煤热解动力学研究

煤热解动力学研究
煤热解动力学研究

煤热解动力学研究

引言

热解是煤燃烧、气化和液化等热加工工业中的基本过程之一,也是成煤过程中的基本环节[1]。因此,研究煤的热解不仅为煤的热加工过程提供科学依据,也能为加深煤化学研究提供重要信息。在研究煤的热解动力学过程中,必然涉及反应速率与活化能和指前因子等动力学参数[2-4]。本文着重探索几种热解模型和热解动力学模型,并针对在还原气氛下进行煤热解这一课题,进行动力学选择和分析。

1热解模型

随着近十几年的现代仪器的发展,采用Py-FIMS、13C-NMR(碳核磁共振波谱法)、TG-FTIR(红外光谱仪)等手段对煤结构的研究,使得人们有可能有可能以煤的结构为基础研究煤的热解机理,并由此建立了比较成功的煤热解网络模型,如由用来描述气体逸出与焦油形成的降解一蒸发一交联的FG-DVC模型、FLASHCHAIN模型和化学渗透脱挥发分(CPD)模型。这些模型都是用简化的煤化学和网络统计学描述焦油前驱体的生成,但在网络几何形状、断桥和交联化学、热解产物、传质假设和统计方法上各有不同[5]。

1.1 FG-DVC热解模型

FG-DVC(Functional Group Depolymerization Vaporization Crosslinking)模型是由用来描述气体逸出的官能团模型与描述焦油形成的降解一蒸发一交联模型结合而成的。FG模型是用来描述煤、

半焦和焦油中气体的产生与释放机理;DVC模型是用来描述在桥键断裂和交联发生的影响下煤中大分子网络所发生的分解和缩聚行为,预测碎片的分子量分布情况[6]。FG-DVC模型的基本概念:(1)煤中官能团分解产生小分子类热解气体;(2)大分子网络分解产生焦油和胶质体;(3)胶质体分子量的分布由网络配位数决定;(4)大分子网络的分解是由桥键的断裂来控制,而桥键的断裂是受活泼氢限制;(5)网络的固化是由交联控制的,交联的发生伴随着二氧化碳(桥键断裂前)和甲烷(桥键断裂后)的放出。低阶煤(放出大量二氧化碳)在桥键断裂以前发生交联,高挥发分的烟煤(几乎不产生二氧化碳)在交联前就经历了明显的桥键断裂具有高流动性,故放出二氧化碳量的增加致交联的增加和流动性的降低;(6)焦油的逸出是受传质控制的(焦油分子蒸发到小分子气体或焦油蒸汽中以与其蒸汽压或轻组分体积成比例的速度被带出煤粒,高压减小了轻组分体积,所以就降低了具有较低蒸汽压大分子类产品的产量)。

Serio等[7]对FG模型作了进一步假设:1)大部分官能团独立分解生成轻质气体;2)桥键热分解生成焦油前驱体,前驱体本身也尤其代表性的官能团组成;3)焦油和轻质烃或其它组分相互竞争煤中的可供氢以稳定自由基,一旦内部供氢耗尽,焦油和轻质烃类(除CH4外)便不在生成;4)焦油和半焦的官能团以相同速率继续热解。

DVC模型最初用蒙特卡罗法来分析断键、耗氢和蒸发过程,后来也开始使用渗透理论,只是在个别概念上稍有修正。DVC模型为焦油生成提供了统计基础,该模型假定断键裂为单一的乙撑性断键,其活

化能在一定范围内连续分布。断键时需要消耗煤中的可供氢以稳定自由基。模型认为煤中芳香环簇由强桥或弱桥练成的二维网络,芳香簇的分子量服从高斯分布。每个簇上有一定的初始交联点数用来连接一定长度的齐聚物,从而使交联点间的分子量能与实验值相一致。选择不同的长度可以使不相连的外在分子同抽提收率相对应。可断裂桥即乙撑桥的数要与可供氢的值相对应。有了以上各个参数,原煤中齐聚物的分子量分布便可以确定下来[5]。

2.2FLASHCHAIN热解模型

该模型的基础是能量分布链模型(DISCHAIN)、能量分布阵模型(DISARAY)、FLASHTWO闪蒸模拟的化学动力学和大分子构象。它对官能团、氢的抽出、可供氢的反应和传质阻力均不予考虑。FLASHCHA IN模型用到了四种脱挥发分化学反应:断桥、自发缩聚、双分子再化合、外围官能团脱除。断桥反应和缩聚反应的活化能具有一定形式的分布函数,双分子再化合反应为二级反应,外围官能团的脱除为一级反应。

FLASHCHAIN热解模型将煤看做是芳香核线性碎片的混合物,芳香核由弱键或稳定键两两相连,芳香核中的碳数由C-NMR测得。碎片末端的外围官能团完全是脂肪性的,是非冷凝性气体的前驱体。该模型的基本观点为:在热解时不稳定桥或者解离使碎片尺寸缩小,或缩合为半焦连键,同时将相连的外围官能团以气体形式释放。焦油以最小的胶质体以平衡闪蒸的方式生成[7]。

2.3CPD热解模型

化学渗透脱挥发分(CPD)模型用化学结构参数来描述煤结构,并根据无限煤点阵中已断开的不稳定桥数用渗透统计方法描述焦油前驱体的生成。渗透统计学以Bethe晶格为基础,用配位数和完整桥的分数来表述。该模型的特点为::1)煤依赖性输入参数由NMR测得;2)焦油分子结构分布、轻质气体前驱体总数以及半焦分数由渗透点阵统计方法确定;3)不稳定桥断裂活化能用Solomon等提供的数据[8];4) 用一套官能团模型反应的加权平均来描述轻质气体的生成;5)用闪蒸过程来描述处于汽液平衡的有限碎片,这一过程的速率要快于断键速率;6)用交联机理解释煤塑性体重新连到半焦基体上的过程。

CPD模型将煤看做是由桥连接的芳环网络。反应首先从不稳定桥断裂开始,所生成的反应性中间物或者重新连接到活性上形成半角化的稳定桥,或者通过与氢气反应是断开的活性中心稳定化并生成两个侧链,最终通过反应生成轻质气体。CPD模型用通用的蒸汽压表达式描述焦油的生成,用交联机理解释煤塑性体重新连接到无限基体上的过程。它一共用到九个动力学常数和五个煤结构参数,最终气体收率可以由结构参数推算出来。动力学参数对各种煤通用,其数值见表1。化学结构参数则因煤种而异,早期的CPD模型通过焦油和总挥发物的曲线拟合得到各个参数值。现在,在大多数情况下,由固态NMR 数据即可直接测得所有化学结构参数,只有褐煤和极高阶煤例外。此外,由于从煤塑性体生成焦油的过程可以用拉乌尔定律处理为汽液平衡过程,而蒸汽压系数的确定又与CPD模型无关,这就意味着对绝

大多数煤而言,仅仅根据原煤的NMR表征结果,不必进行热解实验,便可以预测焦油和轻质气体的收率与分子量。

2.4三种网络模型的对比

虽然这三种模型都依赖于煤的结构参数,但在使用这些参数建立模型的方法上各有不同。比如,三种模型在煤结构模型和焦油形成模型上有很大的相似性,但在网络描述、桥模型、断桥反应模型、气体和半焦的生成模型上却各有特色(详细对比见表2)。可以注意到,在断桥解聚模型中,FG-DVC和CPD采用的不稳定桥断裂活化能值为230KJ/mol,而FLASHCHAIN采用的值是167KJ/mol,这就意味着它们对脱挥发分期间物质逸出随时间的变化关系所做的预测值也会不同。尽管如此,在很宽的煤种、温度和升温速率范围内,三种模型对焦油和总挥发物收率的预测值仍然同实验值吻合良好。

3热解动力学模型

3.1煤热解及分类[9]

煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。煤热解的结果使生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低变质煤热解能得到高产率的焦油和煤气。

煤的热解过程大致可分为三个阶段:

第一阶段,室温-300℃,干燥脱气阶段,这一阶段煤的外形基本变化。在120℃以前脱水,C风、CO:和从等气体的脱除大致在200℃完成。褐煤在200℃以上发生脱梭基反应,约300℃开始热解反应,烟煤和无烟煤一般不发生变化。

第二阶段,300-600℃,这一阶段以解聚和分解反应为主,形成半焦。生成和排出大量挥发物(煤气和焦油),在450℃左右焦油量排出最大,在450-600℃气体析出量最多。煤气成分主要包括气态烃和CO、CO2等;焦油主要是成分复杂的芳香和稠环芳香化合物。烟煤约350℃开始软化、熔融、流动和膨胀直到固化,出现一系列特殊现象,形成气、液、固三相共存的胶质体。在500-600℃胶质体分解、缩聚,固化形成半焦。煤化程度低的褐煤不存在胶质体形成阶段,仅发生激烈分解,析出大量气体和焦油,形成粉状半焦。

第三阶段,600-1000℃,以缩聚反应为主,半焦变成焦炭。该阶段析出焦油量极少,挥发分主要是煤气(H2和CH4),又成为二次脱气阶段。从半焦到焦炭,一方面析出大量煤气,另一方面焦炭本身密度

增加,体积收缩,形成具有一定强度的碎块。褐煤则形成粉状焦粉。

根据不同的热解条件和方式,煤热解有以下几种分类:

1)根据热解最终温度分为:低温(500℃-700℃)热解,制取焦

油为目的;中温(700℃-900℃)热解,以生产中热值煤气为主;

高温(1000-1200℃)热解,生产高强度的冶金焦;超高温热解)1200℃。2)按升温速率分为:慢速(小于1k/s)、中速(5-100k/s)、快速

(500-106k/s)和闪速(大于106k/s)。

3)按照气氛分为:惰性气氛热解、加氢热解和催化加氢热解。

4)按反应器内的压力分为:常压和加压热解。

5)按固体颗粒与气体在床内的相对运动状态分为:固定床、流化床、气流床、移动床和落下床。

6)按加热方式分为:内热式、外热式和内外热并用式。

3.2热解动力学模型

3.2.1总包一级反应模型

若反应A→产物的反应速率与反应物A的浓度的一次方成正比,则该反应为一级反应。一级反应的例子有:单分子基元反应,表现一级的某些物质的分解反应。一些放射性元素的蜕变,如镭→氡+氦,其蜕变的速率与瞬时存在的物质的量成正比,所以可以用一级反应描述。一级反应的动力学特征:(1)K的单位是(时间-1);(2)lnc A与t有线性关系:-lnc A正比t;(3)半衰期:t1/2=ln2/k,t1/2与c A,0无关;(4)反应寿期t3/4=2t1/2。

单一一级反应模型动力学方程为:

dx

dt

=Ae-E/RT(1-x)(3.1)

式中,A为频率因子,E为活化能,R为气体常数,x为煤的转化率。

将升温速率H=dT

dt

带入上述方程(3.1),并进行积分和取对数处理,得如下方程:

ln[?ln?(1?x)(E+2RT)

T2]=ln AR

β

-E

RT

(3.2)

上式(3.2)即为总包一级反应的计算公式,利用实验得到的煤的转化率与温度的关系数据,对(3.2)进行现行回归,可由回归的斜率和截距分别求得活化能和频率因子。

总包一级反应模型简化了煤热解反应,但由于煤是一种有机和无机物质组成的混合物,只能在有限的实验条件下总包一级反应模型才适用,甚至在一种升温速率下可以,另外一种升温速率就不能用了。所以该模型不能很好的解释煤的热解机理。

3.2.2分布活化能模型(DAEM)[10]

煤是一复杂的高分子化合物,其热解过程有很多反应发生,是一个复杂的交叉反应网络,从而研究者们认为煤热解由无限多的平行一级反应组成,其活化能呈一定的连续分布,称之为分布活化能模型(Distributed Activation Energy Model: DAEM)。

分布活化能反应模型也称为多重反应模型(MRM),是最广泛使用的模拟煤热解过程中不同成分演化的模型。DAEM模型已广泛应用于解析一些复杂的反应体系,如化石燃料的热解、活性炭再生等。该模

型基于如下假设:(1)热解过程由许多相互独立的一级不可逆反应组成,即无限平行反应假设。(2)每个反应有确定的活化能,所有反应的活化能值呈某种连续分布,即活化能分布假设。同时在应用DAEM时,研究者一般认为活化能分布为高斯分布函数,并由过渡态理论指定频率因子为固定值1.67×1013s-1。DAEM模型的化学方程式表示为:

dVi

dt

=k i(V*-V i)(3.3)

i代表某个独立的化学反应或某个反应物,V为某时刻析出的挥

发分,V*当t→无穷大时挥发分量。K i由阿累尼乌斯方程给出:

k i=k0exp(-E/RT)(3.4)

由于所假设的反应数目足够大,活化能的分布可以由一个分布函

数f*(E)来表示。那么V*f*(E)dE则表示活化能介于E和E+dE之间的潜在挥发分部分。其次某时刻挥发分量为:

V=V*-V*exp?(?

k E dt)f

*(E)dE(3.5)

通常f*(E)用高斯分布来表示,平均活化能为E0,标准方差为?。将方程(3.4)带入(3.5):

(3.6)由上可以看出,分布活化能模型存在一些缺点:双重积分,计算量大,费时;不能预先估计积分误差:一旦某个交叉点选定,就必须用到整个过程。为此,E.DONSKOI等人采用了一种优化方法来简化分布活化能模型,该方法能节省时间,减少计算量,并直接估计误差。优化模型方法建立在高斯公式的基础上:

(3.7)

X=(E-E0)/(2?),活化能用公式:E i=E0+x i2?m,将式(3.7)带入式(3.6):

(3.8)其中W i=w i exp(x i2),方程(3.8)看似复杂,但(m/π)exp{-(E i-E0)2/2?2在给定的模型形态中只计算一次,相对比较说减少了计算量。

3.2.3总包n级反应模型

将煤的热解反应看做为n级反应,反应动力学方程可表示为:

dx

=Ae-E/RT(1-x)n(3.9)

dt

带入上述方程(3.9)并整理得:

将升温速率H=dT

dt

(3.10)

在式(3.10)中,预先选定不同的n值后,以对1/T进行线性回归,回归过程的相关系数最接近1时对应的n值,即为要求的反应级数。n可以使整数,也可以是分数。由此线性回归所得的斜率和截距可分别求得活化能和频率因子。

4没热解动力学

4.1模型选择

动力学研究的主要任务是通过动力学处理方法获得反应机理和动力学参数, 而研究煤的热解动力特性对煤的燃烧和气化过程有着重要

的影响, 也是研究煤的燃烧及气化特性的基本内容之一。目前主要从胶质体反应动力学及脱挥发分动力学等方向来研究煤的热解动力学, 常用的热分析方法有单一升温速率法即FC法、多重速率扫描法、动力学补偿效应和分布活化能模型等。大多数研究者倾向于认为在整个颗粒中均匀发生的总过程近似为一级分解反应,另外对样品不同级数分段线性回归的结果表明,在n=1时,可以获得较好的线性关系,为此大多数研究采用一级反应描述煤的热解过程。

假设煤的分解速率等同于挥发物析出速率。挥发物析出速率浓度的关系为:

dx dt =A

H

e-E/RT(1-x)(4.1)

x=M0?M

M0?M1=ΔM ΔM1

式中:x为煤的热解转化率,%;H为升温速率,Ks-1,H=dT

dt

;E为活化能,KJ/mol;R为气体常数,R=8.314*10-1KJ/mol K;A为频率因子,s-1;M0为试样起始重量,g;M、ΔM为试样在热解过程中某一时刻的质量和失重,g;M1和ΔM1为试样在热解终点的残余质量和失重,g。

采用Doyle积分法,对式(4.1)积分得:

(4.2)

对式(4.2)右边积分,并令y=E/RT可得:

(4.3)

将ρ(x)展开:ρ(x)= e-x/x2(1-2!

x +3!

x

-4!

x

+……)并取对数可得:

Log(ρ(x))-2.315-0.4567E/RT (4.4)令,将式(4.4)代入,并取对数:

(4.5)

对式(4.5)转化为常用对数,将R值代入最后可得:

(4.6)

对式(4.6)左边对1/T作图,可得一直线,斜率为-0.1278E,可求得活化能E;截距为ln((AE/RH))-5.314,据此可求得频率因子A。下面对低变质煤热解进行热解过程分析:

褐煤热解过程是三个连串反应,其模型如下:

褐煤→中间产物1+气体(条件K1,解聚反应)

中间产物1→中间产物2+气体(条件K2,裂化反应)

中间产物2→中间产物3+气体(条件K3,复杂变化)

褐煤挥发分可分为3个阶段。在第一阶段(T<350℃),煤大分子结构中的移动相(主要由脂环烃组成)分解,活化能较低(36.9KJ/mol);在第二阶段(350℃

中的芳环化合物)进一步分解,但缩聚反应占主导,并形成二次焦,此阶段的活化能为115.4KJ/mol,与第二阶段的活化能相差不大。第三阶段解聚反应较少,这是因为没结构中的脂环烃、含氧官能团及热稳定性差的分子在前两个阶段已分解或析出[11]。

第一阶段开始分解的活化能很低,随着热解温度的升高,活化能迅速增大,这表明煤的分解是选择性的发生的。首先分裂下来的是热稳定性差的集团如烷基、羧基、羰基、羟基或醚基等。随着裂解程度的进一步加深,结合较强的键也断裂[12]。对于某一种煤,在热解是活化能表现为从低到高的递增;但是对于碳含量由低到高的不同煤种,热解活化能不一定完全按照由低到高的变化规律。同时活化能E与频率因子A之间存在着明显的补偿效应。这种补偿效应可能与煤中的微量矿物质、孔隙率、碳氢化合物的组成、官能团之间的键和性质等因素有关。碳含量越高,补偿效应越大[13]。

4.2活化能和频率因子的关系

从不同煤化程度的动力学参数表,以及不同方法处理后煤的热解动力学参数表可以很清楚地看到[5],同一升温速率不同温度段的煤的活化能和频率因子之间存在一种线性关系,即在同一升温速率下,活化能增大,频率因子也增大,频率因子增加幅度比活化能的大,二者呈某种线性关系。但是,对不同升温速率下即使同一温度区间,活化能和频率因子之间的这种关系也不存在。

4.3模拟

通过EXCEL处理实验数据,可得到煤的热解转化率和温度的曲线关系。利用所采用的分三段热解过程计算的动力学参数模拟实验过程,可进行理论和实验的对比,并判断所选热解模型的合理性。本文对三个升温速率下原煤以及抽提处理的煤进行了理论和实验的比较,发现相关系数都很好。

图4.1某种煤的模拟(图中实线为实验曲线,虚线为模拟曲线)

参考文献

[1]丁福臣,王剑秋,钱家麟,燃料化学学报,1991;19(2):189

[2] 葛士培,马家骧,申葆城。燃料化学学报,1981;11(1):80

[3]陈镜鸿,李传儒。热分析以及应用。北京:科学出版社,1985:P.117

[4]Walker Jr P L ,Shelef M , Anderson R A. Chemistry and Physics of Carbon vol.4.(Ed.PLWalkerJr) New York: Marcel Dekker, 1968:287

[5]刘旭光,李保庆.煤热解模型的研究方向[J].煤炭转化,1998.7

[6]AdvancedFuelResearch,Fuel-DevolatilizationModelFG-DVC,

www. https://www.360docs.net/doc/0a11133623.html,/ Products/fgdvc

[7]赵宝杰.煤低温热解的研究进展[J].科技交流,TQ530.2

[8]钟蕴英,关梦斌等,煤化学,中国矿业大学出版社,1988

[9]煤炭热解技术概述,中化新网2010.08.06

[10]降文萍.煤热解动力学及其挥发分析出规律的研究[E].太原:太原

理工大学,2001

[11]廖洪强,李文,孙成功等.煤热解机理研究新进展[A].煤炭转化,

1996.7

[12]赵丽红,楚希杰等.煤热解特性及热解动力学的研究[A].煤质技术,

2010.1

[13]王俊宏,常丽萍,谢克昌.西部煤的热解特性及动力学研究[A].炭

转化,2009.7

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

煤粉热解特性实验研究

第28卷第26期中国电机工程学报V ol.28 No.26 Sep.15, 2008 2008年9月15日 Proceedings of the CSEE ?2008 Chin.Soc.for Elec.Eng. 53 文章编号:0258-8013 (2008) 26-0053-06 中图分类号:TQ 530文献标识码:A 学科分类号:470?10 煤粉热解特性实验研究 魏砾宏1,李润东1,李爱民1,李延吉1,姜秀民2 (1.沈阳航空工业学院清洁能源与环境工程研究所,辽宁省沈阳市 110034; 2.上海交通大学机械与动力工程学院,上海市闵行区 200240) Thermogravimetric Analysis on the Pyrolysis Characteristics of Pulverized Coal WEI Li-hong1, LI Run-dong1, LI Ai-min1, LI Yan-ji1, JIANG Xiu-min2 (1. Institute of Clean energy and Environmental Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, Liaoning Province China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240, China) ABSTRACT: The pyrolysis characteristics of different particle size Hegang(HG) and Zhungaer(ZGE) coal were investigated by non-isothermal thermogravimetry in high purity argon. The results show that there are four stages (dehydration, holding, rapid weight-loss and slow weight-loss) during the non-isothermal weight loss process of different granularity coal powders, the differential thermo- gravimetry(DTG) curve has two weight loss peaks when temperatures lower than 1400℃. There was no differences in the weight-loss characteristics of various samples at the temperature below 400℃. For the pyrolysis characteristics of HG coal with rising heating-up rate , the initial release temperature decreases, the maximum weight loss rate and pyrolysis index D increase. Therefore the heating-up rate increase is favorable to improving pyrolysis characteristics of pulverized coal. In addition, comparison between similar particle size HG and ZGF coal at 10℃/min heating rate shows that the pyrolytic characteristics of HG coal with high ash and similar volatile is better than ZGE coal. KEY WORDS: pulverized coal; pyrolysis characteristics; particle size; thermogravimetric analysis 摘要:利用热天平,以高纯氩气为气氛气体,研究了细化鹤岗煤和准噶尔煤的热解特性。实验结果表明,不同粒度的细化和超细煤粉的热失重过程可以分为4个阶段,在1400℃之前热失重微分曲线有2个失重峰。室温~400℃,各样品的失重特性无明显区别。400~980℃,粒度对煤粉失重速率间存在较好规律性。升温速率对鹤岗细煤粉热解特性的影响表现在,随着升温速率的提高,挥发分的初析温度降低;热 基金项目:国家高技术研究发展计划基金项目(2002AA527051);辽宁省教育厅A类计划项目(2004D079)。 The National High Technology Research and Development of China (863 Programme)(2002AA527051).解最大失重速率增大,达到最大失重速率的温度升高,煤粉的热解特性指数D值增大,即升温速率的增加有利于细煤粉的热解。此外,在10℃/min加热条件下,对比了平均粒径基本相同的鹤岗煤和准噶尔煤的热解特性,发现挥发分含量接近,而灰分含量较高的鹤岗煤的热解特性明显优于准噶尔煤。 关键词:煤粉;热解特性;颗粒粒度;热分析 0 引言 煤的热解作为煤燃烧过程中的一个重要的初始过程,对煤粉着火有极大的影响,也影响到燃烧的稳定性及后期的燃尽问题。由于煤本身具有复杂性、多样性和不均一性,因此影响煤热解的因素繁多,如煤阶[1]、矿物成分和含量[2]、粒径[3-4]、升温速率[5]、温度[6-7]、停留时间[5]、压力[8-9]、煤的显微组分[10]、气氛[11]等。超细煤粉燃烧技术是目前一种重要的有效控制NO x排放的燃烧技术(在电站煤粉锅炉燃烧方面,将超细化煤粉定义为20μm以下的煤粉[12]),美国2000年清洁煤技术项目中将超细煤粉再燃作为降低燃煤NO x排放的主要技术之一。本文采用非等温热重分析方法,研究了粒度、升温速率和煤种对细化和超细化煤粉的热解特性的影响,由微分热重曲线计算热解反应动力学参数。 1 实验部分 1.1 样品的选取和制备 实验采用鹤岗(HG),准噶尔(ZGE)煤,经过碾磨,不进行筛分制成细化和超细化煤粉,原煤的煤质分析数据见表1。

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

生物质热解总结

一、热解分类 根据反应温度和加热速率的不同,生物质热解工艺可分成慢速、常规、快速或闪速几种。慢速裂解工艺已经具有了几千年的历史,是一种以生成木炭为目的的炭化过程川,低温和长期的慢速裂解可以得到30%的焦炭产量;低于600℃的中等温度及中等反应速率(0.1-1℃)的常规热 裂解可制成相同比例的气体、液体和固体产品: 快速热裂解大致在10-200℃/S的升温速率,小于5秒的气相停留时间;闪速热裂解相比于快速热裂解的反应条件更为严格,气相停留时间通常小于1秒,升温速率要求大于1护'C/S.并以102-1护Vs的冷却速率对产物进行快速冷却。但是闪速热裂解和快速热裂解的操作条件并没有严格的区分,有些学者将闪速热裂解也归纳到快速热裂解一类中,两者都是以获得最大化液体产物收率为目的而开发。 事实上,现在人们在考虑生物质的热解机理时,常常假设生物质的三种主要组成物独立进行裂解。纤维素主要在325℃-375℃之间裂解,半纤维素主要在225℃-325℃之间发生裂解,而木质素则在250℃-500℃之间发生裂解(大多数木质素裂解发生在310℃-400℃之间)(shafizadch和Chin. 1977)。纤维素和半纤维素的裂解产生大多数的挥发物,而木质素裂解产生大多数的碳。 二、纤维素热解机理 1、纤维素结构 纤维素是由D-葡萄糖通过β(1-4)一糖苷键相连形成的高分子聚合物。不同的分子通过氢键形成大的聚集结构。目前的研究表明纤维素存在五种结晶变体,即纤维素I,Ⅱ,Ⅲ, IV和V。其中纤维素I是纤维素的天然存在形式。 纤维素是自然界中大量存在的天然高分子物质,是自然界分布最广、含量最多的一种多糖。纤维素是植物细胞壁的主要成分,它是由吡喃葡萄糖普通过0-1, 4-搪昔联结成的线性大分子,一般可用通式(C6HioO5)n表示, n称为聚合度,通常情况下在104左右. 纤维素是由β-D-葡萄糖为聚合单元构成的直状高聚物, 分子通式为(C6H10O5)n。它是具有饱和糖结构的典型碳水化合物,为生物质细胞壁的主组成部分。在高温作用下, 纤维素会发生一系列复杂的脱水、解聚、脱挥发分和结构重整等变化。纤素热解动力学涉及这一系列复杂变化中包含的各反应机理。但是, 由于热解过程中并行或者顺序发生的反应数目众多,实际上不可能、对工程应用来说没有必要建立一个考虑了所有这些反应的详尽的动力学模型. 因此, 该领域内的研究者关注的大多是谓的“准机理模型(pseudo-mechanistic model) ”, 在这一类模型中, 热解产物被笼统地划分为挥发分、固定碳等几大类. 总体上, 准机理模型有两种:单步全局模型和半全局动力学模型[]。 [ 7 ]余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法;一种改进的纤维素热解动力学模型;浙江大学学报(工学板),2002:36,509-515 2、纤维素热解机理 由于纤维素在生物质原料中占据了几乎一半的含量,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,纤维素具有最为简单的结构且在不同的材质中其结构和化学特性变化最小,因而当前研究基本上都从纤维素的热解行为入手开展工作。 纤维素热解动力学模型体现了纤维素热解化学反应的本征过程,是整个热解模型的核心部分。动力学模型的可靠性对于颗粒热解模型是否能正确反映真实过程至关重要。 2.1源于对纤维素燃烧过程的研究 纤维素热裂解机理的探索,最早源于对纤维素燃烧过程的研究,通过纤维素燃烧试验,Broido发现纤维素在低温加热条件下,经由吸热反应一部分纤维素转化为脱水纤维素。热裂解

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

(完整版)花生壳生物质热解特性研究毕业设计

毕业论文 学院:材料科学与工程学院 专业年级:08级高分子二班 题目:花生壳生物质热解特征研究 指导教师:杨素文博士 评阅教师: 2012年5月

摘要 生物质能是重要的可再生资源之一,而热解是未来最有前景的生物质利用方式之一。通过对生物质的热解动力学研究,可以获得热解反应动力学参数,对于判断热解反应机理和影响因素以及优化反应条件具有重要意义。利用热分析仪,在氮气气氛下,采用不同升温速率对花生壳热解行为进行了研究。通过热重分析实验了解生物质受热过程中的基本变化规律及其影响因素,结果表明,随升温速率的增大,达到最高热解速率时所对应的温度也越高,且升温速率越高热解越快,达到相同热解程度所需的时间越短。通过热重曲线研究花生壳的热解动力学,求出动力学参数。 关键词:生物质, 热解、热重分析,动力学 ABSTRACT Biomass energy is one of most important renewable energies. Paralysis is one of most promising methods of biomass utilization in the future. Study on biomass paralysis kinetics which can obtain paralysis kinetic parameters is of great important significance toward judging paralysis mechanism and influence factors and optimizing reaction

不同载气气氛下煤样热解特性及其动力学参数研究

doi :10.11799/ce201901026 收稿日期:2018-03-01 基金项目:国家自然科学基金项目(51704016);中国博士后科学基金资助项目(2017M620625);中央高校基本科研业务费专项资金资助项目(FRF -TP -16-076A1) 作者简介:王小华(1978 ),男,山西古县人,博士研究生,研究方向:煤炭清洁利用,E -mail:perfecter wang @https://www.360docs.net/doc/0a11133623.html,三 通讯作者:舒新前(1963 ),男,教授,E -mail:shuxinqian@https://www.360docs.net/doc/0a11133623.html,三 引用格式:王小华,赵洪宇,宋 强,等.不同载气气氛下煤样热解特性及其动力学参数研究[J].煤炭工程,2019,51 (1):115-119.不同载气气氛下煤样热解特性及其动力学参数研究 王小华1,赵洪宇2,宋 强1,李玉环3,舒新前1 (1.中国矿业大学(北京)化学与环境工程学院,北京 100083; 2.北京科技大学土木与资源工程学院,北京 100083; 3.内蒙古工业大学能源与动力工程学院,内蒙古呼和浩特 010000) 摘 要:为了向固定床热解烟煤制备高值燃料的工业放大提供基础数据,采用热重分析仪(TG )和热重质谱联用分析仪(TG -MS )对比研究了N 2二CH 4二CO 2二H 2以及CO 2+CH 4混合气氛下陕西榆林烟煤热解特性及动力学参数变化规律三在此基础上,采用TG -MS 研究了不同热解气氛下气体产物的释放规律三实验结果表明:煤样的热解大致可分为三个阶段,第一阶段温度区间为室温 388?;第二阶段为388 605?,第三阶段为605 1000?三N 2二CO 2+CH 4混合气氛下达到最大释放强度在505?左右,而在H 2二CH 4和CO 2气氛下CH 4最大析出强度峰向高温段推移,且CO 2气氛下CH 4最大析出温度推移最多三由于在CO 2气氛下煤样与CO 2发生气化反应过程中涉及的反应较多,因此热解反应第二阶段和第三阶段,采用二级反应(n =2)和三级反应(n =3)可以更好的描述煤的热解过程三 关键词:烟煤;热解特性;热解气氛;气体产物;动力学 中图分类号:TQ530.2 文献标识码:A 文章编号:1671-0959(2019)01-0115-05 Study on Pyrolysis Characteristics and Kinetic Parameters of Coal Samples in Different Carrier Gases WANG Xiao -hua 1,ZHAO Hong -yu 2,SONG Qiang 1,LI Yu -huan 3,SHU Xin -qian 1 (1.School of Chemical and Environmental Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China;2.School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China;3.College of Energy and Power Engineering,Inner Mongolia University of Technology,Hohhot 010000,China)Abstract :In order to provide basic data for industrial scale -up of high value fuel prepared from pyrolysis bituminous coal in fixed bed reactor,the pyrolysis characteristics and kinetic parameters of bituminous coal from Shaanxi Hongliulin in N 2,CH 4,CO 2,H 2and CO 2+CH 4mixture were studied in a thermogravimetric analyzer (TG)and thermogravimetric mass spectrometry analyzer (TG -MS).On this basis,thermogravimetric mass spectrometry analyzer (TG -MS)were used to investigate the release of gaseous products.The experimental results showed that the pyrolysis of coal sample can be divided into three stages.The first stage is temperature range from room temperature to 388?;the second stage is 388 605?;the third stage is 605 1000?.The maximum release intensity in N 2and CO 2+CH 4appeared at about 505?.In carrier gas of H 2,CH 4and CO 2,the maximum release peak of CH 4passes to the high temperature,and the maximum release temperature of CH4increases most in CO 2.The reaction between coal sample and CO 2during gasification is more involved.Therefore,the pyrolysis process of coal can be described better by second -order reaction (n =2)and three -order reaction (n =3)in the second and third stages of pyrolysis reaction.Keywords :bituminous coal;pyrolysis characteristics;pyrolysis atmosphere;gas product;kinetics 511第51卷第1期 煤 炭 工 程COAL ENGINEERING Vol.51,No.1万方数据

医疗废物典型组分的热解特性研究

硕士学位论文 论文题目 医疗废物典型组分的热解特性研究 作者姓名苏鹏宇 指导教师岑可法教授 马增益副教授 学科(专业) 工程热物理 所在学院机械与能源工程学院 提交日期 2005年1月

Study on Pyrolysis Characteristics of Typical Components in Medical Waste Candidate: Su Pengyu Supervisor: Professor Cen Kefa Associate Professor Ma Zengyi Thermal Physics Engineering Clean Energy and Environmental Engineering Key Laboratory of Ministry of Education Institute of Thermal Power Engineering Zhejiang University, Hangzhou, China Jan.2005

学号 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:签字日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解浙江大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:导师签名: 签字日期:年月日签字日期:年月日 学位论文作者毕业后去向: 工作单位:电话: 通讯地址:邮编:

生物质热解

生物质热解 通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。 生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。 1 热解技术原理 1.1 热解原理 从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为: (C6H10O5)n?nC6H10O5 C6H10O5?H2O+2CH3-CO-CHO CH3-CO-CHO+H2?CH3-CO-CH2OH CH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O 半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。同时,当挥发分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应。生物质热解过程最终形成生物油、不可冷凝气体和生物质。 1.2 热解反应基本过程 根据热解过程的温度变化和生成产物的情况等,可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段。 1.2.1 干燥阶段(温度为120,150?),生物质中的水分进行蒸发,物料的化学组成几乎不变。 1.2.2 预热解阶段(温度为150,275?),物料的热反应比较明显,化学组成开始变化,生物质中的不稳定成分如半纤维素分解成二氧化碳、一氧化碳和少量醋酸等物质。上述两个阶段均为吸热反应阶段。 1.2.3 固体分解阶段(温度为275,475?),热解的主要阶段,物料发生了各种复杂的物理、化学反应,产生大量的分解产物。生成的液体产物中含有醋酸、木焦油和甲醇(冷却时析出来);气体产物中有CO2、CO、CH4、H2等,可燃成分含量增加。这个阶段要放出大量的热。 1.2.4 煅烧阶段(温度为450,500?),生物质依靠外部供给的热量进行木炭的燃烧,使木炭中的挥发物质减少,固定碳含量增加,为放热阶段。实际上,上述四个阶段的界限难以明确划分,各阶段的反应过程会相互交叉进。 2 热解工艺及影响因素

生物质热解原理与技术(朱锡锋)

《生物质热解原理与技术》可作为高等学校和科研院所相关专业的研究生和高年级本科生的教材使用,也可以作为生物质能领域工程技术人员的参考资料使用。 目录 目录 《21 世纪新能源丛书》序 前言 第1 章概述 1 1.1 能源的基本概念 1 1.2 绿色植物光合作用 3 1.3 生物质资源与分类 6 1.4 生物质的物理性质. 10 1.4.1 生物质的含水率.10 1.4.2 生物质的密度.10 1.4.3 堆积角、内摩擦角和滑落角 11 1.4.4 生物质炭的机械强度.12 1.4.5 生物质的比表面积.13 1.4.6 生物质的孔隙率.13 1.4.7 生物质的比热容.13 1.4.8 生物质的导热系数.13 1.5 生物质的燃料特性. 14 1.5.1 生物质的燃烧.14 1.5.2 生物质的发热量.15 1.5.3 生物质燃料的化学当量比 17 1.6 生物质能源转换技术. 18 参考文献 22 附录1-1 我国农作物秸秆资源及其分布 22 附录1-2 固体生物质燃料全水分测定方法 27 第2 章生物质的组成与结构. 30 2.1 生物质的组成和结构. 30 2.2 生物质的元素分析. 36 2.3 生物质的工业分析. 41 参考文献 47 附录2-1 纤维素聚合度的测定方法及常见生物质原料的组成成分 48 附录2-2 常见生物质原料的分析结果 56

第3 章生物质的热解原理. 80 3.1 纤维素热解机理 80 3.1.1 纤维素热解机理概述. 80 3.1.2 纤维素热解液体产物组成 81 3.1.3 LG 的形成 81 3.1.4 其他脱水糖衍生物的形成 90 3.1.5 呋喃类产物的形成. 93 3.1.6 小分子醛酮类产物的形成 94 3.1.7 纤维素快速热解的整体反应途径 97 3.2 半纤维素热解机理.100 3.2.1 半纤维素热解机理概述 100 3.2.2 半纤维素热解液体产物组成 100 3.2.3 脱水糖衍生物以及呋喃类产物的形成 100 3.2.4 小分子物质的形成.104 3.2.5 木聚糖快速热解的整体反应途径 104 3.3 木质素热解机理 107 3.3.1 木质素热解机理概述.107 3.3.2 木质素模型化合物及其热解机理.107 3.4 生物质热解的主要影响因素 118 3.4.1 加热速率的影响. 118 3.4.2 热解温度的影响. 118 3.4.3 热解时间的影响.122 3.4.4 原料种类的影响.122 3.4.5 原料性质的影响.123 3.4.6 其他因素的影响.124 参考文献 125 第4 章生物质的热解炭化.130 4.1 概述 130 4.2 生物质热解炭化原理.130 4.3 生物质热解炭化装置.132 4.3.1 传统生物质热解炭化装置 133 4.3.2 新型生物质热解炭化装置 140 4.4 生物质炭的性质与应用.146 4.4.1 生物质炭的组成.146 4.4.2 生物质炭的性质.147 4.4.3 生物质炭的应用.149 4.5 醋液与焦油的性质与应用.152 4.5.1 醋液的组成与性质.152

第十章 生物质热解技术

第十章生物质热解技术 1 概述 热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。 图10-1 热化学转化技术与产物的相互关系 生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。本章中主要围绕热解展开。 1.1生物质热解概念 热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。 关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。 生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。此外,生物质还含有提取物,主要由萜烯、脂肪酸、芳香物和挥发性油组成,这些提取物在有机和无机溶剂中是可溶的。三种成分的含量茚生物质原料的不同而变化,生物质热裂解产

生物质热解

生物质热解分慢速热解和快速热解。 快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。 生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。 众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。 2.1国外快速热解现状 国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。

其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。 2.2国内快速热解现状 我国是一个农业大国,生物质资源非常丰富,仅稻草、麦草、蔗渣、芦苇、竹子等非木材纤维年产就超过10亿吨,加上大量的木材加工剩余物,都是取之不尽的能源仓库。 目前我国生物质的利用形式还是以直接燃烧为主,快速热解技术研究在国内尚处于起步阶段,主要的研究情况如下:沈阳农业大学开展了国家科委“八五”重点攻关项目“生物质热裂解液化技术”的研究工作,并与荷兰Twente大学合作,引进生产能力50kg/h的旋转锥型热解反应器,他们在生物质热解过程的实验研究和理论分析方面都做了很有成效的工作;浙江大学、中科院化工冶金研究所、河北环境科学院等近年来也进行了生物质流化床实验的研究,并取得了一定的成果;其中浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,最早使用GC—MS联用技术定量分析了生物油的主要组分,得到了各个运行参数对生物油产率及组成的影响程度;山东工程学院于1999年成功开发了等离子体快速加热生物质热解技术,并首次在国内利用实验室设备热解玉米秸粉,制出了生物油加。

相关文档
最新文档