发电机、变压器与母线保护

合集下载

发电机变压器组继电保护运行规程

发电机变压器组继电保护运行规程

继电保护运行规程元件保护第一节发电机变压器保护一、保护简介发变组保护采用许继生产的WFB—100Q微机型发变组成套保护装置,包括发电机、主变压器常用高压变压器的保护装置,其由三块保护屏嵌装十一个箱体、一台工控机组成。

装置采用分层式多CPU并行工作方式,下层十三个保护模块共同构成整套保护。

上层单元管理机(工控机) 负责人机接口和全部信息处理,保护模块之间及保护模块与工控机之间相互独立。

整套保护出口有:1.全停1 跳发电机出口开关、高厂A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。

2.全停2 跳发电机出口开关、高厂变A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。

3.解列跳发电机出口开关和汽机甩负荷。

4.解列灭磁跳发电机出口开关、灭磁开关和汽机甩负荷。

5.减出力减出力至定值。

6.母线解列跳110KV母联断路器。

7.厂用电切除跳高厂变A分支开关、高厂变B分支开关,同时启动切换A、B分支厂用电。

8.A分支解列跳高厂变A分支开关同时启动切换A分支厂用电。

9.B分支解列跳高厂变B分支开关同时启动切换B分支厂用电。

二、保护A屏1、保护屏组成:其由一个WFB—105箱、两个WFB—108箱和一个XCK—103出口箱体构成。

a、箱一WFB—105由三块交流变换、一块直流变换、两块出口、两块保护模块、一块稳压电源插件组成,完成有发电机差动、TA断线、失磁、转子一点接地和转子两点接地保护功能。

b、箱二WFB—108由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有定子接地、励磁变过流、励磁变过负荷、主变瓦斯、主变温度、主变压力释放及主变冷却系统故障保护功能。

c、箱三WFB—108箱由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有匝间保护、YH断线、发电机对称过负荷,发电机负序过流、发电机断水、励磁系统故障和热工保护(我厂没用) 保护功能。

母线失灵保护动作原理

母线失灵保护动作原理

母线失灵保护动作原理1. 母线失灵保护简介母线失灵保护是电力系统中的一种重要保护装置,用于检测和保护电力系统中的母线设备。

母线是电力系统中的重要组成部分,负责将发电机、变压器和其他电力设备的输出电能汇集起来,并分配给各个负荷。

母线设备的失灵可能会导致电力系统的故障,甚至引发火灾等严重事故,因此对母线设备进行保护是非常必要的。

2. 母线失灵保护的基本原理母线失灵保护的基本原理是通过检测电流、电压等参数的异常变化,判断母线设备是否失灵,并及时采取保护动作,切断故障部分,保护电力系统的安全运行。

下面将详细介绍母线失灵保护的基本原理。

2.1 电流保护原理电流保护是母线失灵保护中的重要部分,通过检测电流的变化来判断母线设备是否失灵。

电流保护的原理主要包括以下几个方面:2.1.1 母线电流的采样母线电流的采样是电流保护的基础,通常采用电流互感器对母线电流进行采样。

电流互感器是一种用于测量高电流的装置,它可以将高电流变换成低电流,以便于保护装置的测量和判断。

2.1.2 电流的比较与判断采样得到的母线电流信号会经过放大、滤波等处理后,与事先设定的保护阈值进行比较。

如果电流超过了保护阈值,就说明母线设备可能失灵,需要进行保护动作。

2.1.3 保护动作的触发当电流超过保护阈值时,保护装置会触发保护动作,通常是通过控制断路器等开关装置实现。

保护动作的目的是切断故障部分,保护电力系统的安全运行。

2.2 电压保护原理除了电流保护外,电压保护也是母线失灵保护的重要组成部分。

电压保护主要通过检测电压的异常变化来判断母线设备是否失灵。

电压保护的原理包括以下几个方面:2.2.1 母线电压的采样母线电压的采样通常通过电压互感器来实现。

电压互感器是一种用于测量高电压的装置,它可以将高电压变换成低电压,以便于保护装置的测量和判断。

2.2.2 电压的比较与判断采样得到的母线电压信号会经过放大、滤波等处理后,与事先设定的保护阈值进行比较。

电力系统继电保护的基本原理

电力系统继电保护的基本原理

第三节 对继电保护的基本要求 动作于跳闸的继电保护,在技术上满足四个基本要求,即 选择性: 正确选择故障元件 速动性: 快速反应并切除故障 灵敏性:灵敏反应故障 可靠性:可靠不误动/不拒动 常称为保护的“四性”要求 选择性 保护装置动作时,仅将故障元件从电力系统中切除,保证无故障部分仍能继续安
• 实际应用的保护装置,特别是目前使用广泛 的微机保护,大都是在同一套保护中采用多 重起动判据“三取二”方式开放保护出口。
四个基本技术性 要求(或称“四 性”要求),是 分析研究继电保 护性能的基础, 它们具有对立统 一的辩证关系:
01 速动性↑→ 装置复杂性↑ → 可靠性↓ 02 灵敏性↑→ 抗干扰能力↓ → 可靠性↓ 03 防误动可靠性↑→防拒动可靠性↓ 04 如何处理这些关系,将在后续章节中具体讨论
器或输电线切除而给电力系统造成的影响可能较小。
○ 发电机、变压器或输电线故障时继电保护装置拒动,将造成设备 的损坏或系统稳定的破坏
○ 提高继电保护不拒动的可靠性更为重要
(2)系统中旋转备用容量很少,各系统、电源与负 荷之间的联系薄弱:
由于保护装置的误动作使发电机、变压器或输电线切除,将 会引起对负荷供电的中断,甚至造成系统稳定的破坏
1—10kV线路导线截面过小,为避免过热不允许延时切除的故障等;
5. 可能危及人身安全、对通讯系统等有强烈干扰的故障等。
继电保护的动作时间
○ 一般保护为60ms—120ms ● 快速保护可达10ms—40m s ● 超高速保护小于10ms(保护出口故障)
三.灵敏性
保护对于其保护 范围内发生故障 或不正常运行状 态的反应能力, 以灵敏系数表示:
三.根据实际情况, 尽快恢复停电部分的 供电
第二节 继电保护的基本原理和 构成方式

发电机进相运行对发电机变压器保护的影响

发电机进相运行对发电机变压器保护的影响

发电机进相运行对发电机变压器保护的影响发布时间:2021-12-09T10:11:07.834Z 来源:《电力设备》2021年第9期作者:王振[导读] 变压器保护装置易产生误动作,进而在一定程度上影响发电机组的正常运行。

(新疆天池能源有限责任公司 831100)摘要:为了实现电力稳定供应,我国近年来加快了大容量、超高压、长距离的电网建设。

然而考虑到区域经济发展不平衡造成的电力需求差异,容易导致电力系统低谷运行过程中的电压偏高现象,尤其在电力枢纽点较为严重,容易造成发电机变压器的破坏。

在预防机制中,由于发电机进相运行存在投资小、操作简单、调压平滑等优势,因此得到了广泛的应用。

本文从发电机进相运行角度对发电机组电压器保护的影响进行了分析,旨在为发电机组的正常稳定运行提供一定的技术支持。

关键词:发电机组;进相运行;变压器保护引言发电机组从进相运行到滞相运行的过程中,物理量的幅值和相位的变化可能会对变压器产生消极影响,变压器保护装置易产生误动作,进而在一定程度上影响发电机组的正常运行。

1发电机进相运行的意义发电机的滞相运行是其常见的一种工作运行状态?此时?定子电流滞后与端电压?发电机向系统发出有功功率和无功功率。

发电机进相运行是相对于滞相运行而言的。

发电机的进相运行是指发电机向系统发出有功功率?并从系统吸收无功功率的运行状态?此时定子电流超前于端电压?发电机处于欠励磁运行状态?功率因数角为负值。

减小发电机励磁电流?发电机即从滞相运行转为进相运行?也就是从发出无功功率转为吸收无功功率。

励磁电流越小?从系统吸收的无功功率越大?功角也就越大?因而进相运行拓宽了发电机通常的运行范围。

目前?针对电力系统中的电压偏高的问题采取的降压措施主要有:投入并联电抗器;调节变压器分接头位置;停运线路、主变;利用发电机进相运行吸取系统无功。

一般而言?系统轻负荷持续时间相对较短?故装设大量的并联电抗器很不经济。

调节变压器分接头?只能改变系统无功分布?对无功严重过剩的电压升高收效甚微。

关于母线保护和变压器保护的一些问题

关于母线保护和变压器保护的一些问题

2009-5-18国调中心调考培训班母线保护部分:1、 整体构成 母线差动保护一般由启动元件、差动元件、抗饱和元件等构成。

启动元件一般有和电流突变量启动元件、差电流启动、工频变化量突变量启动等。

2、 母线差动保护差动元件 母线差动保护的主要元件是差动继电器,其基本原理是利用差动原理。

母线正常运行时:01=∑=mj jI母线发生故障时:IIOPmj j≥∑=1对采用完全电流母线差动保护来讲,将连接到母线上的所有支路的电流相量和的绝对值Icd 作为动作判据。

理论上正常运行及区外故障时Icd 等于0,内部故障时Icd 增大差动继电器动作,实际构成时为防止区外故障时由于TA 的各种误差及饱和等原因造成的不平衡电流增大使差动继电器误动采用各种带制动特性的差动继电器。

常见的母线差动元件有常规比率母差元件、工频变化量比率差动、复式比率差动等。

这些差动元件的差动电流均相同,制动电流选取有差异,因而在区外故障及区内故障时制动能力和动作灵敏度均有差异,但作用都是在区外故障时让动作电流随制动电流增大而增大使之能躲过区外短路产生的不平衡电流,而在区内故障时则希望差动继电器有足够的灵敏度。

对于母线分段等形式的母线保护,为了能有选择性的仅切除故障母线采用多个差动元件来满足要求,即设置一个大差动元件和每段母线的小差动元件。

大差动元件将所有母线的支路的电流(不包括分段或母联)加入差动继电器,即将所有母线作为一个整体来保护,其作用是区分是否在母线上发生故障,各段母线的小差动元件则仅将该段所有支路电流(包括与该段相联的分段及母联)接入,即仅将该段作为保护对象,用于区分是否在该段母线上发生故障,当在该段母线发生故障时,大差动和该段差动同时动作时仅将该段母线切除。

简而概之,“大差判故障,小差选母线“。

3、常规比率差动元件 常规比率差动元件的制动电流选为所有支路电流的绝对值相加,其动作判据如下:cdzdmj jI I>∑=1(1)∑∑==>mj j m j jI K I11(2)其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。

第九章母线保护

第九章母线保护

第九章母线保护《继电保护和安全自动装置技术规程》规定一、非专门母线保护对于发电厂和主要变电所的3~10kV分段母线及并列运行的双母线,一般可由发电机和变压器的后备保护实现对母线的保护。

二、在下列情况下,应装设专用母线保护1.35~66kV电力网中,主要变电所的35~66kV双母线或分段单母线需快速而有选择地切除一段或一组母线上故障,以保证系统安全稳定运行和可靠供电时。

2.110kV单母线,重要发电厂或110kV以上重要变电所的35~66kV母线,按ll0kV线路和220kV 线路要求:ll0kV线路采用远后备方式、220kV线路采用近后备方式,需要快速切除母线上的故障时。

3.对220~500kV母线,应装设能快速有选择地切除故障的母线保护。

对1个半断路器接线,每组母线宜装设两套母线保护。

4.须快速而有选择地切除一段或一组母线上的故障,以保证发电厂及电力网安全运行和重要负荷的可靠供电时。

5.当线路断路器不允许切除线路电抗器前的短路时。

三、专用母线保护应考虑以下问题1.对于双母线并联运行的发电厂或变电所,当线路保护在某些情况下可能失去选择性时,母线保护应保证先跳开母联断路器,但不能影响系统稳定运行。

2.为防止误动作,应增设简单可靠的闭锁装置(1个半断路器接线的母线保护除外)。

3.母线保护动作后,(1个半断路器接线除外)对不带分支的线路,应采取措施,促使对侧全线速动保护跳闸。

4.应采取措施,减少外部短路产生的不平衡电流的影响,并装设电流回路的断线闭锁装置。

5.在一组母线或某一段母线充电合闸时,应能快速而有选择地断开有故障的母线。

在母线倒闸操作时,必须快速切除母线上的故障;同时又能保证外部故障时不误动作。

6.双母线情况下,母线保护动作时,应闭锁可能误动的横联保护。

7.当实现母线自动重合闸时,必要时应装设灵敏元件。

8.对构成环路的各类母线方式(如1个半断路器方式和双母线双分段方式等),当母线短路,该母线上所接元件的电流可能自母线流出时,母线保护不应因此而拒动。

电力系统基本概念

电力系统基本概念

电力系统基本概念En电力系统基本概念1)电力系统定义由发电厂内的发电机、电力网内的变压器和输电线路以及用户的各种用电设备,按照一定的规律连接而组成的统一整体,称为电力系统。

2)电力系统的组成电力系统由发电厂的发电机、电力网及电能用户(用电设备)组成的。

3)电力系统电压等级系统额定电压:电力系统各级电压网络的标称电压值。

系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV、750 kV。

4)电力设备电力系统的电气设备分为一次设备和二次设备,一次设备(也称主设备)是构成电力系统的主体,它是直接生产、输送和分配电能的设备,包括发电机、电力变压器、断路器、隔离开关、电力母线、电力电缆和输电线路等。

二次设备是对一次设备进行控制、调节、保护和监测的设备,它包括控制器具、继电保护和自动装置、测量仪表、信号器具等。

二次设备通过电压互感器和电流互感器与一次设备取得电的联系En电力系统故障及其危害凡造成电力系统运行不正常的任何连接或情况均称为电力系统的故障。

电力系统的故障有多种类型,如短路、断线或它们的组合。

短路又称横向故障,断线又称为纵向故障。

短路故障可分为三相短路、单相接地短路(简称单相短路)两相短路和两相接地短路,注意两相短路和两相接地短路是两类不同性质的短路故障,前者无短路电流流入地中,而后者有。

三相短路时三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相回路不对称,因此称为不对称短路。

断线故障可分为单相断线和两相断线。

断线又称为非全相运行,也是一种不对称故障。

大多数情况下在电力系统中一次只有一处故障,称为简单故障或单重故障,但有时可能有两处或两处以上故障同时发生,称为复杂故障或多重故障。

短路故障一旦发生,往往造成十分严重的后果,主要有:(1)电流急剧增大。

短路时的电流要比正常工作电流大得多,严重时可达正常电流的十几倍。

第三篇变压器和母线保护

第三篇变压器和母线保护

第三篇变压器保护和母线保护第十一章变压器保护第一节概述变压器是电力系统重要的主设备之一。

在发电厂通过升压变压器将发电机电压升高,而由输电线路将发电机发出的电能送至电力系统中;在变电站通过降压变压器再将电能送至配电网络,然后分配给各用户。

在发电厂或变电站,通过变压器将两个不同电压等级的系统联起来,该变压器称作联络变压器。

一变压器的基本结构及接线组别电力变压器主要由铁芯及绕在铁芯上的两个或三个绝缘绕组构成。

为增强各绕组之间的绝缘及铁芯、绕组散热的需要,将铁芯及绕组置于装有变压器油的油箱中。

然后,通过绝缘套管将变压器各绕组的两端引到变压器壳体之外。

另外,为提高变压器的传输容量,在变压器上加装有专用的散热装置,作为变压器的冷却器。

大型电力变压器均为三相变压器或由三个单相变压器组成的三相变压器。

将变压器同侧的三个绕组按一定的方式连接起来,组成某一接线组别的三相变压器。

双卷电力变压器的接线组别主要有:Y0/Y、Y N/△、△/△、及△/△-△。

理论分析表明,接线组别为Y0/Y压器,运行时某侧电压波形要发生畸变,从而使变压器的损耗增加,进而使变压器过热。

因此,为避免油箱壁局部过热,三相铁芯变压器按Y/Y联接的方式,只适用于容量为1800KVA以下的小容量变压器。

而超高压大容量的变压器均采用Y0/△的接线组别。

在超高压电力系统中,Y0/△接线的变压器,呈Y形联接的绕组为高压侧绕组,而呈△形联接的绕组为低压侧绕组,前者接大电流系统(中性点接地系统),后者接小电流系统(中性点不接地系统)。

在实际运行的变压器中,在Y0/△接线的变压器的接线组别中,以Y0/△-11为最多,Y0/△-1及Y0/△-5的也有。

Y0/△-11接线组别的含意是:(a)变压器高压绕组接成Y型,且中性点接地,而低压侧绕组接成△;(b)低压侧的线电压(相间电压)或线电流分别滞后高压侧对应相线电压或线电流3300。

3300相当于时钟的11点钟,故又称11点接线方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机、变压器与母线保护编写李玉海发电机保护第一节基本概念一发电机发电机的作用是将汽轮机或水轮机输出的机械能变换成电能。

1 主要构成发电机主要由定子和转子两部分构成。

在定子与转子间留有适当的间隙,通常将该间隙称作为气隙。

极对数为1的三相交流同步发电机的结构示意图如图1所示。

在定子铁芯上设置有槽,每个定子槽分上槽和下槽,上槽及下槽中设置有定子绕组。

每台发电机的定子绕组为三相对称式绕组,如图1中的a-x、b-y、c-z所示。

所谓三相对称绕组是指三个绕组(即a-x、b-y、c-z)的匝数相等,其空间分布相对位置相距1200。

在定子铁芯的上槽与下槽之间设置有屏蔽层。

在转子铁芯上也有槽,槽内设置有转子绕组(如图1中的W-j所示)。

图1 三相同步交流发电机结构示意图为提高发电机的单机容量及降低铁芯及绕组的温度,各种发电机均设置有冷却系统。

小型发电机一般采用空气冷却方式,也有采用氢冷式;对于大型汽轮发电机,通常采用水内冷及氢冷方式。

2 作用原理在转子绕组中(图1中的W-j)通入直流,产生一恒定磁场(其两极极性分别为N-S)。

发电机转子由汽轮机或水轮机拖着旋转,恒定磁场变成旋转磁场(通常称之气隙磁场)。

转子旋转磁场切割定子绕组,必将在定子绕组产生感应电势。

由于转子磁场在气隙中按正弦分布,而转子以恒定速度旋转,从而使定子绕组中的感应电势按正弦波规律变化。

发电机并网运行时,定子绕组中出现感应电流,向系统输出电能。

3 发电机的额定转速转子磁场旋转时,每转过一对磁极,定子绕组中的电势便历经一个周期。

因此,定子绕组中电势的频率可由每秒钟转过磁极的极对数来表示。

设发电机的极对数(即一个N、一个S)为P,每分钟的转速为n,则频率转速 (1)汽轮发电机的极对数P=1,当电网的频率f=50赫时,n=3000转/分。

对于水轮发电机,其极对数较多,故允许其转速转低,当P=4时,水轮机的转速n=750转/分,当极对数P=24时,其转速为125转/分。

4 两种旋转磁场(1)直流激磁旋转磁场直流激磁旋转磁场,又叫机械旋转磁场。

在同步发电机转子上装设有转子绕组,通入直流后产生直流激磁的磁极,当转子旋转时,在气隙形成旋转磁场。

该旋转磁场与转子无相对运动。

气隙旋转磁场的转速与转子的转速相同。

发电机正常运行时,转速为同步速。

(2)交流激磁的旋转磁场发电机定子三相对称电流流过三相对称绕组时,将在气隙中产生旋转磁场。

该旋转磁场由三相交流产生,故称交流激磁的旋转磁场。

发电机正常运行时,两种旋转磁场的转速均等于同步速,它们之间无相对运动。

又因为转子的转速也等于同步速,因此,定子旋转磁场与转子之间无相对运动,而转子磁场紧拉着定子旋转磁场转动。

5 发电机的冷却方式根据冷却介质流通的路途,同步发电机的冷却方式,可分为外冷式及内冷式两种。

外冷式又称之表面冷却方式,其冷却介质有空气及氢气两种;内冷式称之直接冷却方式,其冷却介质有氢气及水两种。

当采用水冷却方式时,绕组为空心铜制绕组,冷却水直接由绕组内流通。

目前,大型汽轮发电机定子绕组的冷却方式,多采用水冷方式。

有些发电机的转子绕组也采用水内冷方式。

将转子绕组及定子绕组均由水内冷冷却的发电机,称之双水内冷发电机。

6 并网运行汽轮发电机电势与端电压的关系发电机并网运行时,向系统送出有功及无功。

此时,机端电压与发电机电势的关系是 (1)U-机端电压;I-发电机定子电流;2所示。

图2 机端电压与电势的向量关系由图2可以看出,当发电机送出有功及无功时,发电机电势E0大于机端电压U。

当发电机从系统吸收无功时,发电机电势将小于机端电压。

7 发电机的阻抗若不及电阻分量,发电机的阻抗有同步电抗、暂态电抗、次暂态电抗、负序电抗和零序电抗。

(1)同步电抗发电机的同步电抗也叫正序电抗。

正常运行时发电机的电抗,称之同步电抗;(2)负序电抗发电机不对称运行时,负序电流产生负序旋转磁场,负序旋转磁场以2倍同步转速切割转子绕组。

负序电抗等于机端负序电压与定子绕组中负序电流的基波分量之比。

(3)零序电抗零序电抗具有漏抗的性质,其大小决定于零序电流产生的漏磁通。

(4当定子电流突然变化时,在转子绕组中产生感就电势(像变压器一样),在转子(5)次暂态电抗二电压互感器及电流互感器(TV及TA)1 电压互感器将电力主设备一次高电压降低至与一次电压成比例的较小电压,然后送至测量仪表或保护装置的设备,称之为电压互感器(TV)。

它相当一个二卷或三卷降压变压器。

(1)特点A、一次绕组匝数很多,二次或三次绕组匝数很少,其内阻很小,相当一定压源。

B TV变比为;发电机中性点TV。

C、保护用三相TV的接线方式,通常采用Y N,ynD、运行中TV二次不能短路。

(2)类型按一次绕组两端对地绝缘的状态分类,TV可分为两类,即全绝缘TV及半绝缘TV。

所谓全绝缘TV是指一次端部绕组及中性点处绕组的对地绝缘完全相同;而半绝缘TV则是TV一次端部绕组的对地绝缘远高于中性点处绕组的对地绝缘。

2 电流互感器TA将电力系统一次大电流降低到与一次电流成比例的小电流,然后送到测量仪表、自动装置及保护装置的设备,称之为电流互感器TA。

其特点是:A、一次匝数少(最少为一匝),二次匝数很多,其内阻很大,对外相当于一定流源;B、运行中TA二次不得开路。

3 电压互感器及电流互感器的接地为防止运行中由于互感器一次与二次之间绝缘击穿使一次高电压串到二次回路中,而危及人身及二次设备的安全,TA及TV二次必须有一个可靠的接地点,通常称之“保安接地”。

对于TA采用TA二次中性点接地;而对于TV可采用二次中性点接地(即N接地),也可采用B相接地。

第二节发电机保护的配置一发电机的故障及不正常运行方式1 发电机的故障(1)定子绕组的故障定子绕组的故障主要有:相间短路(二相短路、三相短路)接地故障:单相接地、两相接地短路故障匝间短路(同分支绕组匝间短路,同相不同分支绕组之间的短路)。

(2)转子绕组的故障主要有:转子绕组一点接地及二点接地,部分转子绕组匝间短路。

2 发电机异常运行方式发电机不正常运行方式主要有:定子绕组过负荷,转子绕组过负荷,发电机过电压;发电机过激磁,发电机误上电、逆功率、频率异常、失磁、发电机断水及非全相运行等。

二发电机保护的配置发电机定子绕组或输出端部发生相间短路故障或相间接地短路故障,将产生很大的短路电流,大电流产生的热、电动力或电弧可能烧坏发电机线圈、定子铁芯及破坏发电机结构。

转子绕组两点接地或匝间短路,将破坏气隙磁场的均匀性,引起发电机剧烈振动而损坏发电机;另外,还可能烧伤转子及损坏其他励磁装置。

发电机异常运行也很危险。

发电机过电压、过电流及过激磁运行可能损坏定子绕组;大型发电机失磁运行除对发电机不利之外,还可能破坏电力系统的稳定性。

其他异常工况下,长期运行也会危及发电机的安全。

为确保发电机安全经常运行,必需配置完善的保护系统。

1 短路故障的主保护发电机内部短路故障的主保护有:纵差保护,横差保护(单元件横差及三元件横差保护),发电机定子绕组匝间保护(主要有单元件横差保护、纵向零序电压匝间保护及负序功率方向保护),转子两点接地保护,励磁机纵差保护。

2 短路故障的后备保护发电机短路故障的后备保护主要有:复压闭锁过流保护,对称过流及过负荷保护,不对称过流及过负荷保护、负序过电流保护,转子过流及过负荷保护、转子两点接地保护、带记忆的低压过流保护。

3 其他故障保护发电机单相接地保护,发电机失磁保护。

4 发电机异常运行保护发电机异常运行保护有:发电机过电压保护,发电机过激磁保护、逆功率保护,转子一点接地保护,定子过负荷保护、非全相运行保护、大型发电机失步保护、频率异常保护等。

5 开关量保护发电机断水保护等。

6 临时性保护所谓临时性保护是指:发电机正常运行时应退出的保护。

其中有发电机误上电保护及发电机启、停机保护等。

第三节发电机纵差保护发电机纵差保护,是发电机相间故障的主保护。

一纵差保护的分类1 按输入电流的不同分类发电机差动保护由三个分相差动元件构成。

若按由差动元件两侧输入电流的不同进行分类,可以分成完全纵差保护和不完全保护两类。

其交流接入回路分别如图3(a)和图3(b)所示。

(a) (b)图3 发电机纵差保护的交流接入回路在图3中:Ja、Jb、Jc-分别为发电机A、B、C三相的差动元件;A、B、C-发电机三相输入端子。

由图3可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。

2 按制动方式分类为确保区外故障时纵差保护可靠不动作,在差动元件中设置有制动量。

按制动方式分类,差动保护可分为比率制动式和标积制动方式。

3 按出口方式分类目前,发电机纵差保护均采用由三个差动元件构成的分相差动保护。

由于发电机电压系统系小电流接地系统,故保护的出口既可以采用单相出口方式,也可以采用循环闭锁出口方式。

所谓循环闭锁出口方式,是指:在三个相差动元件中,只有二个或三个元件动作后,保护才作用于出口。

另外,为防止发电机两相接地(一个接地点在差动保护区内,另一个接地点在差动保护区外)短路时差动保护拒绝出口,一般采用由负序电压元件去解除循环闭锁措施。

此时,当负序电压元件动作之后,只要有一相差动元件动作,保护就作用于出口。

二动作方程目前,国内生产及广泛应用的发电机差动保护装置,为提高区内故障时的动作灵敏度及确保区外故障时可靠不动作,一般采用具有二段折线式动作特性的差动元件。

其动作方程为…………………………………………………(1-拐点电流,开始起制动作时的最小制动电流;-分别为中性点及机端差动TA的二次电流;K-由中性点流入差动TA的电流与中性点全电流的比值;三动作特性具有两段折线式发电机纵差保护的动作特性如图4所示。

由图4可以看出:纵差保护的动作特性由二部分组成:即无制动部分和有制动部分。

这种动作特性的优点是:在区内故障电流小时,它具有很高的动作灵敏度;在区外故障时,它具有较强的躲过暂态不平衡电流的能力。

在图4中:-最小启动电流;0zISIdzoIzK图4 发电机纵差保护动作特性某些厂家生产的发电机差动保护的动作特性,采用所变谓斜率(变制制系数)的()进行合理的整定,图4所示的动作特性,完全可以满足发电机对差动保护动作可靠性及动作灵敏度的要求。

四逻辑框图发电机纵差保护的出口方式:有单相出口方式及循环闭锁出口方式两种,其逻辑框图分别如图5(a)及图5(b)所示。

(a)单相出口方式的发电机纵差保护逻辑框图(b)循环闭锁出口方式发电机纵差保护逻辑框图图5 发电机纵差保护逻辑框图由图5(a)可以看出:当采用单相出口方式时,只要有一相差动元件动作,保护即作用于出口。

相关文档
最新文档