生物质热解

合集下载

生物质热解技术

生物质热解技术

生物质压缩成型技术1 压缩成型原理生物质主要有纤维素、半纤维素和木质素组成。

木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。

木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。

在冷却以后强度增加,成为成型燃料。

压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。

对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。

当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。

这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。

2 压缩成型生产工艺压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。

生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料主要操作步骤如下:(1)干燥生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料的含水率降低至8%-10%。

如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。

(2)粉碎木屑及稻壳等原料的粒度较小,经筛选后可直接使用。

而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。

(3)调湿加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。

(4)成型生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。

生物质热解过程中的热化学反应研究

生物质热解过程中的热化学反应研究

生物质热解过程中的热化学反应研究生物质热解是指将生物质通过高温、高压或者催化剂作用下进行化学分解的过程。

在这一过程中,会产生许多复杂而深刻的热化学反应。

这些反应除了能在生物质转化过程中提供能量以外,还有许多其他的应用价值。

本文将从热化学反应的角度出发,对生物质热解过程中的热化学反应进行研究。

一、生物质组分及其转化的基本过程首先,我们需要了解生物质的基本组成。

生物质的主要组分包括纤维素、半纤维素、木质素和灰分。

其中,纤维素、半纤维素和木质素的主要化学组成如下:纤维素:由β-葡聚糖分子构成,化学式为C6H10O5。

半纤维素:由天然的单糖或二糖分子构成,如木聚糖、葡萄糖、甘露糖、果糖等。

木质素:由苯乙烯及苯丙烯衍生物构成。

在生物质热解的基本过程中,主要分为干燥、热解和炭化三个过程。

其中,热解是一种热和化学反应共同作用下的复杂过程,其主要反应式如下:生物质(CmHnOq)→碳(C)+一氧化碳(CO)+二氧化碳(CO2)+水(H2O)+气态低分子有机物(such as CH4、C2H4、C3H6、C4H8、C6H6)+其它小分子气体二、生物质热解中的热化学反应类型从反应类型出发,生物质的热化学反应可具体分为氧化、脱除、分解和重合四个长期,以下将对其分别作出介绍。

1.氧化反应在氧化反应中,氧气被引入反应体系中,反应会对生物质进行氧化处理,从而自生物质中释放出部分能量。

反应式如下:生物质+O2→CO2+H2O+能量。

2.脱除反应在脱除反应中,反应物子中的水、甲烷等分子会从生物质中分离出来,并参与反应,这时候反应热量也会随之而产生变化。

反应式如下:生物质+H2O(或CH4)→产生CO2+其它气体+能量3.分解反应在分解反应中,生物质分解成一系列较短碳链和氢气链的组分。

反应式如下:生物质→产生CnHm+H2+其它气体+能量4.重合反应在重合反应中,一些更长分子的有机物会被合并成更大分子的变化,并释放能量。

反应式如下:生物质→产生CnHmOH+Cn’Hm’OH+其它气体+能量三、热化学反应研究的应用热化学反应研究对生物质热解过程的应用十分广泛。

生物质热解实验报告

生物质热解实验报告

生物质热解实验报告
以下是一份简单的生物质热解实验报告,供参考:
实验目的:探究不同种类的生物质在不同温度下的热解特性。

实验材料:木材、竹子、秸秆、玉米芯等多种生物质材料。

实验设备:管式炉、热重分析仪、傅里叶变换红外光谱仪等。

实验步骤:
1、将不同种类的生物质材料分别粉碎成不同大小的颗粒,并按照一定比例混合。

2、将混合物放入管式炉中,按照不同的温度和时间进行热解实验,分别记录下不同温度下的热解产物和热解特性参数。

3、对热解产物进行热重分析和傅里叶变换红外光谱分析,以进一步了解热解产物的化学成分和结构。

实验结果:
不同种类的生物质在不同温度下的热解特性有所不同,其中以秸秆的热解产物最为复杂,而木材的热解产物相对较为单一。

在较低温度下,热解产物主要为挥发性有机物,随着温度的升高,热解产物中的固体产物逐渐增多,其中以竹
炭的固体产物最为丰富。

在较高温度下,热解产物中的气体产物逐渐减少,而液体和固体产物则逐渐增多,其中以玉米芯的固体产物最为丰富。

通过对热解产物进行傅里叶变换红外光谱分析,可以进一步了解热解产物的化学成分和结构。

例如,在热解温度为500℃时,秸秆的热解产物中可以检测到较强的C-H键和芳香族环化物,说明热解产物中含有较多的挥发性有机物。

而在热解温度为800℃时,秸秆的热解产物中可以检测到较强的C=O键和C-O键,说明热解产物中含有较多的芳香族化合物和羟基化合物。

结论:
通过对不同种类的生物质在不同温度下的热解特性进行实验研究,可以了解不同生物质在热解过程中的化学变化和产物组成,对于生物质能源的开发利用具有重要的意义。

生物质热解制备的高效催化剂及其应用研究

生物质热解制备的高效催化剂及其应用研究

生物质热解制备的高效催化剂及其应用研究近年来,生物质能作为可再生能源备受关注,其热解制备生物质燃料具有较大的应用前景。

但是,生物质材料种类繁多,不同种类的生物质物质组成和结构特点也各不相同,其热解反应也存在很大差异,因此需要开发适用不同生物质材料的高效催化剂,以提高生物质热解制备生物质燃料的效率和质量。

一、生物质热解及其催化机理生物质热解是将生物质材料加热至高温下进行反应,将生物质物质转化为液态、气态和固态等产物的过程。

生物质热解过程中,一般分为三个阶段:干燥阶段、热解阶段和炭化阶段。

其中,热解阶段是最为重要的一个阶段,也是决定热解产物种类和质量的关键。

生物质热解的催化机理则是在高温下,由催化剂表面上的活性位点引发的生物质物质分解反应。

催化剂的种类和性质对生物质的热解反应有着很重要的影响。

二、生物质热解制备催化剂的研究现状近年来,为了提高生物质热解反应的效率和降低环境污染,对生物质热解制备催化剂的研究日益受到重视。

目前,已有很多催化剂被开发出来,并取得了一定的应用效果。

常见的催化剂种类有金属氧化物、酸性树脂、纳米多孔材料等。

1. 金属氧化物金属氧化物是生物质热解制备催化剂中常见的一种,其具有良好的氧化还原性能和催化活性,可以促进生物质热解反应的进行。

研究人员已经通过改变金属氧化物的组成和结构,获得了具有较高催化活性和稳定性的催化剂。

2. 酸性树脂酸性树脂也是一种常见的生物质热解制备催化剂,其具有强酸性和较大的比表面积,可以吸附生物质中的水分和酸性物质,并分解为低分子量化合物。

目前,已有多种酸性树脂被用作生物质热解催化剂。

3. 纳米多孔材料纳米多孔材料是一种新型催化剂,其具有大比表面积、高活性和良好的催化稳定性,可以为生物质热解反应提供高效的催化作用。

纳米多孔材料中常见的材料有氧化锆、氧化铈等。

三、生物质热解催化剂的应用前景生物质热解制备催化剂的应用前景非常广阔。

一方面,生物质燃料可以作为一种清洁、可再生的能源形式,可以满足人们生活、生产日益增长的能源需求;另一方面,生物质热解催化剂的研究也可以带动催化领域的发展,为其他领域的研究提供新的思路和技术手段。

第十章 生物质热解技术

第十章 生物质热解技术

第十章生物质热解技术1 概述热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。

热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。

这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。

图10-1 热化学转化技术与产物的相互关系生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。

本章中主要围绕热解展开。

1.1生物质热解概念热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。

可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。

关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。

他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。

他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。

生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。

木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。

由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。

生物质 热解

生物质 热解

生物质热解
生物质热解是一种热化学转化技术方法,它指的是在没有氧化剂存在或只提供有限氧的条件下,将生物质加热到超过500℃,通过热化学反应将生物质大分子物质(如木质素、纤维素和半纤维素)分解成较小分子的燃料物质(如固态炭、可燃气、生物油)。

生物质热解技术能够以较低的成本、连续化生产工艺,将常规方法难以处理的低能量密度的生物质转化为高能量密度的气、液、固产物,减少了生物质的体积,便于储存和运输。

同时,还能从生物油中提取高附加值的化学品。

生物质热解气化技术以其规模适度、启动灵活、原料收集半径小等优点,可与大型直燃发电优势互补,建设形成10 MW以下规模的生物质气化发电项目,完成生物质发电的规模与空间布局。

总的来说,生物质热解是一种有效的生物质能源利用技术,它不仅可以提高能源的利用效率,还可以帮助减少环境污染。

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势当今社会面临着严重的环境问题,能源资源的稀缺和污染问题越来越严重。

因此,使用可再生能源成为解决环境和能源问题的重要途径。

生物质能源作为一种可再生的资源,吸引了越来越多的关注。

生物质热解技术是将生物质转化为燃料和其他有用产品的一种重要方法。

本文将介绍生物质热解技术的现状和未来趋势。

一、生物质热解技术的发展历程生物质热解技术起始于19世纪末,当时用于制备木炭和燃料,并发展成为以木质素为原料的化工工业。

20世纪70年代,随着油价的不断上涨,研究人员开始将目光投向生物质能源,并发展出了新的热解技术,如快速热解和流化床热解等技术。

近年来,随着生物质能在能源和环境领域的不断应用,热解技术也得到了广泛的研究和应用。

二、生物质热解技术的原理及分类生物质热解是将生物质在高温条件下,通过热解反应,将其分解为固体、液体和气体三种组分的一种技术。

其中,固体产物包括生物质炭和灰,液体产物包括木质素油、醇和酸等化合物,气体产物主要是一氧化碳、二氧化碳和氨等气体。

根据生物质热解的反应条件,可将其分为缓慢热解和快速热解两种类型。

缓慢热解是在低温下进行的反应,主要产生生物质炭和液态产物,其中液态产物含有丰富的木质素化合物。

快速热解是在高温下进行的反应,主要产生气态产物,其中以一氧化碳和二氧化碳比例最高。

快速热解相比较缓慢热解,具有反应速度快、能耗低和产气率高的特点。

三、生物质热解技术的应用现状生物质热解技术的应用现状主要存在于两个方面:一是生产生物质炭和木质素油,用于能源开发和生物质化学制品生产;二是用于污水、垃圾和农业残留物等的处理,达到减少污染和资源再利用的目的。

生物质炭是生物质热解的重要产物之一,其具有高效的吸附性能和热值,被广泛用于农业、太阳能、污水处理、水质净化和园林等领域。

近年来,随着环保意识的不断加强,生物质炭的需求量逐年上升。

木质素油是生物质热解的另一种重要产物,其含有许多有机化学品,如酚、醇、甲醛、醛酮等,适用于制备各种化学品和生物质燃料。

生物质热解气化技术应用领域

生物质热解气化技术应用领域

生物质热解气化技术应用领域生物质热解气化技术是一种将生物质原料转化为可再生能源的技术。

它通过加热生物质,在无氧或低氧条件下使其分解产生可燃气体,如合成气和油烟等。

这项技术具有广泛的应用领域,下面将从能源领域、环境保护和农业利用等方面进行介绍。

在能源领域,生物质热解气化技术可以用于生产可再生能源,如生物质气体和生物燃料。

生物质气体可以作为替代天然气的能源供应,广泛应用于发电、供暖和工业生产等领域。

生物燃料可以用作替代传统石油燃料的能源,用于汽车和船舶等交通工具,减少对化石能源的依赖,降低碳排放。

在环境保护方面,生物质热解气化技术可以有效处理生物质废弃物,如农作物秸秆、木屑和食品残渣等。

这些废弃物通常会被焚烧或填埋,造成环境污染和资源浪费。

通过热解气化技术,这些废弃物可以被转化为有用的能源,减少对自然资源的开采,同时还能减少二氧化碳等有害气体的排放,有利于环境保护。

在农业利用方面,生物质热解气化技术可以将农作物秸秆等农业废弃物转化为有机肥料。

传统的农作物秸秆通常会被焚烧或直接丢弃,造成了资源的浪费。

而通过热解气化技术,这些废弃物可以被转化为有机肥料,用于土壤改良和农作物生长,提高农田的产量和质量。

生物质热解气化技术还可以应用于木材加工、生物医药和生物化工等领域。

在木材加工方面,生物质热解气化技术可以将木材废弃物转化为有用的能源和化工原料。

在生物医药和生物化工领域,生物质热解气化技术可以利用生物质原料提取药物和生物活性物质,开发新型的生物医药和化工产品。

生物质热解气化技术具有广泛的应用领域。

它可以为能源领域提供可持续发展的能源供应,同时也可以解决环境污染和资源浪费等问题。

随着技术的进一步发展和创新,相信生物质热解气化技术将在更多领域发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质热解通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。

目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。

生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。

1 热解技术原理1.1 热解原理从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。

木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。

热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为:(C6H10O5)n?nC6H10O5C6H10O5?H2O+2CH3-CO-CHOCH3-CO-CHO+H2?CH3-CO-CH2OHCH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。

热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。

其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。

一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。

在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。

同时,当挥发分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应。

生物质热解过程最终形成生物油、不可冷凝气体和生物质。

1.2 热解反应基本过程根据热解过程的温度变化和生成产物的情况等,可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段。

1.2.1 干燥阶段(温度为120,150?),生物质中的水分进行蒸发,物料的化学组成几乎不变。

1.2.2 预热解阶段(温度为150,275?),物料的热反应比较明显,化学组成开始变化,生物质中的不稳定成分如半纤维素分解成二氧化碳、一氧化碳和少量醋酸等物质。

上述两个阶段均为吸热反应阶段。

1.2.3 固体分解阶段(温度为275,475?),热解的主要阶段,物料发生了各种复杂的物理、化学反应,产生大量的分解产物。

生成的液体产物中含有醋酸、木焦油和甲醇(冷却时析出来);气体产物中有CO2、CO、CH4、H2等,可燃成分含量增加。

这个阶段要放出大量的热。

1.2.4 煅烧阶段(温度为450,500?),生物质依靠外部供给的热量进行木炭的燃烧,使木炭中的挥发物质减少,固定碳含量增加,为放热阶段。

实际上,上述四个阶段的界限难以明确划分,各阶段的反应过程会相互交叉进。

2 热解工艺及影响因素2.1 热解工艺类型从对生物质的加热速率和完成反应所用时间的角度来看,生物质热解工艺基本上可以分为两种类型:一种是慢速热解,一种是快速热解。

在快速热解中,当完成反应时间甚短(,0.5s)时,又称为闪速热解。

根据工艺操作条件,生物质热解工艺又可分为慢速、快速和反应性热解三种。

在慢速热解工艺中又可以分为炭化和常规热解。

慢速热解(又称干馏工艺、传统热解)工艺具有几千年的历史,是一种以生成木炭为目的的炭化过程,低温干馏的加热温度为500,580?,中温干馏温度为660,750?,高温干馏的温度为900,1100?。

将木材放在窑内,在隔绝空气的情况下加热,可以得到占原料质量30%,35%的木炭产量。

快速热解是将磨细的生物质原料放在快速热解装置中,严格控制加热速率(一般大致为10,200?/s)和反应温度(控制在500?左右),生物质原料在缺氧的情况下,被快速加热到较高温度,从而引发大分子的分解,产生了小分子气体和可凝性挥发分以及少量焦炭产物。

可凝性挥发分被快速冷却成可流动的液体,成为生物油或焦油,其比例一般可达原料质量的40%,60%。

与慢速热解相比,快速热解的传热反应过程发生在极短的时间内,强烈的热效应直接产生热解产物,再迅速淬冷,通常在0.5s内急冷至350?以下,最大限度地增加了液态产物(油)。

常规热解是将生物质原料放在常规的热解装置中,在低于600?的中等温度及中等反应速率(0.1,1?/s)条件下,经过几个小时的热解,得到占原料质量的20%,25%的生物质炭及10%,20%的生物油[7,9]。

2.2 热解影响因素总的来讲,影响热解的主要因素包括化学和物理两大方面。

化学因素包括一系列复杂的一次反应和二次反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。

具体的操作条件表现为:温度、物料特性、催化剂、滞留时间、压力和升温速率[10]。

2.2.1 温度在生物质热解过程中,温度是一个很重要的影响因素,它对热解产物分布、组分、产率和热解气热值都有很大的影响。

生物质热解最终产物中气、油、炭各占比例的多少,随反应温度的高低和加热速度的快慢有很大差异。

一般地说,低温、长期滞留的慢速热解主要用于最大限度地增加炭的产量,其质量产率和能量产率分别达到30%和50%(质量分数)[11,13]。

温度小于600?的常规热解时,采用中等反应速率,生物油、不可凝气体和炭的产率基本相等;闪速热解温度在500,650?范围内,主要用来增加生物油的产量,生物油产率可达80%(质量分数);同样的闪速热解,若温度高于700?,在非常高的反应速率和极短的气相滞留期下,主要用于生产气体产物,其产率可达80%(质量分数)。

当升温速率极快时,半纤维素和纤维素几乎不生成炭[5]。

2.2.2 生物质材料的影响生物质种类、分子结构、粒径及形状等特性对生物质热解行为和产物组成等有着重要的影响[3]。

这种影响相当复杂,与热解温度、压力、升温速率等外部特性共同作用,在不同水平和程度上影响着热解过程。

由于木质素较纤维素和半纤维素难分解,因而通常含木质素多者焦炭产量较大;而半纤维素多者,焦炭产量较小。

在生物质构成中,以木质素热解所得到的液态产物热值为最大;气体产物中以木聚糖热解所得到的气体热值最大[5]。

生物质粒径的大小是影响热解速率的决定性因素。

粒径在1mm以下时,热解过程受反应动力学速率控制,而当粒径大于1mm时,热解过程中还同时受到传热和传质现象的控制。

大颗粒物料比小颗粒传热能力差,颗粒内部升温要迟缓,即大颗粒物料在低温区的停留时间要长,从而对热解产物的分布造成了影响。

随着颗粒的粒径的增大,热解产物中固相炭的产量增大。

从获得更多生物油角度看,生物质颗粒的尺寸以小为宜,但这无疑会导致破碎和筛选有难度,实际上只要选用小于1mm 的生物质颗粒就可以了。

2.2.3 催化剂的影响有关研究人员用不同的催化剂掺入生物质热解试验中,不同的催化剂起到不同的效果。

如:碱金属碳酸盐能提高气体、碳的产量,降低生物油的产量,而且能促进原料中氢释放,使空气产物中的H2/CO增大;K+能促进CO、CO2的生成,但几乎不影响H2O的生成;NaCl能促进纤维素反应中H2O、CO、CO2的生成;加氢裂化能增加生物油的产量,并使油的分子量变小。

另外,原料反应得到的产物在反应器内停留时间、反应产出气体的冷却速度、原料颗粒尺寸等,对产出的炭、可燃性气体、生物油(降温由气体析出)的产量比例也有一定影响[5]。

2.2.4 滞留时间滞留时间在生物质热解反应中有固相滞留时间和气相滞留时间之分。

固相滞留时间越短,热解的固态产物所占的比例就越小,总的产物量越大,热解越完全。

在给定的温度和升温速率的条件下,固相滞留时间越短,反应的转化产物中的固相产物就越少,气相产物的量就越大。

气相滞留期时间一般并不影响生物质的一次裂解反应过程,而只影响到液态产物中的生物油发生的二次裂解反应的进程。

当生物质热解产物中的一次产物进入围绕生物质颗粒的气相中,生物油就会发生进一步的裂化反应,在炽热的反应器中,气相滞留时间越长,生物油的二次裂解发生的就越严重,二次裂解反应增多,放出H2、CH4、CO等,导致液态产物迅速减少,气体产物增加。

所以,为获得最大生物油产量,应缩短气相滞留期,使挥发产物迅速离开反应器,减少焦油二次裂解的时间[3,5]。

2.2.5 压力压力的大小将影响气相滞留期,从而影响二次裂解,最终影响热解产物产量的分布。

随着压力的提高,生物质的活化能减小,且减小的趋势渐缓。

在较高的压力下,生物质的热解速率有明显的提高,反应也更激烈,而且挥发产物的滞留期增加,二次裂解较大;而在低的压力下,挥发物可以迅速从颗粒表面离开,从而限制了二次裂解的发生,增加了生物油产量[14,15]。

2.2.6 升温速率升温速率对热解的影响很大。

一般对热解有正反两方面的影响。

升温速率增加,物料颗粒达到热解所需温度的相应时间变短,有利于热解;但同时颗粒内外的温差变大,由于传热滞后效应会影响内部热解的进行。

随着升温速率的增大,温度滞后就越严重,热重曲线和差热曲线的分辨力就会越低,物料失重和失重速率曲线均向高温区移动。

热解速率和热解特征温度(热解起始温度、热解速率最快的温度、热解终止温度)均随升温速率的提高呈线形增长。

在一定热解时间内,慢加热速率会延长热解物料在低温区的停留时间,促进纤维素和木质素的脱水和炭化反应,导致炭产率增加。

气体和生物油的产率在很大程度上取决于挥发物生成的一次反应和生物油的二次裂解反应的竞争结果,较快的加热方式使得挥发分在高温环境下的滞留时间增加,促进了二次裂解的进行,使得生物油产率下降、燃气产率提高。

相关文档
最新文档