大学文科数学——极限知识分享
各类极限知识点总结

各类极限知识点总结一、函数的极限1. 定义:给定函数f(x),当x趋近于某一点a时,如果函数值f(x)无论怎么接近a都会趋于一个确定的值L,则称L为函数f(x)当x趋于a时的极限,记作lim(x→a)f(x)=L。
通常情况下,我们也会将x趋近于a的这一过程称为x趋近于a时的极限,即x→a。
2. 性质:函数的极限有一些基本的性质,这些性质有助于我们计算和理解函数的极限。
比如极限的唯一性、极限的局部有界性、函数的连续性等。
3. 一些特殊函数的极限:(1)常数函数的极限;(2)幂函数的极限;(3)指数函数和对数函数的极限;(4)三角函数的极限;(5)复合函数的极限等。
二、无穷大和无穷小1. 定义:在极限的理论中,无穷大和无穷小是两个非常重要的概念。
当x趋近于某一点a 时,如果函数值f(x)可以任意增大,并且没有上界,则称f(x)是当x趋近于a时的无穷大。
反之,如果函数值f(x)可以任意接近于0,并且没有下界,则称f(x)是当x趋近于a时的无穷小。
2. 性质:无穷大和无穷小也有一些基本的性质,包括无穷大和无穷小的性质、无穷大与有界性的关系、无穷小的运算规律等。
3. 一些特殊函数的无穷大和无穷小:(1)常数函数的无穷大和无穷小;(2)幂函数的无穷大和无穷小;(3)指数函数和对数函数的无穷大和无穷小;(4)三角函数的无穷大和无穷小;(5)复合函数的无穷大和无穷小等。
三、极限的运算规律1. 四则运算的极限性质:加减乘除都有着相应的极限运算规律。
比如两个函数的极限之和等于它们的极限之和、两个函数的极限之积等于它们的极限之积等。
2. 复合函数的极限性质:当函数与另一个函数进行复合时,它们的极限也满足一定的规律。
比如复合函数的极限等于内函数的极限等。
3. 一些特殊函数的极限运算:(1)三角函数的加减角极限性质;(2)指数函数和对数函数的极限性质;(3)特殊组合函数的极限性质等。
四、常见的极限形式1. 0/0型:在计算函数的极限时,经常会遇到0/0型的不定式形式。
大一高数函数极限知识点

大一高数函数极限知识点函数极限是高等数学中的重要概念之一,它是分析函数性质和求解各种数学问题的基础。
在大一高数课程中,函数极限是必修内容,下面将介绍几个常见的函数极限知识点。
一、基本极限公式在求解函数极限的过程中,常用的基本极限公式有以下几个:1. 当n趋向于无穷大时,$\lim_{n \to \infty}\frac{1}{n^p} = 0$,其中p是大于0的实数。
2. 当x趋向于无穷大时,$\lim_{x \to \infty}\frac{1}{x^p} = 0$,其中p是大于0的实数。
3. $\lim_{x \to 0}\frac{sinx}{x} = 1$。
4. $\lim_{x \to \infty}(1+\frac{1}{x})^x = e$,其中e是自然对数的底数。
这些基本极限公式在求解各种函数极限时非常常用,熟练掌握它们可以简化计算过程。
二、函数极限的性质函数极限具有一些重要的性质,下面介绍两个常用的性质。
1. 函数极限的唯一性:如果$\lim_{x \to x_0}f(x) = A$,且$\lim_{x \to x_0}f(x) = B$,那么A=B。
即函数在某一点的极限存在时,它的极限值是唯一确定的。
2. 函数极限的四则运算法则:设$\lim_{x \to x_0}f(x) = A$,$\lim_{x \to x_0}g(x) = B$,其中A、B都存在,则有以下四则运算法则:(1)$\lim_{x \to x_0}[f(x) \pm g(x)] = A \pm B$(2)$\lim_{x \to x_0}[f(x) \cdot g(x)] = A \cdot B$(3)$\lim_{x \to x_0}\frac{f(x)}{g(x)} = \frac{A}{B}$,其中B不等于0。
这些性质在计算复杂函数极限时非常有用,可以简化计算步骤。
三、函数极限的求解方法对于一些特殊函数,我们需要使用一些特殊的求解方法来计算其极限。
大一高等数学知识点极限

大一高等数学知识点极限极限是大一高等数学中重要的概念和工具之一,它在微积分和数学分析中经常被应用。
在这篇文章中,我们将讨论大一高等数学中的一些重要的极限知识点。
1. 数列极限在数列极限中,我们研究的是数列中的元素逐渐趋向于某个确定的值。
数列极限可以写作:limn→∞(an) = L,其中an为数列中的第n个元素,L为极限值。
在求解数列极限时,我们可以使用数列的性质或者根据数列的定义进行分析。
例如,对于等差数列an= a1 + (n-1)d,其中a1为首项,d为公差,我们可以通过观察数列的特点得出极限值为L = a1。
2. 函数极限函数极限是研究函数在某一点或无穷远处的趋势。
函数极限可以分为左极限和右极限,分别表示函数在该点左侧和右侧的趋势。
函数极限可以写作:limx→a f(x) = L,表示当自变量x趋近于a时,函数f(x)的值趋近于L。
计算函数极限时,我们可以利用极限的性质,如极限的四则运算法则、复合函数的极限等。
3. 极限的性质极限有着一些基本的性质,这些性质为我们求解极限提供了一些便利。
首先,极限是唯一的,即函数或数列的极限只可能有一个值。
其次,如果一个函数在某一点的左右极限存在且相等,那么该函数在该点处的极限也存在,并等于左右极限的值。
另外,极限具有保序性,即如果数列或函数在某一点处的极限存在,那么它们将保持相对大小,即保持极限过程中的大小关系。
4. 极限的应用极限在数学中有着广泛的应用。
在微积分中,通过研究函数的极限,我们可以推导出导数和积分的定义,并进一步应用于解决实际问题。
另外,极限也可以用于求解方程的根,例如通过Newton-Raphson迭代法求解非线性方程的根。
在数理统计和概率论中,极限也被频繁使用,如大数定律和中心极限定理等。
综上所述,大一高等数学中的极限是一个重要的概念,它广泛应用于微积分、数学分析以及其他数学领域。
通过深入理解和掌握极限的概念、性质和应用,我们可以更好地解决数学问题,并推动数学的发展与应用。
数学极限知识点总结

数学极限知识点总结一、极限的概念极限是一个重要的数学概念,它描述了一个函数在自变量趋近某个特定值时的行为。
具体地说,当自变量x在某一点a附近不断靠近,同时函数f(x)的取值也逐渐接近某个特定的数L时,我们就说函数f(x)在自变量x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以用符号表示为:对于任意给定的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε。
在这个定义中,ε和δ分别表示"误差"和"变化范围",而当自变量x距离a足够近时,函数f(x)的取值与极限L的差异也会变得足够小。
换句话说,极限描述了函数在某点附近的稳定性和趋势。
在实际问题中,极限的概念常常用于描述随着自变量的变化,函数取值的趋势。
比如,在物理学中,我们可以用极限来描述速度、加速度、流体的流动等随着时间或空间的变化而变化的量。
而在工程中,极限也可以描述材料的强度、电路的稳定性等。
因此,极限是数学中一个十分重要、普遍且有广泛应用的概念。
二、极限的性质1.极限的唯一性如果一个函数在某点附近有极限,那么这个极限是唯一的。
换句话说,对于一个自变量x趋近于a的函数f(x),其极限只能有一个确定的值。
这个性质使得我们可以不用担心在计算函数的极限时会出现多个可能的结果,从而保证了极限的一致性和确定性。
2.极限的局部保号性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则当L>0时,存在a的某个邻域,使得邻域内的函数值都大于0;当L<0时,存在a的某个邻域,使得邻域内的函数值都小于0。
这个性质表明了在极限存在的情况下,函数在足够靠近极限点的地方都具有一致的正负性。
3.极限的局部有界性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则存在一个正数M,使得a的某个邻域内函数的取值都在区间(-M,M)之间。
极限概念知识点总结

极限概念知识点总结一、极限的基本概念1.1 极限的引入极限的概念最早是在微积分的发展过程中被引入的。
当人们试图解决一些问题时,发现需要对一些数列、函数、变量等的趋势进行描述和分析。
例如,当我们用一个数列的前几项来逼近某个数时,我们希望能够明确当数列的项数趋于无穷时,该数列是否真的能够逼近这个数;再如,当我们试图分析一个函数在某一点的性质时,我们也会遇到极限的概念。
因此,为了能够更加准确地描述数学对象在某个方面的性质,人们引入了极限的概念。
1.2 极限的定义数列的极限是极限的最基本形式之一。
对于一个数列{an},当n趋于无穷时,如果an可以无限地地接近某个确定的数a,则称a为数列{an}的极限,记作lim(n→∞)an=a。
这个定义也可以推广到函数的极限、变量的极限等其他情形,如对于函数f(x),当x趋于某一点c时,如果f(x)可以无限地地接近某个确定的数L,则称L为函数f(x)当x→c时的极限,记作lim(x→c)f(x)=L。
这就是极限的基本定义形式。
1.3 极限的性质极限具有一系列重要的性质,在实际应用中,这些性质被广泛地用于求解各种问题。
以下是一些极限的基本性质:1)唯一性:如果数列an有极限a,则这个极限是唯一的。
也就是说,一个数列只能有一个极限。
类似地,函数f(x)当x→c时的极限也是唯一的。
2)保号性:如果数列an的极限a>0(或a<0),则对于充分大的n,an>0(或an<0)。
3)夹逼准则:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
这个性质在确定一些数列的极限时常常会被用到。
4)四则运算法则:如果lim(n→∞)an=a,lim(n→∞)bn=b,那么有lim(n→∞)(an±bn)=a±b,lim(n→∞)(an×bn)=a×b,lim(n→∞)(an÷bn)=a÷b(b≠0)。
极限基础知识点总结

极限基础知识点总结一、极限的概念1.1 极限的概念极限是微积分中的基本概念,它描述了函数在某一点附近的行为。
在数学中,极限通常表示某一数列或函数在自变量取某一值时,与另一给定值(通常是无穷大或无穷小)的距离在很小的范围内。
1.2 极限的符号表示当趋近的过程是无穷远时,称为无穷极限。
常用符号表示:1.3 极限的定义数列极限的定义:对于任意给定的正数ε,存在正整数N,当n>N时, a_n与特定数a的距离小于ε,即 |a_n - a|<ε。
函数在x=a处的极限定义:若对于任意ε>0,存在δ>0,当0< |x-a|<δ时, |f(x)-L|<ε。
1.4 极限的性质(1)唯一性:若极限存在,则唯一。
(2)局部有界性:若函数在某点处有极限,则函数在该点的去心邻域内有界。
(3)局部保号性:若函数在某一点有极限,则该点的去心邻域内函数与该点的极限保持同号。
二、极限的求解2.1 函数在无穷远处的极限当x趋于无穷大时,通常分析函数的渐近行为,例如当x趋近无穷大时,若函数趋近某一有限值,则说明函数有水平渐近线;若函数趋近无穷大,则说明函数有垂直渐近线。
2.2 无穷小的性质与判定无穷小在极限的计算中占有重要地位,一些基本的无穷小性质与无穷小的判定方法:2.3 函数的极限存在性判定对于一些特殊类型的函数,判断其在某一点是否存在极限,例如当x趋近某一值时,函数的变化趋势是否稳定,是否可以利用夹逼定理进行求解等。
2.4 极限存在性的定理弦截定理、单调有界定理、闭区间上连续函数的性质等有助于判断函数在某一点的极限是否存在。
三、极限的计算方法3.1 函数极限的基本运算法则函数极限的基本运算法则包括极限的四则运算法则、复合函数的极限、函数乘积与函数商的极限等。
3.2 极限的计算方法极限的计算方法包括利用函数的性质、夹逼定理、洛必达法则、泰勒展开等方法。
3.3 极限的分析对于一些复杂函数极限的计算问题,需要先进行极限的分析,例如观察函数的泰勒级数展开式,取其前几项进行计算等。
有关极限知识点总结

有关极限知识点总结一、极限的概念1.1 极限的定义在微积分中,我们通常用极限来描述函数在某一点附近的行为。
如果一个函数f(x)在x趋向于a的过程中,当x足够接近a时,f(x)的取值也趋向于一个确定的常数L,那么我们就说f(x)在x趋向于a时的极限存在,记作lim(x→a)f(x)=L。
这个定义还可以用符号ε和δ来表达,即对任意给定的ε>0,都存在一个δ>0,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立。
1.2 极限的几何意义极限可以理解为函数在某一点附近的局部平均值。
当x趋向于a时,函数f(x)在a点的极限就是当x趋近a时,f(x)对应的y值所形成的一个集合,而这个集合的平均值即为该点的极限值。
这也可以理解为函数在某一点附近的近似值,通过这个近似值,我们可以更好地了解函数在该点的行为。
1.3 极限的存在性极限并不是所有函数都存在的,有些函数在某些点处可能不存在极限。
一般来说,函数在某一点处的极限是否存在取决于该点的邻域内函数的性质和变化规律。
我们需要通过一些定理和性质来判断函数在某一点的极限是否存在。
二、极限的性质2.1 极限的唯一性如果函数f(x)在x趋向于a时的极限存在且是唯一的,那么这个极限值是确定的,记作lim(x→a)f(x)=L。
这说明函数在某一点的极限只可能有一个值,如果存在多个值,则说明函数在该点的极限不存在。
2.2 极限的局部性极限具有局部性的特点,即函数在某一点的极限与该点的邻域内的函数值相关。
当x趋向于a时,函数f(x)的极限值只与a点邻域内的函数值有关,与该点的邻域外的函数值无关。
这也说明了极限可以通过邻域内的近似值来确定。
2.3 极限的分段性如果一个函数可以分成若干个区间,每个区间内函数的极限存在且是确定的,那么这个函数在整个定义域内的极限也是存在的。
这说明了极限的存在性与区间的分割是有密切关系的,通过区间的极限可以得到整个函数的极限。
极限公式知识点总结

极限公式知识点总结一、极限的定义在微积分中,对于一个函数f(x),当x趋于某一个特定的值a时,可以用极限的概念来描述。
具体的定义如下:若对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立,那么就称函数f(x)当x趋于a时的极限为L,记作lim┬(x→a) f(x) = L。
这个定义描述了当自变量x趋于a时,函数f(x)的取值趋于L。
其中ε为任意给定的正数,δ为与ε对应的正数。
当|x-a|小于δ时,|f(x)-L|也小于ε。
二、极限的性质极限具有一些基本的性质,这些性质可以帮助我们更好地理解极限概念,也可以用于极限的计算中。
下面是极限的一些基本性质:1. 极限的唯一性:若lim┬(x→a) f(x)存在,则极限唯一。
2. 极限的局部有界性:若lim┬(x→a) f(x) = L,则存在邻域U(a, δ),使得f(x)在U(a, δ)上有界。
3. 极限的局部保号性:若lim┬(x→a) f(x) = L,且L>0(或L<0),则存在邻域U(a, δ),使得f(x)在U(a, δ)上恒大于0(或小于0)。
这些性质对于理解极限以及进行极限的计算都具有重要的意义,可以帮助我们更好地掌握极限的概念。
三、极限的计算方法在实际应用中,需要对极限进行计算,以便求解问题或证明定理。
对于一些常见的函数,可以通过一些特定的计算方法来求解极限。
下面是一些常见的极限计算方法:1. 代入法:对于一些简单的函数,可以直接将自变量代入函数中,从而得到极限的值。
例如lim┬(x→2) (x²-4) = 2²-4 = 0。
2. 夹逼准则:当极限存在时,如果存在另外两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x)对于x∈(a-d, a+d)成立,并且l im┬(x→a) g(x) = lim┬(x→a) h(x) = L,则有lim┬(x→a) f(x) = L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记作
lim
n
an
a,或an
a(n
).
也称该数列收敛.
若该数列不以任何常数为极限,则称
这个数列发散.
这个定义是在运动观点的基础上凭借几 何图像,直觉用自然语言作出的定性描述.
a2n
–1
0
a2n1
x
1
(1){(1)n1 }的极限不存在;
因为当n∞ 时,{(1)n1 }
1 lim 0 n 2n
第四天剩的长度为:
1 24
一尺之棰,日取 其半,万世不竭.
这样可以看出第n
天剩的长度为:1 2n
于是得到了数列:
111 1
, , ,L 248
, 2n L
当n 越来越大时,棰越来越短,逐渐趋于0.
再看一下整个过程.
举例:
① 1, 1,1, 1,L , (1)n1 ,L
这个数列的通项是:
x2n
an 1
注: ④中各项均为相同的数(常数) 1,我们 把这样的数列称作常数列.因为不论 n 取 何值,每项都是1,因此该数列的极限是 1.
数列有以下几种变化趋势:
有一定的 无限接近常数a
收敛
变化趋势 无限增大
数列的变化
无限减少
定向发散
趋势
无一定的变化趋势 不定向发散
1 2
,
1 4
,2L,
4,1,261,n, 81,L,1L,
一列数:
10,1,0.1,0.01,…,102-n,… 称为数列. 102-n为通项. 以下均为数列 :
111 1
, , ,L 248
, 2n
,L
.
1,1, 1,L ,(1)n ,L .
2, 4, 6,L , 2n,《庄子·天下篇》 中有“截丈问题”的 精彩论述:
反复地取 1和-1, 没有明显 的变化趋势, 是发散的.
(2){
1 2n
}的极限是0; 1
因为当n∞ 近于常数 0 .
时,{
2n
}趋
… an … a3
a2
••••• •••••
01 1
1
a1 1x
2n 8
4
2
③ 2, 4, 6, …, 2n, … 这个数列的通项是: an 2n
④ 1, 1, …,1,…, 1,… 这个数列的通项是:
•
–1
0
x2n1
•
1
an (1)n1
x
②
11
1
, ,L 24
, 2n
,L
… xn … x3
x2
••••• •••••
011
1
2n 8
4
这个数列的通项是:
x1
1 an 2n
1x
2
数列极限的定义(定性描述):
如果当n无限增大时,数列{an }的通项 无限趋近于常数a,则称数列以a为极限,
A
B
B
B1
B1 B2
让我们再看一看乌龟所走过的路程:设阿基里斯的速 度是乌龟的十倍,龟在前面10米.当阿基里斯跑了10米 时,龟已前进了1米;当阿基里斯再追1米时,龟又前 进了0.1米,阿再追0.1米,龟又进了0.01米…..把阿基里 斯追赶乌龟的距离列出,便得到一列数:
10,1,0.1,0.01,…,102-n,… 这称为数列,an =102-n 为通项,数列常简记为 { an }. 所以阿基里斯追上乌龟所必须跑过的路程为
一尺之棰,日取 其半,万世不竭.
初始长度为:1
截丈问题: 一尺之棰,日取 其半,万世不竭.
第一天剩的长度为:
1 2
截丈问题: 一尺之棰,日取 其半,万世不竭.
第二天剩的长度为:
1 22
截丈问题: 一尺之棰,日取 其半,万世不竭.
第三天剩的长度为:
1 23
截丈问题: 一尺之棰,日取 其半,万世不竭.
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
当 n 无限增大时, xn是否无限接近于某一确
定的数值?如果是,如何确定?
•
当
n
无限增大时,
an
1
(1)n1 n
无限接近于 1.
“无限接近”意味着什么?如何用数学语言刻画 它.
Q
an
1
(1)n1
1 n
1 n
,12,Ln,L, (1)n1
,L
下面我们直观地看一下 极限的定义
lim
n
an
a
a1
a2
a3
a5 a a4
n越大,an a 越小 an a 不等式 an a 刻画了an与a的无限接近.
在数学中一定要力避几何直观可能带来的错 误,因此作为微积分逻辑演绎基础的极限概念, 必须将凭借直观产生的定性描述转化为用形式 化的数学语言表达的,超现实原型的理想化的 定量描述.
阿基里斯追龟
一位古希腊学者芝诺(Zenon,约 公元前496 — 约前429)曾提出一个著 名的“追龟”诡辩题。大家知道,乌龟 素以动作迟缓著称,阿基里斯则是古希 腊传说中的英雄和擅长跑步的神仙.芝 诺断言:阿基里斯与龟赛跑,将永远追 不上乌龟!
假定阿基里斯现在A处,乌龟现在B处.为了赶上乌龟 ,阿基里斯先跑到乌龟的出发点B,当他到达B点时, 乌龟已前进到B1点;当他到达B1点时,乌龟又已前进到 B2点,如此等等。当阿基里斯到达乌龟前次到达过的地 方,乌龟已又向前爬动了一段距离.因此,阿基里斯是 永远追不上乌龟的!
给定 1 , 100
由1 n
1, 100
只要 n
100时,
有
an
1
1, 100
给定 1 , 1000
S 10 1 1 1 L a1 10 100 (米).
10 100
1q 1 1 9
10
所以,阿基里斯只要坚持跑到11.2米的路程就可以
追上乌龟!
然而芝诺将这样一个直观上都不会产生怀
疑的问题与无限纠缠在一起,以至于在相当
长时间内不得不把“无限”排除在数学之外.
直到19世纪,当反应变量无限变化极限理论 建立之后,才可用极限理论回答芝诺的挑战.
第二章 微积分的直接基础——极限
第一节 数列极限
主要内容: 数列及数列极限的概念
早在两千多年前,人们从生活、生产实际中产生了朴 素的极限思想,公元前3世纪,我国的庄子就有“一尺 之棰,日取其半,万世不竭”的名言.17世纪上半叶法国 数学家笛卡儿(Descartes)创建解析几何之后,变量就 进入了数学.随之牛顿(Newton、英国)和莱布尼茨 (Leibniz、德国)集众多数学家之大成,各自独立地发 明了微积分,被誉为数学史上划时代的里程碑.微积分诞 生不久,便在许多学科中得到广泛应用,大大推动那个 时代科学技术的发展和社会进步. 经过长达两个世纪的 自身理论不断完善的过程,才建立了极限理论.可见“极 限”是微积分的基础.