火力发电机组超临界化的发展趋势

合集下载

火电厂超临界技术的发展现状研究

火电厂超临界技术的发展现状研究

火电厂超临界技术的发展现状研究火电厂是我国能源消耗的主要来源之一,然而,其传统技术已经无法满足能源需求不断增长、排放要求不断提高等现代化发展的需要。

该如何应对这些挑战?超临界技术或许是一个解决方案。

本文将针对火电厂超临界技术的发展现状进行研究。

一、超临界技术的基本概念超临界技术,简单来说就是以高温高压的方式使水变成超临界流体,从而提高发电效率。

超临界流体对于热载体的传热性能非常好,因此,利用超临界流体来驱动汽轮机发电,比传统的汽轮机发电效率更高。

此外,超临界技术还可以有效地降低火电厂的排放,并节省燃料。

二、超临界技术的发展历程超临界技术的发展可追溯至上世纪80年代,当时,日本成功开发了世界上第一台超临界汽轮机。

此后,超临界技术在全球范围内得到普及和推广。

从二十世纪90年代起,中国开始引进和研发超临界技术。

2005年,中国第一台超临界火电机组在陕西省投入运行。

此后,我国迅速走上超临界技术发展的快车道,到2010年,超临界技术的装机容量已经占到火电总装机容量的三分之一以上。

此外,中国在超临界技术研发方面取得了一些成果,如联储循环技术、空气预热器技术等。

三、超临界技术的优势和挑战超临界技术的优势主要体现在以下几个方面:1. 高效节能:使用超临界技术可以提高火电厂的发电效率,减少燃料的消耗,实现低碳环保。

2. 降低排放:由于能够充分燃烧煤炭,超临界技术可以减少火电厂的氮氧化物和二氧化硫排放。

3. 技术可靠:超临界技术使用的是成熟的汽轮机设备,技术已经相对成熟,因此稳定性比较高。

然而,超临界技术也面临着一些挑战:1. 设备成本高:超临界技术使用的设备相对传统技术要昂贵,这是一个制约其普及的因素。

2. 技术难度大:超临界技术对设备的高温高压要求较高,因此技术实现难度也相应增加。

3. CO2排放未解决:尽管超临界技术可以减少火电厂的氮氧化物和二氧化硫排放,但排放的CO2仍然是个难题,尚未得到很好的解决。

四、未来展望未来,超临界技术还将面临一些新的挑战和机遇。

超临界、超超临界机组发展现状、趋势和存在问题的分析研究

超临界、超超临界机组发展现状、趋势和存在问题的分析研究

超临界、超超临界机组发展现状、趋势和存在问题的分析研究分析报告上海电力学院2009年3月超临界、超超临界机组发展现状、趋势和存在问题的分析研究1.引言按照国家制订的2020年电力发展规划,我国发电装机容量将从目前的约8亿千瓦增加到2020年9亿千瓦,其中燃煤机组比例约占总容量75%左右。

由于电力是最大的煤炭用户,要提高煤炭的利用效率,提高燃煤电厂的效率是一个主要途径。

分析国际上燃煤发电技术的发展趋势,将采用两种技术路线来提高效率和降低排放。

其一是利用煤化工中已经成熟的煤气化技术,采用整体煤气化蒸汽燃气联合循环技术(IGCC)实现高效清洁发电,其代表技术为IGCC。

此技术提高能效的前景很好,但因系统相对复杂而造成投资偏高的问题需要解决。

目前正在烟台电厂建设一台300或400MW等级的IGCC示范机组,为今后的发展作好技术储备。

另一个发展方向是通过提高常规发电机组的蒸汽参数来提高效率,即超临界机组和超超临界机组。

超超临界机组在发达国家已经实现了大容量、大批量生产。

通过努力我国可以较快实现国产化能力,降低设备成本。

超超临界机组蒸汽参数愈高,热效率也随之提高。

热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。

在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降 1.4%~1.6%。

亚临界机组的典型参数为16.7MPa/538℃/538℃,其发电效率约为38%。

超临界机组的主蒸汽压力通常为24MPa左右,主蒸汽和再热蒸汽温度为538~560℃;超临界机组的典型参数为24.1MPa/538℃/538℃,对应的发电效率约为41%。

超超临界机组的主蒸汽压力为25~31MPa,主蒸汽和再热蒸汽温度为580~610℃。

大型超超临界火电机组现状和发展趋势

大型超超临界火电机组现状和发展趋势

大型超超临界火电机组现状和发展趋势摘要:本文简述了上海发展超超临界火电机组的战略意义、国内外现状、关键技术和经济效益。

1. 超超临界的概念火力发电厂的工质是水,在常规条件下水经加热温度达到给定压力下的饱和温度时,将产生相变,水开始从液态变成汽态,出现一个饱和水和饱和蒸汽两相共存的区域。

当蒸汽压力达到22.129MPa时,汽化潜热等于零,汽水比重差也等于零,该压力称为临界压力。

水在该压力下加热至374.15℃时即被全部汽化,该温度称为临界温度。

水在临界压力及超过临界压力时没有蒸发现象,即变成蒸汽,并且由水变成蒸汽是连续的,以单相形式进行。

蒸汽压力大于临界压力的范围称超临界区,小于临界压力的范围称亚临界区。

从水的物性来讲,只有超临界和亚临界之分,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。

目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa、且蒸汽温度高于580℃称为超超临界。

2. 发展超超临界火电机组的战略意义2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,推荐的全国发电能源需求预测方案见表1。

表1 全国电能源构成项目单位2000实际2020预测全国总装机容量万千瓦31932.09 90000 比重% 100 100 1、水电万千瓦7935.22 22000比重% 24.9 24.4 2、火电万千瓦23746.96 63500比重% 74.4 70.6 其中:煤电万千瓦23223.96 58000 比重% 72.7 64.4 气电万千瓦511.8 5500项目单位2000实际2020预测比重% 1.6 3690 3、核电万千瓦210 4.1比重% 0.7 800 4、其他万千瓦39.91 90000比重% 0.12 100 可以看出,虽然煤电所占比重从2000年到2020年在逐年下降(从72.7%下降到64.4%),但煤电在电源结构中的主导地位没有改变。

2023年超超临界机组行业市场规模分析

2023年超超临界机组行业市场规模分析

2023年超超临界机组行业市场规模分析超超临界机组是一种能够效率较高、排放较低的火电机组,目前在国内能源市场中非常受欢迎,具有很大的发展潜力。

本文将从超超临界机组的市场规模、发展趋势、市场前景等方面进行分析。

超超临界机组市场规模从市场规模来看,超超临界机组市场正在经历非常快速的增长。

2019年,全球超超临界机组装机容量一共为708GW,其中中国的超超临界机组装机容量占比达到了78%,而其他国家和地区的总装机容量仅占22%。

2019年,中国新上超超临界机组装机容量达到了7193.8MW,占全球新上容量的96.66%。

在中国,超超临界机组的市场份额不断提高,占比越来越大。

超超临界机组市场发展趋势从超超临界机组市场发展趋势来看,首先是技术上的不断创新。

随着技术的不断进步,超超临界机组的效率和稳定性等方面都得到了很大的提升,这也为其市场发展提供了很好的保障。

其次是政策支持的不断强化。

在不断加强环保政策的背景下,未来超超临界机组将成为火电行业的主流机型。

此外,中国政府还持续推进“一带一路”建设,这将带动超超临界机组在国外市场的迅猛发展。

超超临界机组市场前景从超超临界机组市场前景来看,由于其具备高效、低排放、稳定性好等特点,市场前景非常广阔。

在中国,未来火电行业将继续面临环保压力,因此超超临界机组将替代传统的火电机组成为主流机型,市场份额将进一步提高。

同时,中国政府还计划在未来几年内新增火电装机容量2000万千瓦以上,这也将极大地带动超超临界机组市场的发展。

此外,随着“一带一路”建设的逐步推进,中国的超超临界机组也将迅速占领海外市场,市场规模将进一步扩大。

总之,超超临界机组市场规模越来越大,发展趋势良好,市场前景广阔。

未来,随着技术不断创新、政策持续推进和市场需求的不断增长,超超临界机组将成为火电行业的主要机型,市场份额将继续提高。

同时,超超临界机组还将继续在国内外市场展露其威力,为火电行业的可持续发展贡献力量。

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告一、问题的提出通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。

本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。

二、调查方法1.从书籍中查找有关资料2.在英特网中查阅有关资料三、正文我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。

新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。

全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。

火力发电在电力结构中一直占有重要地位。

从全球范围看, 火电在电力工业中起着主导作用。

对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。

国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。

我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。

超临界超超临界发电技术的发展和现

超临界超超临界发电技术的发展和现
国际上,超临界超超临界发电技术的研发和推广已经相对成熟,许多国家已经拥有 了自主知识产权的核心技术,并成功应用于实际工程项目中。
国外先进的超临界超超临界机组已经实现了高效、低污染的运行,为全球能源结构 的优化和环境保护做出了贡献。
国内发展现状
我国在超临界超超临界发电技术方面也 取得了显著进展,国内多个大型发电企 业已经掌握了这一技术,并成功投运了
投资成本
运行维护
超临界超超临界发电技术的运行和维 护需要专业人员和技术支持,对人员 素质和技能要求较高。
超临界超超临界发电技术的设备成本 较高,需要大规模投资才能获得回报。
03
CHAPTER
超临界超超临界发电技术发 展现状
国际发展现状
全球范围内,超临界超超临界发电技术已经成为新建火电机组的主流技术,尤其在 大容量、高参数的机组中应用广泛。
案例一:某大型火电厂的应用
总结词
技术成熟、效率高、经济性好
详细描述
某大型火电厂采用超临界超超临界发电技术,具有较高的热效率和较低的煤耗率,同时减少了污染物排放,经济 效益和环保效益显著。
案例二:核能发电的辅助应用
总结词
高效、安全、稳定性好
详细描述
超临界超超临界发电技术在核能发电中作为辅助手段,能够提高核能利用率和安全性,降低核废料的 产生,同时保证稳定的电力输出。
解决方案
通过研发新型材料、优化设备设计和 运行控制技术等手段,提高设备的稳 定性和可靠性。
市场前景与发展规划
市场前景
随着能源结构的转型和环保要求的提高 ,超临界超超临界发电技术具有广阔的 市场前景。
VS
发展规划
政府和企业应加大对超临界超超临界发电 技术的研发投入,推动技术进步和产业升 级,同时制定相关政策,鼓励市场应用。

火力发电设备行业现状及发展趋势分析报告

火力发电设备行业现状及发展趋势分析报告

火力发电设备行业现状及发展趋势分析报告火力发电设备是目前国内主要的发电方式之一,占据了我国发电行业的重要地位。

本文将对火力发电设备行业的现状及发展趋势进行分析,并提出相应的建议。

一、火力发电设备行业现状分析1. 市场规模扩大:随着我国经济的快速发展,对电力的需求不断增加,火力发电设备市场规模也在不断扩大。

特别是在乡村和农村地区,火力发电设备的需求更加迫切。

2. 技术水平提高:近年来,随着科技的进步,火力发电设备的技术水平得到了明显提高。

新一代的火力发电设备具有更高的效率、更低的排放以及更可靠的运行。

这为我国煤炭资源的有效利用和环境保护提供了可能。

3. 企业竞争加剧:火力发电设备生产企业数量不断增加,市场竞争也越来越激烈。

国内外企业纷纷进入该行业,使得市场份额不断变化。

除了国内市场竞争,国外企业还通过技术输出和国际合作来争夺市场份额。

4. 环保压力增加:火力发电设备对环境的污染是一个长期以来一直面临的问题。

随着环保意识的提升和政府对环境保护约束力度的加大,火力发电设备企业面临着更大的环保压力。

需要采取有效的措施来降低污染物排放,提高设备的环保性能。

二、火力发电设备行业发展趋势分析1. 趋向大规模化:为了提高发电效率,减少运营成本,火力发电设备行业将逐渐趋向大规模化。

大规模发电厂具有更高的装机容量和更低的发电成本,能够更好地满足日益增长的电力需求。

2. 智能化程度提高:随着智能技术的发展,火力发电设备的智能化程度将进一步提高。

智能化技术可以实现对设备的远程监控和自动化运行,提高设备运行的安全性和可靠性。

3. 低碳经济的发展:在应对气候变化的国际合作框架下,全球范围内正在推动低碳经济发展。

火力发电设备行业也将面临更大的低碳压力,需要通过改进技术和采用清洁能源等方式来减少排放,实现绿色发展。

4. 绿色能源的应用:随着可再生能源的快速发展,绿色能源在火力发电设备行业的应用也逐渐增加。

风力发电和太阳能发电等新能源技术将逐渐与火力发电技术相结合,实现能源的多元化和可持续发展。

超临界发电机组的国家政策与市场前景分析

超临界发电机组的国家政策与市场前景分析

超临界发电机组的国家政策与市场前景分析随着全球能源需求的不断增长和环境保护意识的提高,清洁能源的开发和利用成为了全球各国重要的战略方向之一。

超临界发电机组作为一种高效清洁的发电技术,日益受到各国政府的支持和重视。

本文将对超临界发电机组的国家政策和市场前景进行分析,并探讨其未来发展趋势。

首先,超临界发电机组的国家政策方面,各国政府普遍提出了清洁能源发展的目标和计划。

世界各国纷纷出台鼓励开发清洁能源的政策法规,其中对于超临界发电机组的支持力度也不断增强。

例如,中国国家能源局在《煤炭产业发展“十三五”规划》中提到,将加大超临界和高超临界发电机组的推广力度,提高燃煤发电的效率和环保水平。

美国能源部也制定了相应的政策支持清洁能源技术的发展并鼓励煤电厂升级为超临界发电机组。

其次,超临界发电机组在市场前景方面具有良好的发展潜力。

首先,超临界发电机组较传统的发电技术具有更高的热效率和能源利用率,能够实现更低的耗煤量和排放量。

这符合各国政府对于环境保护的要求,并有助于减少碳排放和气候变化。

其次,超临界发电机组的投资成本相对较低,且技术成熟度高,运行稳定可靠,具有较长的寿命。

这使得超临界发电机组在市场上具有竞争优势,受到投资者的青睐。

再者,随着燃煤发电的方式和技术不断升级,超临界发电机组将成为取而代之的技术,市场需求将进一步增长。

然而,超临界发电机组的市场前景也面临一些挑战和限制因素。

首先,超临界发电机组的技术要求较高,需要大量的投资和专业技术支持。

这对于一些发展中国家和地区来说可能存在一定的难度。

其次,超临界发电机组虽然在煤炭燃烧过程中排放的二氧化碳等有害物质较少,但仍然无法完全避免对环境造成的影响。

与此同时,清洁能源技术的发展也可能引发能源产业结构的调整和人员转岗问题,需要政府和企业共同努力解决。

对于超临界发电机组的未来发展趋势,我们可以预见以下几个方面。

首先,随着环保意识的提高和对炭排放量的限制,超临界发电机组在燃煤发电行业中将逐渐替代传统的发电技术,成为主流技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国•海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 11 火力发电机组超临界化的发展趋势李波(通辽发电总厂)摘要:从世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。

关键词:火力发电机组;超临界1 前言对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。

并最终得出结论。

2 超临界化发展模式的成功实践超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。

提高蒸汽初参数一直是提高这类火电厂效率的主要措施。

当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。

目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。

以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。

超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。

美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。

到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。

根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。

在日本和欧洲则情况则有所不同。

尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。

日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。

此后日本的超临界压力火力发电得到了迅速的发展。

截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh降低到1987年335g/kWh 。

1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。

目前在日本,450MW以上的机组全部采用超临界参数。

从1993年以后已把蒸汽温度提高到566/593℃℃和593/593℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。

原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。

1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。

这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。

300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。

德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。

1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。

德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产12 中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集中国•海南的985MW褐煤机组,使用的蒸汽参数为26MPa/580/600℃℃,由于采用了以超超临界参数为主的多项提高效率的措施,净效率高达45.2%,机组滑压运行,可超负荷 5 %。

最低负荷为50%,电厂大修期最少为4年。

丹麦是热能动力方面很先进的国家,在火电机组上也处于领先地位。

在1998年在Skaebaek 发电厂投产的400MW机组,两次中间再过热,蒸汽参数为29MPa/582/582/582℃℃℃,加以海水直接冷却,额定背压为2.2 kPa,净效率高达49%,是当今世界上效率最高的火电机组。

1999年在Nordjylands 电厂投产的400MW机组,使用同样的蒸汽初参数,效率也高达47%。

丹麦计划2001年在Avedore 电厂投产的375MW机组,采用的参数为30MPa/580/600℃,其净效率也是高达48%。

其他如意大利、荷兰、芬兰等国在采用超临界机组方面也都有成功的经验。

目前世界上已有600多台超临界机组在运行。

3 我国火电结构的超临界化所谓超临界化指的是经过若干年的努力应使超临界机组和超超临界机组在我国火电结构中占据一个举足轻重的比例,而且这些机组的规格、造价和主要性能指标,包括环保性能等应不逊于同类机组的国际水平。

我国的超临界化起步晚,现在已比火电先进国家晚了40多年,但要优化我国的火电结构,这似乎是必经的模式。

优化我国火电结构,发展超临界乃至超超临界火电机组,参数等级和容量等级是需要讨论的一个问题。

关于容量等级的意见比较一致,多认为300MW的容量似乎太小,以600MW为起步容量酌情分成几个容量系列较为适当。

关于参数主要是两种意见,一是从超临界的最低参数起步,即由现在的亚临界参数16.7MPa/538℃/538℃,单纯通过提高蒸汽压力过渡到超临界参数24.2MPa/538℃/538℃;另一种意见则是从更高一些的起点开始我们的国产化研制。

蒸汽初参数与机组效率有着密切的关系。

图1是对二者关系的一种估计。

一般而言,采用亚临界的机组,在计入脱硫与脱硝后的净效率约38%,把亚临界参数过渡到超临界的25MPa/540/540℃℃,净效率最多可提高到40%~42%。

把亚临界机组格局转换为超临界或超超临界机组格局,意味着降低16~32g/kWh的供电煤耗。

这一数值已很可观。

图1 蒸汽初参数与机组效率关系的一种估计迄今水蒸汽循环电厂蒸汽初参数的提高,从本质上讲主要是不断使用改进的金属材料的结果,金属材料的水平与火电厂初参数的水平有着相互依存和相互促进的紧密关系。

通过采用更高的的初参数使供电效率每提高1%降低煤耗约7g/kWh,但要求使用的则是不同的金属材料和不同的部件结构,它们又直接地与设备造价、机组的可用率和负荷适应能力相关联。

国际上八十年代以后,大量铁素体耐热钢开发成功,在580~630℃范围内替代了奥氏体钢,从而使电站的蒸汽参数得以提高,在28~31MPa、566~580℃或24~25MPa、593~600℃的参数范围内具有良好的可靠性。

按当代的技术水平,机组的参数与材料的关系大致如图2所示。

图2机组的参数与材料的关系中国•海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 13该图以25MPa/540/540℃℃一次再过热的某700MW机组为比较标准,其背压是4000 Pa. 这种机组使用的是X20CrMoV12 1 钢,不使用奥氏体。

下一步对主蒸汽区(如过热器联箱,管道,汽轮机)将使用X10CrMoVNb 91(即P91钢),至于过热器管道还要使用奥氏体。

图中事实上也对参数与效率的关系作了估计。

如采用了二次再过热,则效率可再提高约0.8%。

从效率和经济效益的观点,P91钢使用的最佳场合可能是27MPa/580℃。

在日本正在发展一种叫做Nf616的钢,欧洲则是E911,它们均是非奥氏体钢,研究目标是在600℃时的蠕变强度达到120N/mm2,而P91才90N/mm2,所以有时把前者称为120N/mm2钢。

这种钢可用于31MPa/595℃的蒸汽参数,它比奥氏体钢导热性好,热胀率低,在某些场合有希望代替奥氏体钢,而奥氏体钢的极限使用温度则有希望从650℃扩展到700℃。

目前国际上即使是超超临界机组所采用的参数也还是过渡性的。

FLS / BWE公司巳公布了发展下一代超临界机组的计划,蒸汽初温将从现在的580℃提高到610~700℃,相应的压力将从目前的30MPa提高到40MPa,供电效率将达到50~55% 。

建国以来,我国一直在追踪世界先进技术研制国产化火电机组,从6MW开始,经历了几乎所有的参数和容量等级,成绩很大,但道路既不平坦也不笔直,特别是200MW以上大机组的研制,经过了不少曲折。

至今我国制造的200MW、300MW、600MW机组与从国外引进同容量同参数机组还有一些差距。

我国在电站用钢方面还相对落后,表现为规格不全,性能不高且进展缓慢。

这种现状使我们对于超临界参数的发展一直持非常谨慎的态度。

在新的世纪里,可持续发展战略已成为全世界的共识,它对火电生产不仅要求减排硫氧化物和氮氧化物,而且对二氧化碳和其他温室气体的排放总量也加强了限制,这是通过京都议定书的形成变成了世界公众和各国政要所关注的重大问题。

我国将是温室气体排放的头等大国,排放量的每一变化都将受到世界高度重视。

4 结论超临界技术在优化火电结构方面有特殊作用。

可以断言,采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一。

超临界化是火电的一种发展模式,且已被证明是改造和优化火电结构的一种成功的模式。

所以无论从哪个角度看,我厂三期建成一台超临界机组都符合国家发展的要求。

相关文档
最新文档