土力学第五章土的压缩性

合集下载

土力学土的压缩性与固结理论

土力学土的压缩性与固结理论

z
1 E0
[ z
(
y
x)]
Es
z z
z
z
Es
1 E0
[
z
2k0
z
]
z
Es
β
E0
(1 2k0 )Es
(1
2
1 )Es
(1
2
2
1
)Es
E0 Es
三、土的弹性模量
土体地无侧限条件下瞬时压缩的应力应变模量,称为弹性 模量。
一般采用室内三轴压缩试验或单轴压缩无侧限抗压强度试验得到 的应力—应变关系曲线所确定的初始切线模量或相当于现场荷载 条件下的再加荷模量。
力的关系曲线,称为回弹 曲线。
回弹曲线bc并不沿压缩曲线回升,而要平缓得多,这 说明土受压缩发生变形,卸压回弹,但变形不能全部恢复,
其中可恢复的部分称为弹性变形,不能恢复的称为残余变 形。
若再重新逐级加压,则可测得再压缩曲线。土在重复
荷载作用下,在加压与卸压的每一级重复循环中都将走新
的路线,形成新的滞后环。
❖ (2) 压缩指数Cc 土体在侧限条件下孔隙比减小量与竖向有效压应力常用对数值增 量的比值,即e-lgp曲线中某一压力段的斜率。
Cc
lg
e1 p2
e2 lg
p1
Cc<0.2时, 低压缩土; 0.2≤Cc<0.4MPa-1时,中压缩性; Cc≥0.4时, 高压缩性土
❖ (3)压缩模量
是土体在完全侧限条件下,竖向附加应力与竖向应变的比值, 或称侧限模量,用Es表示。
E0
(1
2)
p1b s1
沉降影响系数 地基土的泊松比
b 承压板的边长或直径 s1 与所取定的比例界限p1相对应的沉降

土力学第五章-土的压缩性

土力学第五章-土的压缩性
压缩稳定状态和侧限条件
• 土的压缩稳定状态: 指土体在压力作用下,压缩变形量达到最大值时的状态。
• 有侧限条件: 土体侧向受到限制,受压前后的横截面积保持不变,则 体积变化量实际上就是由土体厚度的变化引起。
• 无有侧限条件: 土体侧向没有限制,土体可以侧向变形,受压后的横截 面积发生变化。
土的压缩试验
与压力的变化成反比。
av

e1 e2 p2 p1

e p
• e-p曲线的斜率就是压缩系数av,随曲线不同点而变化, 单位是kPa-1。
压缩定律(e-logp曲线)
• 土的压缩定律也可用e-lgp曲线的斜率来表示:
Cc

log
e1 e2 p2 log
p1
• e-lgp曲线的斜率就是压缩指数,它是一个基本不变的值。 • 压缩系数和压缩指数的关系:
就是反映孔隙比与垂直压力的关系曲线。 分为两种:e-p曲线和e-lgp曲线。 • 特性: 压缩曲线的陡缓程度反映了土体压缩性的大小。 压缩曲线越陡,土体的压缩性越大;
压缩曲线越缓,土体的压缩性越小。
压缩定律(e-p曲线)
• 压缩定律:
就是反映压缩曲线的陡缓程度,它实际上就是压缩曲
线的斜率。在压力变化并不大时,土体孔隙比的变化
1)在e-lgp曲线上,找到曲率最大点; 2)过最大点作水平线和切线; 3)作水平线和切线的角平分线; 4)反向延长e-lgp曲线的直线段; 5)直线段与角平分线的交点所对应的压力就是所求的 先期固结压力。
侧压力系数和侧膨胀系数
• 侧压力系数K0:指土体在有侧限条件下,水平方向的应 力与垂直方向应力之比。
OCR pc p0
• 土的分类:超固结土(OCR>1) 正常固结土(OCR=1) 欠固结土(OCR<1)

第5章土的压缩性

第5章土的压缩性

A
e
C B
m
p
1 3 2
D
'(lg)19
§5 土的压缩性 应力历史对压缩性的影响
二、初始(原始)压缩曲线
应力历史对粘土的压缩性具有较大的影响,而 钻探取样获得土样经过扰动或应力释放,在实验 室内得到的压缩曲线已经不能代表地基中现场压 缩曲线,所以压缩曲线的起始段实际上是一条再 压缩曲线。因此必须对室内固结试验所得的压缩 曲线进行修正,得到符合原位土体压缩性的现场 压缩曲线,由此计算得到的地基沉降才会更符合 实际。
21
§5 土的压缩性 应力历史对压缩性的影响
二、初始(原始)压缩曲线
若pc=p1,则试样是正常固结土, 它的原始压缩曲线推求:
① 一般可假定取样过程中试样 不发生体积变化,即试样的初始 孔隙比e0就是它的原位孔隙比 ; ② 由e0 和 pc值,在e~logp坐标 上定出b点,此即试样在原始压 缩的起点; ③ 从纵轴坐标0.42 e0 处作一水 平线交室内压缩曲线于c点,连接 bc即为所求的原始压缩曲线。

Es
x z
μ可由土力学试验中的三轴试验测定 μ一般<0.5 ;∴β一般<1 ;即β=0~1 故 E0 < Es
29
§5 土的压缩性 土的变形模量
一、浅层平板载荷试验及变形模量
变形模量( E0 )与压缩模量( Es )的关系
μ也可根据土的侧压力系数K0(三轴试验确定)
进行计算。
K0
a e e1 e2 p p2 p1
式中:a — 土的压缩系数,MPa-1; p1 — 地基某深度处土中竖向自重应力,MPa; p2 — 地基某深度处土中自重应力与附加应力之和,MPa; e1 — 相应于p1作用下压缩稳定后的孔隙比; e2 — 相应于p2作用下压缩稳定后的孔隙比。

第5章 土的压缩性与固结理论

第5章 土的压缩性与固结理论


在压缩试验过程中。我们可以通过百分表测量出土样的高度 变化S(即土样的压缩量),如下图所示。 土样的初始高度 为h0,横截面面积为A,初始孔隙比为e0。在第i级竖向应力作
用下,变形稳定后的压缩量为si,土样高度变为h0 - si ,土样
的孔隙比从e0减小到ei,此时 变; 由于在试验过 程中土样不能侧向变形,所以压缩前后土样横截面积A保持不

使用;不均匀沉降则会造成路堤开裂、路面不平,对超静定结构桥梁产生较
大附加应力等工程问题,甚至影响其正常和安全使用。因此,为了确保路桥 工程的安全和正常使用,既需要确定地基土的最终沉降量,也需要了解和估
计沉降量随时间的发展及其趋于稳定的可能性。

在工程设计和施工中,如能事先预估并妥善考虑地基的变形而 加以控制或利用,是可以防止地基变形所带来的不利影响的。 如某高炉,地基上层是可压缩土层,下层为倾斜岩层,在基础
第五章 土的压缩性与固结理论
§5.1 概 述
一、土的压缩性


在外力作用下土体积缩小的特性称为土的压缩性。
土是三相体,土体受外力作用发生压缩变形包括三部分:(1) 土固体颗粒自身变形;(2)孔隙水的压缩变形;(3)土中 水和气从孔隙中被挤出从而使孔隙体积减小。 一般工程土体所受压力为100~600kPa,颗粒的体积变化不 及全部土体积变化的1/400,可不予考虑;水的压缩变形也很 小,可以忽略。所以,土的压缩变形,主要是由于孔隙体积 减小而引起的。因此,土的压缩过程可看成是孔隙体积减小 和孔隙水或气体被排出的过程。因此,土的压缩性包含了两 方面的内容:
(2)压缩指数Cc

室内侧限压缩试验结果分析中也可以采用
e lg
曲线。用这种形式表示试验结果的优点是在应力达到一定值后,

土力学 第5章 土的压缩与固结

土力学 第5章 土的压缩与固结

地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:

土力学5-土的压缩性

土力学5-土的压缩性

e1e0H s10 1e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
e0 ds(1编w辑0p)pt w 1
《土力学》 第5章 土的压缩性
(3)压缩曲线(e-p曲线)的绘制
根据固结试验各级荷载pi相应的稳定 压缩量Si,可求得相应孔隙比ei
e0 e
孔隙
1
固体颗粒
eie0(1e0)S i/H 0
土卸压回弹,弹性变形可恢复,残余变形不能恢复;
△ 再压缩曲线cdf df段就像是ab段的延续;
e
原位压
A
缩曲线
在半对数曲线上存在同样 的现象。
回弹模量Ec:
土体在侧限条件下卸荷或再 加荷时竖向附加压应力与竖向 应变之比。
沉积过程
C
B
取样过程
压缩试 验
D
编辑ppt
p p(lg)
《土力学》 第5章 土的压缩性
土的固结:土体在外力作用下,压缩随时间增长的过程。 压缩性试验
室内试验方法——压缩试验 现场测试——荷载试验。
编辑ppt
《土力学》
第5章 土的压缩性
5.2 固结试验及压缩性指标
(一)固结试验及压缩曲线 (1)试验简介
变形测量 固结容器
透水石
试样
百分表 加压上盖 环刀 压缩 容器
护环
支架
备加 压 设章 土的压缩性
土的压缩性:土在压力作用下体积缩小的特性。
土的压缩可以只看做是土中水和气体从孔隙中被挤出; 土颗粒相应发生移动,重新排列,靠拢挤紧,土孔
隙体积减小; 饱和土则主要是孔隙水的挤出。
土的压缩变形的快慢与土的渗透性有关
透水性大的饱和无粘性上,完成压缩变形的过程短; 而透水性小的饱和粘性土,压缩变形稳定所需的时间长。

土力学 第5章 土的压缩性

土力学 第5章 土的压缩性

e - logp曲线后段直线段的斜率 e1 - e 2 Cc = lg p 2 - lg p1 压缩指数C c 越大, 土的压缩性越大。 C c < 0.2低压缩性土 C c > 0.4高压缩性土
Cc是无量纲系数,同压缩系数a一样,压缩指数Cc值越大,土的压缩性 越高。 虽然压缩系数a 和压缩指数C 都是反映土的压缩性指标, 越高 。 虽然压缩系数 a 和压缩指数 C c 都是反映土的压缩性指标 , 但两者有 所不同。 前者随所取的初始压力及压力增量的大小而异, 所不同 。 前者随所取的初始压力及压力增量的大小而异 , 而后者在较高的 13 压力范围内却是常量,不随压力而变。 压力范围内却是常量,不随压力而变。
压缩指数: 土的固结试验的结果也可以绘在半对数坐标上 , 即坐标横 压缩指数 : 土的固结试验的结果也可以绘在半对数坐标上, 用对数坐标, 而纵轴e 用普通坐标, 由此得到的压缩曲线称为e lgp曲 轴 p 用对数坐标 , 而纵轴 e 用普通坐标 , 由此得到的压缩曲线称为 e ~ lgp 曲 在较高的压力范围内, lgp曲线近似地为一直线 曲线近似地为一直线, 线 。 在较高的压力范围内 , e ~ lgp 曲线近似地为一直线 , 可用直线的坡度 ——压缩指数 来表示土的压缩性高低, ——压缩指数Cc来表示土的压缩性高低,即 压缩指数C
3
5.2
土的压缩特性
一、土的压缩与固结 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计,在研究土的压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计, 时,均认为土体压缩完全是由于土中孔隙体积减小的结果。 均认为土体压缩完全是由于土中孔隙体积减小的结果。

土力学-第5章 土的压缩性可编辑全文

土力学-第5章 土的压缩性可编辑全文
以上理论关系,易受其他因素的影响:试样扰动、加荷速率、μ值精度
等。
变形模量和压缩模量的关系
第五章 土的压缩性——土的弹性模量
土的弹性模量定义是:在无侧限条件下瞬时压缩的应力应变模量
确定方法:
室内三轴仪进行的三轴压缩试验
无侧限压缩仪进行的单轴压缩试验
弹性模量>变形模量>压缩模量
土的弹性模量
高压缩性土
0.5
中压缩性土
0.1-0.5
低压缩性土
<0.1
第五章 土的压缩性——固结试验及压缩性指标
e -P曲线
单向压缩试验的各种参数的关系
指标
a
mv
Es
a
1
mv(1+e0)
(1+e0)/Es
mv
a/(1+e0)
1
1/Es
Es
(1+e0)/a
1/mv
1
指标
第五章 土的压缩性——固结试验及压缩性指标
即临塑压力。
第Ⅲ段为塑性变形阶段,pl为极限压力
旁压试验及变形模量
p0
pm pf
压力p(kPa)
pL
第五章 土的压缩性——土的变形模量
旁压模量:
旁压试验的适用范围:


700
V(cm3)
0 + Δ
= 2(1 + )( +
)
2
Δ

600
500
400
300
200
100
适用于碎石土、砂土、粉土、粘性土、
实,压缩性越小
沉积土的应力历史
第五章 土的压缩性——应力历史对压缩性的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津城市建设学院土木系岩土教研室
5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
土的压缩模量和体积压缩系数
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
5.2.2
土的压缩系数和压缩指数
土力学
土的压缩系数:土体在侧限条件下孔隙比减小量与有效压力增 量的比值,即e-p曲线中某一压力段的割线斜率。 e e0 利用单位压力增量所引起得孔 e1 e2 M1
e1 e2 斜率Cc lg p2 lg p1
e-lgp曲线后压力段接近直线,
其斜率Cc为:
e1 e2 Cc e / lg( p2 / p1 ) lg p2 lg p1
同压缩系数一样,压缩指数Cc 值越大,土的压缩性越高。低 压缩性土的Cc值一般小于0.2, Cc值大于0.4为高压缩性土。
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
△e △p
e e1 e2 斜率a = p p2 p1 隙比改变表征土的压缩性高低 de a M2 d p
在压缩曲线中,实际采用割 线斜率表示土的压缩性
p1 p2 e-p曲线
常用p1=100kPa、 p2=200kPa 对应的压缩系数a1-2评价土的 压缩性
p
a
e e e2 = 1 p p2 p1
天津城市建设学院土木系岩土教研室
5.3.1 沉积土(层)的应力历史
先期固结压力pc的确定(卡萨格兰德法)
土力学
1. 在e-lgp曲线上,找出 曲率最大点m
2. 作水平线m1
e
C
A m B 1 3 2
3. 作m点切线m2
4. 作m1,m2 的角分线m3 5. m3与试验曲线的直线段 交于点B 6. B点对应于先期固结压 力pc
固结试验和压缩曲线
土力学
百分表 加压上盖
普通直角坐标e-p曲线 压缩系数a(MPa-1)、压缩模量Es(MPa) 加荷率(前后两级荷载之差与前一 级荷载之比)取≤1 一般按50、100、200、300、400kPa 五级加荷,第一级压力软土宜从 12.5或25kPa开始。 半对数直角坐标e-lgp曲线 压缩指数Cc 初始阶段加荷率取0.5 一般按12.5、18.75、25、37.5、50、 100、200、300、400、800、1600、 3200kPa 注意:读数时间
天津城市建设学院土木系岩土教研室
5.3.1 沉积土(层)的应力历史
土力学
先期固结压力(前期固结压力):天然土层在历史上受过最大 固结压力(指土体在固结过程中所受的最大竖向有效应力)。 根据应力历史分类:
正常固结土
在历史上所经受的先期固结压力等于现有覆盖土重 历史上曾经受过大于现有覆盖土重的先期固结压力 先期固结压力小于现有覆盖土重
室内土的三轴压缩试验或无侧限抗压试验,可以测定土的 弹性模量E;还可以测定土的抗剪强度指标。当考虑应力历史 对土的压缩性影响时,可以测定土的压缩指数Cc等指标。
原位的测试方法:现场(静)载荷试验(浅层平板载荷试 验、深层平板载荷试验),利用与其它现场试验(如标贯、静 力触探、圆锥动力触探等)建立关系间接求出变形模量
1 a mv Es 1 e1
说明:同土的压缩系数a一样, mv值越大,土的压缩性越高
天津城市建设学院土木系岩土教研室
5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
土的压缩模量和体积压缩系数
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
土的压缩模量和体积压缩系数
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
5.2.3 土的压缩模量和体积压缩系数
土力学
∆H
土的压缩模量:土体在侧限条件下的竖向附加压应力与竖向应 变之比值。 p1 H 1 e p
压缩稳定需要很长一段时间
粘性土
土的固结:土体在压力作用下,压缩量随时间增长的过程
天津城市建设学院土木系岩土教研室
5.1
概述
土力学
固结试验可以测定土的压缩系数a和压缩模量Es等压缩性指 标。 室内土样在侧限条件下所完成的固结,称为K0固结。K0为土 的静止侧压力系数,也是静止土压力系数。天然土层在自重应 力作用下或在大面积荷载作用下,所完成的固结均为K0固结

超固结土 次固结土
超固结比OCR:先期固结压力与现有覆盖土重之比。 OCR=1 正常固结土
OCR pc p1
先期固结压力,kPa 现有覆盖土重,kPa
OCR>1 超固结土
OCR<1 欠固结土 《高层建筑岩土工程勘察规程》OCR=1.0~1.2为正常固结土。
天津城市建设学院土木系岩土教研室
5.3.1 沉积土(层)的应力历史
D
pc
p(lg)
天津城市建设学院土木系岩土教研室
5.3.2 现场原始压缩曲线及压缩性指标
土力学
e1 d e0
现场原始压缩曲线:现场土层在其沉积过程中由上覆土重原本 存在的压缩曲线,简称原始压缩曲线。 1、正常固结土的原始压缩曲线 p c= p 1 e
b
A B

1 3
对正常固结土先期固结压力 pc=p1(试样现场自重压力)
剥蚀前地面 现在地面
土力学
hc
现在地面
现在地面
h
p 1 =γ h
A类土层pc=p1
正常固结土
h
p 1 =γ h h h c
B类土层pc>p1
超固结土
p 1 =γ h
C类土层pc<p1
次固结土
确定先期固结压力,应结合场地地形、地貌等形成历史的调查资料加以判 断,如历史上由于自然力(流水、冰川等地质作用的剥蚀)和人工开挖等剥去 原始地表土层,或在现场堆载预压作用等,都可能使土层成为超固结土;新近 沉积的粘性土、粉土、海滨淤泥、年代不久的人工填土及地下水位发生下降, 都可使土层处于欠固结状态。
5.3.2 现场原始压缩曲线及压缩性指标
2、超固结土的原始压缩曲线
土力学


e
e1 d e0
室内 压缩 曲线
b1
p1
A
室内 回弹 曲线
原位再压 缩曲线Ce
b
pc
根据超固结土试样现场自重压力 p1,e1为现场孔隙比(土样不膨 胀,e1=e0),画出db1段
画出室内回弹曲线与再压缩曲线 的平均斜率,通过b1点作一斜率 与之相等的直线,与通过B点的 垂线交于b点,b1b就是原始再压 缩曲线,斜率为回弹指数Ce。 以0.42e0在压缩曲线上确定c点 通过b、c两点的直线即为所求的 原位压缩曲线,斜率为压缩指数 C c值
a1-2<0.1MPa-1 低压缩性土 0.1MPa-1≤a1-2<0.5MPa-1 中压缩性土 a1-2≥0.5MPa-1 高压缩性土
天津城市建设学院土木系岩土教研室
5.2.2
土的压缩系数和压缩指数
土力学
土的压缩指数:土体在侧限条件下孔隙比减小量与有效压力常 用对数值增量的比值,即e-lgp曲线中某一压力段的直线斜率。
5.1
概述
土力学
土的压缩性是指土在压力作用下体积缩小的特性
压缩量的组成 固体颗粒的压缩 占总压缩量的1/400不到, 土中水的压缩 忽略不计 空气的排出 压缩量主要组成部分 水的排出 说明:土的压缩被认为只是由于孔隙体积减小的结果
无粘性土
透水性好,水易于排出 透水性差,水不易排出
压缩稳定很快完成
刚性护环
环刀
土样
透水石
底座
天津城市建设学院土木系岩土教研室
5.2.1
固结试验和压缩曲线
土力学
∆Hi
2.e-p曲线 研究土在不同压力作用下,孔隙比变化规律 p Vv=e0
H0 H0/(1+e0)
Vv=ei
H1 H1/(1+ei)
Vs=1
Vs=1 整理
1
土样在压缩前后变 形量为∆Hi,整个过 程中土粒体积和底 面积不变
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
5.2.1
固结试验和压缩曲线
土力学
压缩曲线是土的孔隙比与所受压力的关系曲线,从 而得到土的压缩性指标
三联固结仪
天津城市建设学院土木系岩土教研室
相关文档
最新文档