持水力极大,同时水分移动的阻力也很大,其中的水分不能被植物利用(有效水分含量低)。
3、适宜的土壤孔隙状况
土壤中大小孔隙同时存在,土壤总孔隙度在50%左右,而毛管孔隙在30—40%之间,非毛管孔隙在20—10%,非活性毛管孔隙很少,则比较理想;
若总孔隙大于60—70%,则过分疏松,难于立苗,不能保水;
若非毛管孔隙小于10%,不能保证空气充足,通气性差,水分也很难流通(渗水不好);
4、影响土壤孔隙状况的因素
(1)质地的影响:规律为质地越粘,总孔隙度增加;
(2)结构的影响:团聚体直径越大,总孔隙度上升,一般团聚体直径在 0.5—2mm较好;(3)有机质的影响:增加总孔隙度(本身多孔),并利于团聚体的形成
本章重点:一是掌握描述土壤物理性质常用的术语,如土壤质地、土壤结构、土壤孔隙度等;
二是掌握土壤容重的意义,学会一些基本的计算;三是掌握土壤物理性质与土壤肥力之间的关系。
本章难点:一是土壤结构。
目前对土壤结构还未有统一的认识,对土壤结构形成的机制也并不十分清楚;二是土壤孔隙的分类。
土壤孔隙度不能直接测定,而是根据比重和容重计算出来。
第四章土壤物理性质复习思考题
一、名词解释
1、单粒;
2、土壤机械组成;
3、土壤质地;
4、土壤结构;
5、土壤比重;
6、土壤容重;
7、土壤孔隙度;
8、物理性砂粒;
9、物理性粘粒
二、简答题
1、土壤质地分类的主要依据是什么?
2、简述土壤矿物颗粒各粒级的性质。
3、简述土壤质地对土壤肥力性状的影响。
4、简述土壤团粒结构形成的因素。
5、土壤结构对土壤肥力有哪些影响
6、土壤容重有哪些用途?
7、土壤孔隙有哪几种类型?
8、什么样的孔隙状况较适合植物的生长?。