土力学 第5章土的压缩性
《土力学》第五章练习题及答案

《土力学》第五章练习题及答案第5章土的压缩性一、填空题1.压缩系数a1-2数值越大,土的压缩性越,a1-2≥的土为高压缩性土。
2.考虑土层的应力历史,填方路段的地基土的超固结比比1 ,挖方路段的地基土超固结比比1 。
3.压缩系数越小,土的压缩性越,压缩模量越小,土的压缩性越。
4.土的压缩模量是土在条件下应力与应变的比值,土的变形模量是土在条件下应力与应变的比值。
二、名词解释1. 土的压缩性2.先期固结压力3.超固结比4.欠固结土三、单项选择题1.在下列压缩性指标中,数值越大,压缩性越小的指标是:(A)压缩系数(B)压缩指数(C)压缩模量(D)孔隙比您的选项()2.两个性质相同的土样,现场载荷试验得到变形模量E0和室内压缩试验得到压缩模量E S之间存在的相对关系是:(A)E0=E S(B)E0>E S(C)E0≥E S(D)E0<E S您的选项()3.土体压缩变形的实质是:(A)土中水的压缩(B)土中气的压缩(C)土粒的压缩(D)孔隙体积的减小您的选项()4.对于某一种特定的土来说,压缩系数a1-2大小:(A)是常数(B)随竖向压力p增大而曲线增大(C)随竖向压力p增大而曲线减小(D)随竖向压力p增大而线性减小您的选项()5.当土为超固结状态时,其先期固结压力pC与目前土的上覆压力p1=γh的关系为:(A)pC>p1(B)pC<p1(C)pC=p1(D)pC=0您的选项()6.根据超固结比OCR,可将沉积土层分类,当OCR <1时,土层属于:(A)超固结土(B)欠固结土(C)老固结土(D)正常固结土您的选项()7.对某土体进行室内压缩试验,当法向应力p1=100kPa时,测得孔隙比e1=0.62,当法向应力p2=200kPa时,测得孔隙比e2=0.58,该土样的压缩系数a1-2、压缩模量E S1-2分别为:(A) 0.4MPa-1、4.05MPa(B)-0.4MPa-1、4.05MPa(C) 0.4MPa-1、3.95MPa(D)-0.4MPa-1、3.95MPa您的选项()8.三个同一种类的土样,如果重度 相同,含水量w不同,w甲>w乙>w丙,则三个土样的压缩性大小满足的关系为:(A)甲>乙>丙(B)甲=乙=丙(C)甲<乙<丙(D)甲<丙<乙您的选项()第5章土的压缩性一、填空题1.高、0.5MPa-12.小、大3.低、高4.有侧限、无侧限二、名词解释1.土的压缩性:土体在压力作用下,体积减小的特性。
土力学第五章土的压缩性

5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
土的压缩模量和体积压缩系数
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
5.2.2
土的压缩系数和压缩指数
土力学
土的压缩系数:土体在侧限条件下孔隙比减小量与有效压力增 量的比值,即e-p曲线中某一压力段的割线斜率。 e e0 利用单位压力增量所引起得孔 e1 e2 M1
e1 e2 斜率Cc lg p2 lg p1
e-lgp曲线后压力段接近直线,
其斜率Cc为:
e1 e2 Cc e / lg( p2 / p1 ) lg p2 lg p1
同压缩系数一样,压缩指数Cc 值越大,土的压缩性越高。低 压缩性土的Cc值一般小于0.2, Cc值大于0.4为高压缩性土。
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
高等土力学课后参考答案

第五章.土的压缩与固结概念与思考题1.比奥(Biot)固结理论与太沙基一伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:主要区别:在太沙基-伦扩散方程推导过程中,假设正应力之和在固结与变形过程中是常数,太-伦扩散方程不满足变形协调条件。
固结计算结果:从固结理论来看,比奥固结理论可解得土体受力后的应力、应变和孔压的生成和消散过程,理论上是完整严密的,计算结果是精确地,太-伦法的应力应变计算结果和孔压计算结果精确。
比奥固结理论能够反映比奥戴尔-克雷效应,而太沙-伦扩散方程不能。
但是,实际上,由于图的参数,本构模型等有在不确定性。
无论采用哪种方法计算都很难说结果是精确的。
2.对于一个宽度为a的条形基础,地基压缩层厚度为H,在什么条件下,用比奥固结理论计算的时间一沉降(t-s)关系与用太沙基一维固结理论计算的结果接近?答案:a/H很大时3.在是砂井预压固结中,什么是砂井的井阻和涂抹?它们对于砂井排水有什么影响?答:在地基中设置砂井时,施工操作将不可避免地扰动井壁周围土体,引起“涂抹”作用,使其渗透性降低;另外砂井中的材料对水的垂直渗流有阻力,是砂井内不同深度的孔不全等于大气压(或等于0),这被称为“井阻”。
涂抹和井阻使地基的固结速率减慢。
4.发生曼德尔一克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应?答:曼戴尔-克雷尔效应机理:在表面透水的地基面上施加荷重,经过短暂的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均由增加。
土的泊松比也随之改变。
但是内部土体还来不及排水,为了保持变形协调,表层土的压缩必然挤压土体内部,使那里的应力有所增大。
因此某个区域内的总应力分量将超过他们的起始值,而内部孔隙水由于收缩力的压迫,其压力将上升,水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。
土力学 第5章 土的压缩与固结

地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:
土力学5-土的压缩性

e1e0H s10 1e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
e0 ds(1编w辑0p)pt w 1
《土力学》 第5章 土的压缩性
(3)压缩曲线(e-p曲线)的绘制
根据固结试验各级荷载pi相应的稳定 压缩量Si,可求得相应孔隙比ei
e0 e
孔隙
1
固体颗粒
eie0(1e0)S i/H 0
土卸压回弹,弹性变形可恢复,残余变形不能恢复;
△ 再压缩曲线cdf df段就像是ab段的延续;
e
原位压
A
缩曲线
在半对数曲线上存在同样 的现象。
回弹模量Ec:
土体在侧限条件下卸荷或再 加荷时竖向附加压应力与竖向 应变之比。
沉积过程
C
B
取样过程
压缩试 验
D
编辑ppt
p p(lg)
《土力学》 第5章 土的压缩性
土的固结:土体在外力作用下,压缩随时间增长的过程。 压缩性试验
室内试验方法——压缩试验 现场测试——荷载试验。
编辑ppt
《土力学》
第5章 土的压缩性
5.2 固结试验及压缩性指标
(一)固结试验及压缩曲线 (1)试验简介
变形测量 固结容器
透水石
试样
百分表 加压上盖 环刀 压缩 容器
护环
支架
备加 压 设章 土的压缩性
土的压缩性:土在压力作用下体积缩小的特性。
土的压缩可以只看做是土中水和气体从孔隙中被挤出; 土颗粒相应发生移动,重新排列,靠拢挤紧,土孔
隙体积减小; 饱和土则主要是孔隙水的挤出。
土的压缩变形的快慢与土的渗透性有关
透水性大的饱和无粘性上,完成压缩变形的过程短; 而透水性小的饱和粘性土,压缩变形稳定所需的时间长。
土力学 第5章 土的压缩性

e - logp曲线后段直线段的斜率 e1 - e 2 Cc = lg p 2 - lg p1 压缩指数C c 越大, 土的压缩性越大。 C c < 0.2低压缩性土 C c > 0.4高压缩性土
Cc是无量纲系数,同压缩系数a一样,压缩指数Cc值越大,土的压缩性 越高。 虽然压缩系数a 和压缩指数C 都是反映土的压缩性指标, 越高 。 虽然压缩系数 a 和压缩指数 C c 都是反映土的压缩性指标 , 但两者有 所不同。 前者随所取的初始压力及压力增量的大小而异, 所不同 。 前者随所取的初始压力及压力增量的大小而异 , 而后者在较高的 13 压力范围内却是常量,不随压力而变。 压力范围内却是常量,不随压力而变。
压缩指数: 土的固结试验的结果也可以绘在半对数坐标上 , 即坐标横 压缩指数 : 土的固结试验的结果也可以绘在半对数坐标上, 用对数坐标, 而纵轴e 用普通坐标, 由此得到的压缩曲线称为e lgp曲 轴 p 用对数坐标 , 而纵轴 e 用普通坐标 , 由此得到的压缩曲线称为 e ~ lgp 曲 在较高的压力范围内, lgp曲线近似地为一直线 曲线近似地为一直线, 线 。 在较高的压力范围内 , e ~ lgp 曲线近似地为一直线 , 可用直线的坡度 ——压缩指数 来表示土的压缩性高低, ——压缩指数Cc来表示土的压缩性高低,即 压缩指数C
3
5.2
土的压缩特性
一、土的压缩与固结 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计,在研究土的压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计, 时,均认为土体压缩完全是由于土中孔隙体积减小的结果。 均认为土体压缩完全是由于土中孔隙体积减小的结果。
土力学-第5章 土的压缩性可编辑全文

等。
变形模量和压缩模量的关系
第五章 土的压缩性——土的弹性模量
土的弹性模量定义是:在无侧限条件下瞬时压缩的应力应变模量
确定方法:
室内三轴仪进行的三轴压缩试验
无侧限压缩仪进行的单轴压缩试验
弹性模量>变形模量>压缩模量
土的弹性模量
高压缩性土
0.5
中压缩性土
0.1-0.5
低压缩性土
<0.1
第五章 土的压缩性——固结试验及压缩性指标
e -P曲线
单向压缩试验的各种参数的关系
指标
a
mv
Es
a
1
mv(1+e0)
(1+e0)/Es
mv
a/(1+e0)
1
1/Es
Es
(1+e0)/a
1/mv
1
指标
第五章 土的压缩性——固结试验及压缩性指标
即临塑压力。
第Ⅲ段为塑性变形阶段,pl为极限压力
旁压试验及变形模量
p0
pm pf
压力p(kPa)
pL
第五章 土的压缩性——土的变形模量
旁压模量:
旁压试验的适用范围:
Ⅱ
Ⅲ
700
V(cm3)
0 + Δ
= 2(1 + )( +
)
2
Δ
Ⅰ
600
500
400
300
200
100
适用于碎石土、砂土、粉土、粘性土、
实,压缩性越小
沉积土的应力历史
第五章 土的压缩性——应力历史对压缩性的影响
土力学与基础工程-第五章 土的压缩性

Cu pc 0.11 0.0037 I p
C 式中, u -土的不排水剪 抗剪强度,kpa, I p-塑性指数
第三节 地基最终变形计算
一 单向分层总和法
1.基本假设
地基是均质、各向同性的半无限线性 变形体,可按弹性理论计算土中应力。 为了弥补假定 在压力作用下,地基土不产生侧向变 所引起误差,取 形,可采用侧限条件下的压缩性指标。 基底中心点下的
a12 / MPa
1
0.5 高压缩性
中压缩性
(2)土的压缩指数
e1 e2 Cc e / log( p2 / p1 ) log p2 log p1
(3)土的压缩模量
e1 e2 推导:H H1 1 e1
e ap
ap H H1 1 e1
Es p 1 e1 H / H 1 a
pc p0
pc p0
OCR<1:欠固结
相同 p0 时,一般OCR越大,土越密实,压缩性越小
e
e
e
p
p
p0 pc p c p0
p
z z p0 pc OCR 1
正常固结状态
pc p0 OCR 1
pc p0 OCR 1
超固结状态
欠固结状态
先期固结压力 pc 的确定
dt时段内:
孔隙体积的变化=流出的水量
q q qdxdydz q dz dxdydz dxdydzdt z z Vv e 1 e dxdydz dt dxdydzdt t t 1 e 1 e t
系数)
k0
1
( 土的泊松比)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固结沉降Sc :饱和与接近饱和的粘性土在荷载作用下,随着超静孔隙水 压力的消散,土中孔隙水的排出,土骨架产生变形所造成的沉降(固结压 密)。固结沉降速率取决于孔隙水的排出速率。
次固结沉降Ss:主固结过程(超静孔隙水压力消散过程)结束后,在有效 应力不变的情况下,土的骨架仍随时间继续发生变形。这种变形的速率 已与孔隙水排出的速率无关(土的体积变化速率),而是取决于土骨架 本身的蠕变性质。次固结沉降既包括剪应变,也包括体积变化。
缩性如下:
0.1 低压缩性
a12 / MPa 1 中压缩性
0.5 高压缩性
2.土的压缩指数
Cc
log
e1 e2 p2 log
p1
e / log(
p2
/
p1 )
Cc 是 无 量 纲 系 数 , 同 压
缩系数一样,压缩指数 越大,土的压缩性越高 。虽然压缩系数和压缩 指数都是反映土的压缩 性指标,但两者有所不 同。 前者随所取的初始压力 及压力增量的大小而异 ,而后者在较高的压力 范围内却是常量,不随 压力而变。
② 0.42e0时,土样不受到扰动影响。
e
e0 B
0.42e0
C
推定:
① 确定先期固结压力σp ② 过e0 作水平线与σp作用线交于B。由假定① 知,B点必然位于原状土的初始压缩曲线上;
③ 以0.42e0 在压缩曲线上确定C点,由假定② 知,C点也位于原状土的初始压缩曲线上;
④ 通过B、C两点的直线即为所求的原位压缩曲线 。
第二节 地基的最终沉降量
分层总和法 规范法 考虑不同变形阶段的地基沉降计算方法
可压缩层 不可压缩层
p
t
σz=p
S
S
最终沉降量S∞:
t∞时地基最终沉降稳定以后的 最大沉降量,不考虑沉降过程。
分层总和法
1.基本假设
地基是均质、各向同性的半无限线性变
形体,可按弹性理论计算土中应力。
附加应力面积
z
z
A
0
z
dz
p0
Kdz
0
附加应力通 代入 引入平均附
式σz=K p0
加应力系数
z
0 Kdz A
z
p0 z
因此附加应力 面积表示为
A p0z
因此
s
p0
z Es
p0
p0
地 基 沉 降 计 算
1
2
b
zi-1
56
zi
第i层
1 Ai
2
1 Ai-1 56
p s lg '
b. 超固结土 (p s )
e
假定:
① 土取出地面后体积不变,即(e0,σs)在原位再压 缩曲线上;
② 再压缩指数Ce 为常数; ③ 0.42e0处的土与原状土一致,不受扰动影响。
e0
D
B
0.42e0
s p
C
lg '
推定:
① 确定σs ,σp的作用线; ② 过e0作水平线与 σs作用线交于D点; ③ 过D点作斜率为Ce的直线,与σp作用 线交于B点,DB为原位再压缩曲线;
确定土的弹性模量的方法,一般采用室内三轴压缩试验或单轴压缩 无限抗压强度试验得到的应力-应变关系曲线所确定的初始切线模 量或相当于现场荷载条件下的再加荷模量。三轴仪中进行的试验, 一般重复加荷和卸荷若干次,加、卸荷5~6个循环后,便可在主应 力差与轴向应变关系图上测得初始切线模量和再加荷模量。确定的 再加荷模量就是符合现场条件下的土的弹性模量。
压缩试验中 H t、H p、e-p 曲线
试验结果(孔隙比)的推导
H H1 (H1 H2 ) A V1 V2 (VS1 Vv1) (VS 2 Vv2 )
H1 H2
H1 A
V1
(VS1 Vv1)
土的固体颗粒垂直变形很小,可忽略不计,可视Vv1 Vv2
正常固结土: bb’ —— 取样,应力
释放 b’cd —— 室内试验
超固结土:
b
地下水位上升 土层剥蚀 冰川融化
引起卸载, 使土处于回弹状态
d
原状土的原位压缩曲线:
g 客观存在的,无法直接得到
'(lg)
原位压缩曲线的近似推求
a. 正常固结土
假定:
① 土样取出以后e不变,等于原状土的初始孔隙比e0,因而, ( e0, σp)点应位于原状土的初始压缩曲线上;
3.土的压缩模量
推导:H
e1 e2 1 e1
H1
e ap
ap H 1 e1 H1
公式:Es (1 e1 ) / a
Es
p H / H1
1 e1 a
说明:土的压缩模量Es与土的的压缩系数a成反比, Es愈 大, a愈小,土的压缩性愈低
土的载荷试验及变形模量(复习)
相同 p0 时,一般OCR越大,土越密实,压缩性越小
e
e
e
p
z z p0 pc
OCR 1 正常固结状态
p
p0 pc
pc p0 OCR 1
超固结状态
p
pc p0
pc p0 OCR 1
欠固结状态
考虑应力历史影响的地基沉降计算方法
原位压缩曲线
a
e
b c
f
ab —— 沉积
3 3. 作m点切线m2
2
4. 作m1,m2 的角分线m3
5. m3与试验曲线的直线段
交于点B
D
6. B点对应于先期固结压
力 pc
pc
p(lg)
超固结比及固结状态
• 超固结比: OCR pc p0
p0 pc
pc p0
pc p0
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
p1i
CCi
lg
szi zi szi
p1i p2i
lg '
Si
ei 1 e1i
Hi
CCi 1 e1i
Hi
lg
szi zi szi
超固结土
p1i szi p2i szi zi
e
e1i A
e2i
B C
p1i pi p2i lg '
土在无侧限条件下竖向压应力与竖向总应变的比值。
变形模量与压缩 模量之间关系
其中
E0 Es
=1-12-2
土的泊松比,一 般0~0.5之间
土的回弹与再压缩曲线
1.土的卸荷回弹曲线不与原 压缩曲线重合,说明土不是 完全弹性体,其中有一部分 为不能恢复的塑性变形.
2.土的再压缩曲线比原压缩 曲线斜率要小得多,说明土 经过压缩后,卸荷再压缩时, 其压缩性明显降低.
则有 H e e1 e2 H1 1 e1 1 e1
e 孔隙比的变化,e e1 e2 e1 压缩前土样的孔隙比;
e2 压缩后土样的孔隙比。
e-p 曲线确定压缩系数 e-lgp曲线确定压缩指数
1.压缩系数a
土体在侧限条件下孔隙比减少量与竖向压应力增量的比值.
第五章 土的压缩性及地基变形计算
§5.1 §5.2 §5.3 §5.4
土的压缩性 地基的最终沉降量 应力历史和土压缩性的关系 地基沉降与时间的关系
地基的沉降及不均匀沉降
(墨西哥城)
意大利比萨斜塔
第一节 土的压缩性
基本概念 土的压缩试验和压缩指标 土的载荷试验及变形模量 土的回弹与再压缩曲线
基本概念
土的压缩性是指土在压力作用下体积缩小的特性。
压缩量的组成
固体颗粒的压缩 土中水的压缩
占总压缩量的1/400不到, 忽略不计
空气的排出
压缩量主要组成部分
水的排出
说明:土的压缩被认为只是由于孔隙体积减小的结果
无粘性土
透水性好,水易于排出
压缩稳定很快完成
粘性土 透水性差,水不易排出 压缩稳定需要很长一段时间
zn b(2.5 0.4 ln b)
规范法
由《建筑地基基础设计规范》(GB50007-2002)提出 分层总和法的另一种形式
沿用分层总和法的假设,并引入平均附加应力系数和地 基沉降计算经验系数
s z z dz 1
z
dz
A
0 Es
Es 0 z
Es
深度z范围内的 附加应力面积
先将地基土分为若干土层,各土 层厚度分别为h1,h2,h3,……,hn。 计算每层土的压缩量 s1,s2,s3,….,sn。然后累计起来, 即为总的地基沉降量s。
n
s s1 s2 s3 ... sn si i1
4.计算原理
•计算自重应力 sz
•计算基底压力p
•••增地由加基e应附-p力加曲应线p力,0 求p e
计算基础最终沉降量
沉降计算深度zn应该满足
n
sn 0.025 si i 1
当确定沉降计算深度下有软弱土层时,尚应向下继续计 算,直至软弱土层中所取规定厚度的计算沉降量也满足上 式,若计算深度范围内存在基岩,zn可取至基岩表面为止
当无相邻荷载影响,基础宽度在1~30m范围内,基础中 点的地基沉降计算深度可以按简化公式计算
e
e0
e1
M1
△e
e2
△p
斜 率a e= e1 e2 p p2 p1
利用单位压力增量所引起 得孔隙比改变表征土的压