陕西省西工大附中中考数学二模试卷(解析版) 新人教版

合集下载

2022年陕西省西安市碑林区西北工大附中中考数学二模试卷(有答案)

2022年陕西省西安市碑林区西北工大附中中考数学二模试卷(有答案)

2022年陕西省西安市碑林区西北工大附中中考数学二模试卷一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的)1.计算1﹣(﹣1)得到的结果是()A.﹣2B.﹣1C.1D.22.把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱3.下列运算正确的是()A.(a5)2=a7B.x4•x4=x8C.x6÷x2=x3D.(3a2)2=6a4 4.如图,将一副三角尺按图中所示位置摆放,点F在AC上,∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DFF=45°,AB∥DE.则∠AFD的度数是()A.25°B.20°C.15°D.10°5.如图,在矩形ABCO中,A(3,0),C(0,﹣2),若正比例函数y=kx的图象经过点B,则k的取值为()A.﹣B.﹣C.D.6.如图,BD是⊙O的直径,弦AC交BD于点G.连接OC,若∠COD=126°,,则∠AGB的度数为()A.98°B.103°C.108°D.113°7.如图,在菱形ABCD中,AB=8,∠A=120°,过菱形ABCD的对称中心O作EG⊥CD 于点G,交AB于点E,作HF⊥BC于点F,交AD干点H,连接EH,则EH的长度为()A.5B.4C.3D.28.若二次函数y=ax2+bx+c的图象过点(﹣1,0),对称轴为直线x=m.c>2a>0,则m 的取值范围是()A.m<﹣2B.m<﹣1.5C.m<0D.m<1二、填空题(共5小题,每小题3分,计15分)9.在0,,π,中是无理数的是.10.如图,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=度.11.国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是.12.若反比例函数y=(x>0)与y=(x<0)的图象与函数y=kx的图象相交于点A(2,m)和点B,则点B的坐标为.13.如图,Rt△ACB中,∠BAC=90°,∠B=30°,AC=9,正△DEF的顶点D、E、F 分别在边BC、AB、AC上,若CD=8,则△DEF的周长为.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:.15.(5分)解不等式组:.16.(5分)化简:(x+1﹣)÷.17.(5分)如图,已知△ABC,过点A的直线ED∥BC.请用尺规作图法,在直线ED上求作一点P,使∠PBC=2∠PAB(不写作法,保留作图痕迹)18.(5分)如图,点E是矩形ABCD外一点,连接BE、AE、DE、CE,∠CDE=∠DCE.求证:∠BAE=∠ABE.19.(5分)某公司计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/页,B种彩页制版费200元/页,共计2400元.(注:彩页制版费与印数无关)(1)求每本宣传册中A、B两种彩页各有多少页.(2)据了解,A种彩页印刷费2.5元/页,B种彩页印刷费1.5元/页,公司准备印制这批宣传册1500本,求印制这批宣传册制版费与印刷费的总和是多少元.20.(5分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)随机抽取一张卡片,“A志感者被选中”的概率是.(2)用列表法或画树状图法求抽签活动中A,B两名志愿者被同时选中的概率.21.(6分)在一次测量物体高度的数学实践活动中,张红武老师从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在路灯B处利用测倾器测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,在点D处利用同一个测倾器测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米(AB=CD=1.2米),相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)22.(7分)为了解某市人口年龄结构情况,对该市的人口数据进行随机抽样分析,绘制了尚不完整的统计图、表:类别A B C D 年龄(t岁)0≤t<1515≤t<6060≤t<65t≥65人数(万人) 4.711.6m 2.7根据以止信息解答下列问题:(1)本次抽样调查,共调查了万人;(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;(3)该市现有人口约500万人,请根据此次抽查结果,试估计该市现有60岁及60岁以上的人口数量.23.(7分)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4k的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)求付款金额y与购买苹果的重量x的表达式;(2)某天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,小明如果要购买10kg苹果,请问他在哪个超市购买更划算?24.(8分)如图,AB是⊙O的直径,AB=6,AC切⊙O于点A,AC=4,连接CO交⊙O 于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AF.(1)求证:AF∥BE;(2)求CE的长.25.(8分)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.26.问题提出(1)如图①,在△ABC中,∠BAC=120°,AB=3,AC=4,求△ABC的面积.问题解决(2)如图②,某公园准备在圆形场地内设计一个四边形娱乐区,图中四边形ABCD为娱乐区的示意图,其中,AC是⊙O的直径,AC=60米,点E为直径AC上一点,且OE=15米,BD是过点E的一条弦为了给广大市民提供更大范围的娱乐区,试确定娱乐区四边形ABCD的面积是否存在最大值?若存在,求出它的最大面积,若不存在,请说明理由.2022年陕西省西安市碑林区西北工大附中中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,计24分。

陕西省西工大附中2013年中考数学二模试卷(解析版) 新人教版

陕西省西工大附中2013年中考数学二模试卷(解析版) 新人教版

某某省西工大附中2013年中考数学二模试卷一、选择题(共10小题,每小题3分,计30分)1.(3分)5月18日某地的最低气温是11℃,最高气温是27℃,下面用数轴表示这一天气温的变化X围正确的是()A.B.C.D.考点:在数轴上表示不等式的解集分析:最低气温是11℃,则气温一定大于或等于11℃,最高气温是27℃则气温一定小于或定于27℃.解答:解:最低气温与最高气温也是这一天的实时温度,所以在数轴上两端应该为实心圆点,而不是空心圆点,其它的温度应该是它们的中间温度.故选A.点评:本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.2.(3分)下列计算正确的是()A.a+2a=3a2B.a2•a3=a6C.a3÷a=a2D.(﹣2a2)3=2a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:对各选项分别进行合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方等运算,选出正确选项即可.解答:解:A、a+2a=3a,该式计算错误,故本选项错误;B、a2•a3=a5,该式计算错误,故本选项错误;C、a3÷a=a2,该式计算正确,故本选项正确;D、(﹣2a2)3=﹣8a6,该式计算错误,故本选项错误;故选C.点评:本题考查了合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方等知识,属于基础题,掌握各知识点运算法则是解题关键.3.(3分)三角形的外心是三角形外接圆的圆心,它也是三角形()A.三条内角平分线的交点B.三边垂直平分线的交点C.三边中线的交点D.三条高线的交点考点:三角形的外接圆与外心分析:根据垂直平分线上的点到线段的两个端点的距离相等得出三角形三边垂直平分线的交点到三角形的三个顶点的距离相等,即可得出答案.解答:解:∵三角形的外心是三角形外接圆的圆心,是三角形三边垂直平分线的交点,∴选项A、C、D错误,选项B正确;故选B.点评:本题考查了三角形的外接圆与外心,线段垂直平分线的性质的应用.4.(3分)某班团支部统计了该班甲、乙、丙、丁四名同学在5月份“书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间与方差s2如表所示,你认为表现最好的是()甲乙丙丁S2A.甲B.乙C.丙D.丁考点:方差;算术平均数分析:根据方差和平均数的意义进行分析.先通过平均数进行比较,平均数越大越好;再比较方差,方差越小越稳定.解答:解:∵乙、丙的平均数大于甲、丁的平均数,故乙、丙表现较好;又∵丙的方差小于乙的方差,则丙的表现比较稳定,所以丙的表现最好.故选C.点评:本题考查了方差和算术平均数,理解它们的意义是解题的关键.5.(3分)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个考点:由三视图判断几何体分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.解答:解:由俯视图易得最底层有5个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是6个或7个或8个.故小立方体的个数不可能是9.故选D.点评:查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.6.(3分)(2012•枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x(1+30%)×80%=2080B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%考点:由实际问题抽象出一元一次方程分析:设该电器的成本价为x元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.解答:解:设该电器的成本价为x元,x(1+30%)×80%=2080.故选A.点评:本题考查理解题意的能力,以售价作为等量关系列方程求解.7.(3分)(2004•某某)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°考点:菱形的性质分析:连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.解答:解:如图,连接BF,在△BCF和△DCF 中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.点评:本题考查全等三角形的判定条件,菱形的性质,垂直平分线的性质.8.(3分)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:正比例函数的性质分析:根据正比例函数的性质可得﹣3m>0,解不等式可得m的取值X围,再根据各象限内点的坐标符号可得答案.解答:解:∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得:m<0,∴P(m,5)在第二象限,故选:B.点评:此题主要考查了正比例函数的性质,以及各象限内点的坐标符号,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y 随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.9.(3分)量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第25秒时,点E在量角器上对应的读数是()度.A.25 B.50 C.75 D.100考点:圆周角定理.分析:首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.解答:解:连接OE,∵射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,∴第25秒时,∠ACE=2°×25=50°,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA=2×50°=100°.故选D.点评:此题考查了圆周角定理.此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.10.(3分)对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①③B.①④C.②③D.②④考点:二次函数的性质专题:压轴题.分析:根据△=4m2﹣4×(﹣3)=4m2+12>0,根据△的意义对①进行判断;由a=1>0得抛物线开口向上,抛物线对称轴为直线x=﹣=m,由于当x≤1时y随x的增大而减小,则直线x=1在直线x=m的左侧,于是可对②进行判断;配方得到y=(x﹣m)2﹣m2﹣3,则抛物线向左平移3个单位的解析式为y=(x﹣m+3)2﹣m2﹣3,把原点坐标代入计算出m的值,则可对③进行判断;根据抛物线的对称性由当x=4时的函数值与x=2时的函数值相等得到抛物线的对称轴为直线x=3,则m=3,所以抛物线解析式为y=x2﹣6x﹣3,然后计算x=6时的函数值,则可对④进行判断.解解:∵△=4m2﹣4×(﹣3)=4m2+12>0,∴抛物线与x轴有两个公共点,所以①正确;答:∵a=1>0,∴抛物线开口向上,抛物线对称轴为直线x=﹣=m,当在对称轴左侧时,y随x的增大而减小,而当x≤1时y随x的增大而减小,∴m≥1,所以②错误;∵y=(x﹣m)2﹣m2﹣3,∴抛物线向左平移3个单位的解析式为y=(x﹣m+3)2﹣m2﹣3,把(0,O)代入得(m﹣3)2﹣m2﹣3=0,解得m=1,所以③错误;∵当x=4时的函数值与x=2时的函数值相等,∴抛物线的对称轴为直线x=3,则x=m=3,∴抛物线解析式为y=x2﹣6x﹣3,当x=6时的函数值为﹣3,所以④正确.故选B.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣,抛物线顶点坐标为(﹣,);抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共6小题,每小题3分,计18分)11.(3分)计算:= 1 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=++×1﹣=1.故答案为1.点本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的评:关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(3分)(2012•某某)分解因式:ax2﹣4ax+4a= a(x﹣2)2.考点:提公因式法与公式法的综合运用分析:先提取公因式a,再利用完全平方公式进行二次分解.解答:解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.13.(3分)(2012•某某)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 2 .考点:旋转的性质;等边三角形的性质分析:由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.解答:解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A 旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.点评:此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.14.(3分)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.已知一个圆锥的底面半径为3,母线长为10,则这个圆锥的侧面积为30π.B .用科学记算器计算: 2.64 .(精确到0.01)考点:圆锥的计算;计算器—三角函数分析:A、首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解;B、首先代入和cos32°的近似值,然后进行计算即可.解答:解:A、底面周长是:6π,则圆锥的侧面积是:×6π×10=30π,故答案是:30π;B、cos32°≈3.162×0.848≈2.64,故答案是:2.64.点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(3分)(2010•小店区)如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.考点:反比例函数系数k的几何意义专题:压轴题;数形结合;转化思想.分析:由于同底等高的两个三角形面积相等,所以△AOB 的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.解答:\解:设反比例函数的解析式为.∵△AOB的面积=△ABP 的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.点评:本题主要考查了待定系数法求反比例函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.16.(3分)如图,在正方形ABCD中,∠DAC的平分线交DC于点E,点P、Q分别是AD 和AE 上的动点,若DQ+PQ的最小值是2,则正方形ABCD的周长为.考点:轴对称-最短路线问题;正方形的性质专题:压轴题.分析:过D作DF⊥AE于F,延长DF交AC于D′,过D′作D′P′⊥AD于P′,D′P′交AE 于Q′.由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值,再根据等腰直角三角形的性质求出正方形的边长,则周长=4×边长.解答:解:过D作DF⊥AE于F,延长DF交AC于D′,过D′作D′P′⊥AD于P′,D′P′交AE于Q′.∵DD′⊥AE于F,∴∠AFD=∠AFD′=90°,∵∠DAC的平分线交DC于点E,∴∠DAE=∠CAE,∵在△DAF与△D′AF中,,∴△DAF≌△D′AF(ASA),∴D′是D关于AE的对称点,AD=AD′,∴D′P′即为DQ+PQ 的最小值.∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′=2,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=8,∴AD′=2,AD=AD′=2∴正方形ABCD的周长=4AD=8.故答案为8.本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键.点评:三、解答题(共9小题,计72分)17.(5分)先化简,再求值:,其中.分式的化简求值考点:专计算题.题:分原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于析:乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•=,当a=时,原式==﹣﹣1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(6分)(2012•某某)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E 是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.考点:全等三角形的判定与性质专题:压轴题.分析:(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.解答:解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:∵在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD,∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.点评:本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD 是关键.19.(7分)(2012•泰兴市一模)国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了500 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有12000 人;(3)根据统计结果,请你简单谈谈自己的看法.考扇形统计图;用样本估计总体;条形统计图点:专题:压轴题.分析:(1)扇形统计图中缺少的是第三项:三姿良好,所占的百分比是1减去其它各项的百分比;条形统计图中:求得三姿良好的人数即可表示;(2)根据坐姿不良的是100人,占20%,即可求得抽查的人数;利用10万乘以三姿良好的比例即可求解;(3)根据统计表即可说明即可,答案唯一.解答:解:(1)扇形图中填:三姿良好12%,条形统计图,如图所示(2)500,12000;(3)答案不唯一,如中学生应该坚持锻炼身体,努力纠正坐姿、站姿、走姿中的不良习惯,促进身心健康发育.点评:本题主要考查扇形统计图的画法及用样本估计总体等知识.根据扇形统计图可以得到百分比,根据条形统计图可以得到每组的人数.20.(8分)如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E 、D、C、B四点在平行于斑马线的同一直线上)(参考数据:,,)考点:解直角三角形的应用分析:由∠FAE=15°,∠FAD=30°可知∠EAD=15°,根据AF∥BE可知∠AED=∠FAE=15°,∠ADB=∠FAD=30°,设AB=x,则在Rt△AEB中,EB=,在Rt△ADB中,BD=,再把两式联立即可求出CD的值.解答:解:∵∠FAE=15°,∠FAD=30°,∴∠EAD=15°,∵AF∥BE,∴∠AED=∠FAE=15°,∠ADB=∠FAD=30°,设AB=x,则在Rt△AEB中,EB==,∵ED=4,ED+BD=EB,∴BD=﹣4,在Rt△ADB中,BD==,∴﹣4=,即(﹣)x=4,解得x=2,∴BD==2,∵BD=CD+BC=CD+0.8,∴CD=2﹣0.8≈2×1.732﹣0.8≈2.7>2,故符合标准.答:该旅游车停车符合规定的安全标准.点评:本题考查的是解直角三角形的应用,根据题意找出符合条件的直角三角形,利用直角三角形的性质进行解答是解答本题的关键.21.(8分)(2012•郯城县一模)A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y (千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.考点:一次函数的应用专题:压轴题.分析:(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.解答:解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).点评:此题主要考查利用待定系数法求函数解析式,以及基本数量关系:路程÷时间=速度,解答时注意数形结合.22.(8分)(2010•某某)四X质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一X卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四X卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.考点:游戏公平性;概率公式;列表法与树状图法分析:游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小贝赢或小晶赢的概率是否相等,求出概率比较,即可得出结论.解答:解:(1)P(抽到2)=;(3分)(2)根据题意可列表2 23 62 2,2 2,2 2,3 2,62 2,2 2,2 2,3 2,63 3,2 3,2 3,3 3,66 6,2 6,2 6,3 6,6(5分)从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,∴P(两位数不超过32)=.(7分)∴游戏不公平.(8分)调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.(10分)法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数超过32的得5分;能使游戏公平.(10分)法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.(只要游戏规则调整正确即得2分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2012•某某)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.考点:切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质专题:几何综合题;压轴题.分析:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则=,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;(2)首先证明△FBD∽△BAD,依据相似三角形的对应边的比相等,即可求DF的长,继而求得答案.解答:解:(1)ED与⊙O的位置关系是相切.理由如下:连接OD,∵∠CAB的平分线交⊙O于点D,∴=,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AC,∵DE⊥AC,∴DE∥BC,∴OD⊥DE,∴ED与⊙O的位置关系是相切;(2)连接BD.∵AB是直径,∴∠ADB=90°,在直角△ABD中,BD===,∵AB为直径,∴∠ACB=∠ADB=90°,又∵∠AFC=∠BFD,∴∠FBD=∠CAD=∠BAD∴△FBD∽△BAD,∴=∴FD=∴AF=AD﹣FD=5﹣=.点评:本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF 的长的问题转化成求相似三角形的问题是关键.24.(10分)如图,在平面直角坐标系中xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过A、C两点,并与x轴的正半轴交于点B.(1)求点C的坐标;(2)求抛物线的函数表达式;(3)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F,是否存在这样的点E,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)首先求得m的值和直线的解析式,进而得出C点坐标;(2)根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;(3)存在点E使得以A 、C、E、F 为顶点的四边形是平行四边形.如答图1所示,过点E 作EG⊥x 轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解.解答:解:(1)∵y=x+m经过点(﹣3,0),∴0=﹣+m,解得:m=,∴直线解析式为:y=x+,C(0,);(2)∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),∴另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x﹣5),∵抛物线经过C(0,),∴=a•3(﹣5),解得a=﹣,∴抛物线解析式为y=﹣x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,在△CAO和△EFG中,∴△CAO≌△EFG(AAS),∴EG=CO=,即y E=,∴=﹣x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,﹣=﹣x2+x+,解得:x=1±,(负数舍去),则x=1+,可得E′(+1,﹣),S▱ACE′F′=.点评:本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程根与系数的关系以及二次根式的运算、平行四边形、全等三角形等.本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.25.(12分)(2007•某某)如图,⊙O的半径均为R.(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中画出弦AB,CD,使图②仍为中心对称图形;(2)如图③,在⊙O中,AB=CD=m(0<m<2R),且AB与CD交于点E,夹角为锐角α.求四边形ACBD的面积(用含m,α的式子表示);(3)若线段AB ,CD是⊙O的两条弦,且AB=CD=R,你认为在以点A,B,C,D为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.考点:圆的认识;轴对称图形;中心对称图形;解直角三角形专题:综合题;压轴题;开放型.分析:(1)使图①为轴对称图形而不是中心对称图形;可让弦AB=CD且AB与CD不平行(相交时交点不为圆心).使图②仍为中心对称图形;可让AB=CD且AB∥CD,也可让AB,CD作为两条圆内不重合的直径.(2)可以以CD或AB为底来求两三角形的面积和,先作高,然后用AE,BE(CE ,DE 也可以)和sinα表示出这两个三角形的高,然后根据三角形的面积公式可得出CD×(AE+BE)•sinα,AE+BE正好是AB的长,因此两三角形的面积和就能求出来了.(3)要分两种情况进行讨论:当两弦相交时,情况与(2)相同,可用(2)的结果来得出四边形的面积(此时四边形的面积正好是两个三角形的面积和).当两弦不相交时,我们可连接圆心和四边形的四个顶点,将四边形分成4个三角形来求解,由于AB=CD=R,那么我们可得出三角形OAB和OCD应该是个等腰直角三角形,那么他们的面积和就应该是R2,下面再求出三角形AOD和BOC的面积和,我们由于∠AOD+∠BOC=180°,我们可根据这个特殊条件来构建全等三角形求解.延长BO交圆于E,那么三角形AOD就应该和三角形CEO全等,那么求出三角形BCE的面积就求出了三角形AOD和BOC的面积和,那么要想使四边形的面积最大,三角形BEC中高就必须最大,也就是半径的长,此时三角形BEC的面积就是R2,三角形BEC是个等腰直角三角形,那么四边形ABCD就是个正方形,因此四边形ABCD的最大面积就是2R2.因此当∠AOD=∠BOC=90°时,四边形ABCD的面积就最大,最大为2R2.解:(1)答案不唯一,如图①、②解答:(2)过点A,B分别作CD的垂线,垂足分别为M,N,∵S△ACD=CD•AM=CD•AE•sinα,S △BCD =CD•BN=CD•BE•sinα,∴S四边形ACBD=S△ACD+S△BCD=CD•AE•sinα+CD•BE•sinα=CD•(AE+BE )sinα=CD•AB•sinα=m2•sinα.(3)存在.分两种情况说明如下:①当AB与CD 相交时,由(2)及AB=CD=知S四边形ACBD=AB•CD•sinα=R2sinα,②当AB与CD不相交时,如图④.∵AB=CD=,OC=OD=OA=OB=R,∴∠AOB=∠COD=90°.而S四边形ABCD=S Rt△AOB+S Rt△OCD+S△AOD+S△BOC=R2+S△AOD+S△BOC延长BO交⊙O于点E,连接EC,则∠1+∠3=∠2+∠3=90°.∴∠1=∠2.∴△AOD≌△COE.∴S△AOD=S△OCE∴S△AOD+S△BOC =S△OCE+S△BOC=S△BCE过点C作CH⊥BE,垂足为H,则S△BCE=BE•CH=R•CH.∴当CH=R时,S△BCE取最大值R2综合①、②可知,当∠1=∠2=90°.即四边形ABCD是边长为的正方形时,S四边形ABCD=R2+R2=2R2为最大值.点评:本题主要考查了圆内轴对称和中心对称图形的区别以及解直角三角形,全等三角形的判定和性质等知识点.在求三角形的面积时,要根据已知的条件来选择底边,这样可使解题更加简便.。

2024年陕西省西工大附中第二次数学九年级第一学期开学质量检测试题【含答案】

2024年陕西省西工大附中第二次数学九年级第一学期开学质量检测试题【含答案】

2024年陕西省西工大附中第二次数学九年级第一学期开学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一元二次方程x 2-9=0的解为()A .x 1=x 2=3B .x 1=x 2=-3C .x 1=3,x 2=-3D .x 1x 22、(4分)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63、(4分)某校准备从甲、乙、丙、丁四个科技小组中选出一组,参加区中小学科技创新竞赛,表格记录了各组平时成绩的平均数x (单位:分)及方差(单位:分2):甲乙丙丁平均数x 92989891方差2S 1 1.20.9 1.8若要选出一个成绩好且状态稳定的组去参赛,那么应选的组是()A .甲B .乙C .丙D .丁4、(4分)下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④算术平方根不可能是负数.A .0个B .1个C .2个D .3个5、(4分)如图,已知△ABC ,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD .若∠B =30°,∠A =65°,则∠ACD 的度数为()A .65°B .60°C .55°D .45°6、(4分)如图①,四边形ABCD 中,BC ∥AD ,∠A =90°,点P 从A 点出发,沿折线AB →BC →CD 运动,到点D 时停止,已知△PAD 的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为()A .4B .9C .10D .47、(4分)如图,已知BG 是∠ABC 的平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,DE=6,则DF 的长度是()A .2B .3C .4D .68、(4分)函数11y x =+-中自变量x 的取值范围是()A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为_______________.10、(4分)已知点P(-2,1),则点P 关于x 轴对称的点的坐标是__.11、(4分)一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.12、(4分)如果多边形的每个外角都是40°,那么这个多边形的边数是_____.13、(4分)若某多边形有5条对角线,则该多边形内角和为_____.三、解答题(本大题共5个小题,共48分)14、(12分)解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.15、(8分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的三个顶点都在格点上.⑴在线段AC 上找一点P (不能借助圆规),使得222PC PA AB -=,画出点P 的位置,并说明理由.⑵求出⑴中线段PA 的长度.16、(8分)如图,正比例函数y 1=kx 与-次函数y 2=mx +n 的图象交于点A (3,4),一次函数y 2的图象与x 轴,y 轴分别交于点B ,点C ,且0A=OC .(1)求这两个函数的解析式;(2)求直线AB 与两坐标轴所围成的三角形的面积.17、(10分)已知,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴的正半轴、y 轴的正半轴上,且OA 、OC (OA OC >)的长是方程212320x x -+=的两个根.(1)如图,求点A 的坐标;(2)如图,将矩形OABC 沿某条直线折叠,使点A 与点C 重合,折痕交CB 于点D ,交OA 于点E .求直线DE 的解析式;(3)在(2)的条件下,点P 在直线DE 上,在直线AC 上是否存在点Q ,使以点A 、B 、P 、Q 为顶点的四边形是平行四边形.若存在,请求出点Q 坐标;若不存在,请说明理由.18、(10分)求不等式(2x﹣1)(x+1)>0的解集.解:根据“同号两数相乘,积为正”可得:①21030x x ->⎧⎨+>⎩或②21030x x -<⎧⎨+<⎩.解①得x>12;解②得x<﹣1.∴不等式的解集为x>12或x<﹣1.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣1)(x+1)<0的解集.(2)求不等式1132x x -+≥0的解集.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x 分别取值12009,12008,12007,⋯,12,1,2,⋯,2007,2008,2009时,计算代数式2211x x -+的值,将所得的结果相加,其和等于______.20、(4分)已知分式方程21x x -+231x x -=72,设21x y x -=,那么原方程可以变形为__________21、(4分)已知关于x 的方程x 2+(3﹣2k )x +k 2+1=0的两个实数根分别是x 1、x 2,当|x 1|+|x 2|=7时,那么k 的值是__.22、(4分)如图,以ABC △的三边为边向外作正方形,其面积分别为123,.S S S ,且139,25S S ==,当2S =__________时.90ACB ∠=.23、(4分)计算:3xy 2÷26y x =_______.二、解答题(本大题共3个小题,共30分)24、(8分)某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件.设购进甲种童衣的数量为x (件),销售完这批童衣的总利润为y (元).(1)请求出y 与x 之间的函数关系式(不用写出x 的取值范围);(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?25、(10分)如图,四边形ABCD 中,AB=10,BC=13,CD=12,AD=5,AD ⊥CD ,求四边形ABCD 的面积.26、(12分)如图,在△ABC 中,∠ACB=105°,AC 边上的垂直平分线交AB 边于点D ,交AC 边于点E ,连结CD .(1)若AB=10,BC=6,求△BCD 的周长;(2)若AD=BC ,试求∠A 的度数.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】先变形得到x2=9,然后利用直接开平方法解方程.【详解】解:x2=9,∴x=±1,∴x1=1,x2=-1.故选:C.本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.2、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.3、C【解析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【解析】①②③④分别根据平方根和算术平方根的概念即可判断.【详解】解:根据平方根概念可知:①负数没有算术平方根,故错误;②反例:0的算术平方根是0,故错误;③当a<0时,a2的算术平方根是﹣a,故错误;④算术平方根不可能是负数,故正确.所以不正确的有①②③.故选D.考核知识点:算术平方根.5、C由作法可知,MN 为垂直平分线,DC=CD ,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD 度数.【详解】解:由作法可知,MN 为垂直平分线,∴BD=CD ,∴∠BCD=∠B=30°,∵∠A=65°,∴∠ACB=180°-∠A-∠B=85°,∴∠ACD=∠ACB-∠BCD=85°-30°=55°.故选:C .此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.6、D 【解析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线AE ⊥AD ,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【详解】作CE ⊥AD 于点E ,如下图所示,由图象可知,点P 从A 到B 运动的路程是2,当点P 与点B 重合时,△ADP 的面积是5,由B 到C 运动的路程为2,∴=222AD ABAD ⋅⨯=5,解得,AD=5,又∵BC ∥AD,∠A=90°,CE ⊥AD ,∴∠B=90°,∠CEA=90°,∴四边形ABCE 是矩形,∴AE=BC=2,∴DE=AD−AE=5−2=3,∴,∴点P 从开始到停止运动的总路程为:故选D.此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算7、D 【解析】根据角平分线的性质进行求解即可得.【详解】∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC ,∴DF=DE=6,故选D.本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.8、B 【解析】由已知得:20x -≥且10x -≠,解得:2x ≤且1x ≠.故选B .二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】解:根据三角形的中位线定理可得DE=12AC,EF=12AB,DF=12BC所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1故答案为:1.本题考查三角形的中位线定理.10、(-2,-1)【解析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案是:(﹣2,﹣1).考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.11、x=1【解析】直接根据图象找到y=kx+b=4的自变量的值即可.【详解】观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,4),所以关于x的方程kx+b=4的解为x=1,故答案为:x=1.本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.12、1【解析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:多边形的边数是:36040=1,故答案为:1.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式13、540°.【解析】根据多边形对角线的条数求出多边形的边数,再根据多边形的内角和公式求出即可.【详解】设多边形的边数为n,∵多边形有5条对角线,∴(3)2n n-=5,解得:n=5或n=﹣2(舍去),即多边形是五边形,所以多边形的内角和为(5﹣2)×180°=540°,故答案为:540°.本题考查了多边形的对角线和多边形的内角,能正确求出多边形的边数是解此题的关键,注意:边数为n的多边形的对角线的条数是(3)2n n-,边数为n的多边形的内角和=(n-2)×180°.三、解答题(本大题共5个小题,共48分)14、-7<x≤1.数轴见解析.【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)421152x xx x--≥⎧⎪⎨-+<⎪⎩①②解不等式①,得x≤1解不等式②,得x>-7∴不等式组的解集为-7<x≤1.在数轴上表示不等式组的解集为故答案为-7<x ≤1.本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.15、(1)详见解析;(2)线段PA 的长度为53.【解析】试题分析:(1)利用方格纸可作出BC 的垂直平分线交AC 于点P ,点P 为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC 2-PA 2=AB 2;(2)由图中信息可得AB=4,AC=6,设PA=x ,则PC=PB=6-x ,在Rt △PAB 中,由勾股定理建立方程解出x 即可.试题解析:⑴如图,利用方格纸作BC 的垂直平分线,分别交AC 、BC 于点P 、Q ,则PC =PB.∵在△APB 中,∠A =90°,∴222PA AB PB +=,即:222PB PA AB -=,∴222PC PA AB -=.⑵由图可得:AC=6,AB=4,设PA =x ,则PB=PC =6-x ∵在△PAB 中,∠A =90°,222PA BA PB +=∴()22246x x +=-,解得:53x =,即PA=53.答:线段PA 的长度为53.16、(1)143y x =,235y x =-;(2)256AOB S ∆=.【解析】(1)根据待定系数法确定正比例函数和一次函数的解析式即可;(2)利用三角形面积公式计算解答即可.【详解】(1)把A(3,4)代人1y kx =中.得:3k=4∴43k =∴143y x=过点A 作AE ⊥x 轴,垂足为E.∵A(3,4)∴OE=3,AE=4在Rt △OAE 中,5OA ==又∵OC=OA=5∴.C(0,-5)把A(3,4),C(0,-5)代人2y mx n =+中,得345m n n +=⎧⎨=-⎩∴35m n =⎧⎨=-⎩∴235y x =-(2)在235y x =-中,令20y =得53x =∴OB=53∴1152552236AOB S OB OC ∆=⋅=⨯⨯=.考查的是一次函数的问题,关键是根据待定系数法求解析式.17、(1)(1,0);(2)26y x =-;(3)存在点286,55Q ⎛⎫ ⎪⎝⎭或1214,55⎛⎫ ⎪⎝⎭或526,55⎛⎫- ⎪⎝⎭,使以点A 、B 、P 、Q 为顶点的四边形是平行四边形.【解析】(1)通过解一元二次方程可求出OA 的长,结合点A 在x 轴正半轴可得出点A 的坐标;(2)连接CE ,设OE=m ,则AE=CE=1-m ,在Rt △OCE 中,利用勾股定理可求出m 的值,进而可得出点E 的坐标,同理可得出点D 的坐标,根据点D ,E 的坐标,利用待定系数法可求出直线DE 的解析式;(3)根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,设点P 的坐标为(a ,2a-6),点Q 的坐标为(c ,-12c+2),分AB 为边和AB 为对角线两种情况考虑:①当AB 为边时,利用平行四边形的性质可得出关于a ,c 的二元一次方程组,解之可得出c 值,再将其代入点Q 的坐标中即可得出结论;②当AB 为对角线时,利用平行四边形的对角线互相平分,可得出关于a ,c 的二元一次方程组,解之可得出c 值,再将其代入点Q 的坐标中即可得出结论.综上,此题得解.【详解】(1)解方程x 2-12x+32=0,得:x 1=2,x 2=1.∵OA 、OC 的长是方程x 2-12x+32=0的两个根,且OA >OC ,点A 在x 轴正半轴上,∴点A 的坐标为(1,0).(2)连接CE ,如图2所示.由(1)可得:点C 的坐标为(0,2),点B 的坐标为(1,2).设OE=m ,则AE=CE=1-m .在Rt △OCE 中,∠COE=90°,OC=2,OE=m ,∴CE 2=OC 2+OE 2,即(1-m )2=22+m 2,解得:m=3,∴OE=3,∴点E 的坐标为(3,0).同理,可求出BD=3,∴点D 的坐标为(5,2).设直线DE 解析式为:0y kx b k ()=+≠5430k b k b +=⎧⎨+=⎩∴26k b =⎧⎨=-⎩∴直线DE 解析式为:26y x =-(3)∵点A 的坐标为(1,0),点C 的坐标为(0,2),点B 的坐标为(1,2),∴直线AC 的解析式为y=-12x+2,AB=2.设点P 的坐标为(a ,2a-6),点Q 的坐标为(c ,-12c+2).分两种情况考虑,如图5所示:①当AB 为边时,0126(4)42a c a c -⎧⎪⎨---+⎪⎩==,解得:c 1=125,c 2=285,∴点Q 1的坐标为(125,145),点Q 2的坐标为(285,65);②当AB 为对角线时,88126(4)042a c a c ++⎧⎪⎨-+-++⎪⎩==,解得:285525a c ⎧⎪⎪⎨⎪⎪⎩==,∴点Q 3的坐标为(525,-65).综上,存在点286,55Q ⎛⎫ ⎪⎝⎭或1214,55⎛⎫ ⎪⎝⎭或526,55⎛⎫- ⎪⎝⎭,使以点A 、B 、P 、Q 为顶点的四边形是平行四边形本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A 的坐标;(2)利用勾股定理,求出点D ,E 的坐标;(3)分AB 为边和AB 为对角线两种情况,利用平行四边形的性质求出点Q 的坐标.18、(1)﹣1<x <32;(2)x ≥1或x <﹣2.【解析】(1)、(2)根据题意得出关于x 的不等式组,求出x 的取值范围即可.【详解】解:(1)根据“异号两数相乘,积为负”可得①23010x x ->⎧⎨+<⎩或②23010x x -<⎧⎨+>⎩,解①得不等式组无解;解②得,﹣1<x <32;(2)根据“同号两数相除,积为正”可得①110320x x ⎧-≥⎪⎨⎪+>⎩,②110320x x ⎧-≤⎪⎨⎪+<⎩,解①得,x ≥1,解②得,x <﹣2,故不等式组的解集为:x ≥1或x <﹣2.故答案为(1)﹣1<x <32;(2)x ≥1或x <﹣2.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】先把x n =和1x n=代入代数式,并对代数式化简,得到它们的和为1,然后把1x =代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】因为2222222211()111011111(n n n n n n n n----+=+=++++,即当x 分别取值1n ,(n n 为正整数)时,计算所得的代数式的值之和为1;而当1x =时,2211011-=+.因此,当x 分别取值12009,12008,12007,⋯,12,1,2,⋯,2117,2118,2119时,计算所得各代数式的值之和为1.故答案为:1.本题考查的是代数式的求值,本题的x 的取值较多,并且除1x =外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.20、3y y +=72【解析】【分析】运用整体换元法可得到结果.【详解】设21x y x -=,则分式方程21x x-+231x x -=72,可以变形为3y y +=72故答案为:3y y +=72【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.21、﹣1.【解析】先根据方程有两个实数根,确定△≥0,可得k≤512,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.【详解】∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,9﹣11k+4k1﹣4k1﹣4≥0,k≤5 12,∵x1•x1=k1+1>0,∴x1、x1,同号,分两种情况:①当x1、x1同为正数时,x1+x1=7,即1k﹣3=7,k=5,∵k≤5 12,∴k=5不符合题意,舍去,②当x1、x1同为负数时,x1+x1=﹣7,即1k﹣3=﹣7,k=﹣1,故答案为:﹣1.本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤5 12.22、16【解析】先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC 是直角三角形,∴a 2+b 2=c 2,即S 1+S 2=S 3,∴S 2=S 3−S 1=16.故答案为:16.此题主要考查了正方形的面积公式及勾股定理的应用,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.23、22x 【解析】分析:根据分式的运算法则即可求出答案.详解:原式=3xy 2•26x y =22x 故答案为22x .点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.二、解答题(本大题共3个小题,共30分)24、(1)105000y x =-+;(2)75件,4250元.【解析】(1)总利润=甲种童衣每件的利润×甲种童衣的数量+乙种童衣每件的利润×乙种童衣的数量,根据等量关系列出函数解析式即可;(2)根据题意,先得出x 的取值范围,再根据函数的增减性进行分析即可.【详解】解:(1)∵甲种童衣的数量为x 件,,是乙种童衣数量为()100x -件;依题意得:甲种童衣每件利润为:1208040-=元;乙种童衣每件利润为:15010050-=元∴()4050100y x x =+-,∴105000y x =-+;(2)()310001000x x x x ⎧≥-⎪≥⎨⎪-≥⎩,75100x ≤≤,∵105000y x =-+中,100k =-<,∴y 随x 的增大而减小,∵75100x ≤≤,∴min 75x =时,max 107550004250y =-⨯+=答:购进甲种童衣为75件时,这批童衣销售完获利最多为4250元.本题考查了一次函数的应用.25、S 四边形ABCD =1.【解析】试题分析:连接AC ,过点C 作CE ⊥AB 于点E ,在Rt △ACD 中根据勾股定理求得AC 的长,再由等腰三角形的三线合一的性质求得AE 的长,在Rt △CAE 中,根据勾股定理求得CE 的长,根据S 四边形ABCD =S △DAC +S △ABC 即可求得四边形ABCD 的面积.试题解析:连接AC ,过点C 作CE ⊥AB 于点E .∵AD ⊥CD ,∴∠D=1°.在Rt △ACD 中,AD=5,CD=12,AC=.∵BC=13,∴AC=BC .∵CE ⊥AB ,AB=10,∴AE=BE=AB=.在Rt△CAE中,CE=.=S△DAC+S△ABC=∴S四边形ABCD26、(1)16;(2)25°.【解析】根据线段垂直平分线的性质,可得CD=AD,根据三角形的周长公式,可得答案;根据线段垂直平分线的性质,可得CD=AD,根据等腰三角形的性质,可得∠B与∠CDB的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.【详解】解:(1)∵DE是AC的垂直平分线,∴AD=CD.∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°∴∠A=25°.本题考查线段垂直平分线的性质.。

2024年陕西省部分学校中考数学二模试卷+答案解析

2024年陕西省部分学校中考数学二模试卷+答案解析

2024年陕西省部分学校中考数学二模试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.规定:表示零上12摄氏度,记作,表示零下7摄氏度,记作()A. B. C. D.2.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱3.将含有的直角三角板在两条平行线中按如图所示的方式摆放.若,则的度数是()A.B.C.D.4.计算的结果是()A. B. C. D.5.已知一次函数,当时,函数值y的取值范围是,则的值为()A. B.1 C.或1 D.1或26.在中,,,则的值是()A. B. C. D.7.如图,AB为的直径,点C,D都在上,,若,则的度数为()A.B.C.D.8.抛物线L:经过,两点,且抛物线L不经过第四象限,则下列点坐标可能在抛物线L上的是()A. B. C. D.二、填空题:本题共5小题,每小题3分,共15分。

9.在实数,,,,,中,无理数的个数是______.10.七边形的外角和等于______.11.菱形ABCD的对角线,,则AB的长为______.12.如图,过点作轴,垂足为C,轴,垂足为,PD分别交反比例函数的图象于点A,B,则阴影部分的面积是______.13.如图,在矩形ABCD中,点E在边AB上,点F在边AD上,连接CE,CF,EF,,,,,则线段EF的长度为______.三、解答题:本题共13小题,共81分。

解答应写出文字说明,证明过程或演算步骤。

14.本小题5分计算:15.本小题5分解不等式组:16.本小题5分已知,求代数式的值.17.本小题5分如图四边形ABCD是菱形,,请用尺规作图法,在边AD上求作一点P,使保留作图痕迹,不写作法18.本小题5分如图,A,B,C,D四点在同一条直线上,,,求证:19.本小题5分小明和小乐两位同学都是体育爱好者,小明喜欢观看“足球、乒乓球、羽毛球”赛事,小乐喜欢观看“篮球、排球”赛事,他们商定采用抽签的方式确定观看的赛事项目,并制作了五张卡片这些卡片除赛事名称外,其余完全相同并将卡片背面朝上洗匀后放在桌面上.小乐从五张卡片中随机抽取一张卡片,是他喜欢的赛事的概率是______.我们常称足球、排球、篮球为“三大球”,小明先从洗匀后的五张卡片中抽取一张卡片,小乐从剩下的卡片中再抽取一张卡片,求他俩抽取的卡片上都是“三大球”中的赛事项目的概率.20.本小题5分如图在平面直角坐标系中,的顶点坐标分别是,,作,使其与关于y对称,且点,,分别与点A,B,C对应.在的情形中,连接,则的长为______.21.本小题6分如图,装有某种液体的工业用桶中放置有一根搅拌棍.工人师傅为了解桶内所装液体的体积,先在搅拌棍所处桶孔位置做好标记点A,并取出;然后测得搅拌棍接触到液体部分,搅拌棍A到底端D处的长度为,最后测量出桶的高AE为,圆桶内壁的底面直径为已知桶内的液面与桶底面平行,其平面示意图如图2所示.请你根据以上数据,帮工人师傅计算出桶内所装液体的体积结果保留22.本小题7分小明同学通过查阅资料发现,声音在空气中传播的速度随气温的变化而变化,几组对应值如下表:气温0510152025声音在空气中的传播速度331334337340343346已知声音在空气中的传播速度与气温成一次函数关系,请求出该函数的表达式.若当日气温为,小明观看到炫烂的烟花5s后才听到声响,求小明与烟花之间的大致距离.23.本小题7分阅读使人进步,启智增慧,阅读素养的建立使人终身受益.某学校随机抽取了50名学生寒假期间阅读书本的数量并统计分析,发现学生寒假阅读的书本数最少的有1本,最多的有4本,并根据调查结果绘制了如下不完整的频数分布直方图.补全频数分布直方图;这50名学生寒假阅读的书本数的中位数是______本;求抽取的学生寒假阅读书本数的平均数;若该校共有1100名学生,请估算该校学生寒假阅读书本数在3本及以上的人数.24.本小题8分如图,在中,,以边AB为直径的交BC于点D,点E在上,连接AD,DE,满足,连接求证:若,,求DE的长.25.本小题8分如图,在一个斜坡上架设两个塔柱AB,可看作两条竖直的线段,塔柱间挂起的电缆线下垂弧度可以近似看成抛物线的形状.两根塔柱的高度满足,塔柱AB与CD之间的水平距离为60m,且两个塔柱底端点D与点B的高度差为以点A为坐标原点,1m为单位长度构建平面直角坐标系求点B,C,D的坐标.经测量得知:A,C段所挂电缆线对应的抛物线的形状与抛物线一样,且电缆线距离斜坡面竖直高度至少为时,才符合设计安全要求.请结合所学知识判断上述电缆的架设是否符合安全要求?并说明理由.26.本小题10分在平面直角坐标系中,A为y轴正半轴上一点,B为x轴正半轴上一点,且,连接如图1,C为线段AB上一点,连接OC,将OC绕点O逆时针旋转得到OD,连接AD,求的值如图2,当点C在x轴上,点D位于第二象限时,,且,E为AB的中点,连接DE,试探究线段是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:表示零上12摄氏度,记作,表示零下7摄氏度,记作,故选:根据相反意义的量即可得到答案.本题考查了正负数的应用,解答本题的关键要明确正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.【答案】B【解析】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.【答案】D【解析】解:如图,,,,的直角三角板,,,故选:先根据平行线的性质求出的度数,再由对顶角相等求出的度数,由三角形外角的性质即可得出结论.本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.4.【答案】C【解析】解:原式故选:根据积的乘方、幂的乘方法则计算即可.本题考查了积的乘方、幂的乘方,掌握运算法则是解题的关键.5.【答案】B【解析】解:当时,y随x的增大而增大,即一次函数为增函数,当时,,当时,,代入一次函数解析式得:,解得:,;当时,y随x的增大而减小,即一次函数为减函数,当时,,当时,,代入一次函数解析式得:,解得:,,故选:由一次函数的性质,分和时两种情况讨论求解即可.本题考查了一次函数的图象与性质,解题的关键是分两种情况来讨论.6.【答案】A【解析】解:如图,做于点D,,,,,::故选首先根据题意画出图形,做于点D,根据题意可推出,,然后即可推出AC::本题主要考查解直角三角形,特殊角的三角函数,关键在于根据题意画出图形,正确的通过作辅助线构建直角三角形,认真的进行计算.7.【答案】C【解析】解:连接AC,,,,,为的直径,,故选:根据圆周角定理求出和的度数,再结合平行线的性质即可得到答案.本题考查直径所对圆周角定理.求出和的度数是解题的关键.8.【答案】B【解析】解:抛物线L:经过,两点,抛物线L不经过第四象限,当,,函数不过第四象限时,函数图象只过一二象限,点不可能在抛物线上,当,,时函数只过一二三象限,不过第四象限,,,,将点A、B、C、D分别代入解析式中解得,当点代入,解得,不符合题意,点不可能在抛物线上,故选:由二次函数经过,两点,且不经过第四象限,所以抛物线开口向上,开口向上,函数和x轴有一个交点或没有交点的情况下,函数图象只过一二象限;开口向上,函数两根均小于零的情况下,函数只过一二三象限,不过第四象限;根据题意求将各点坐标带入求出函数解析式,即可得出结论.本题主要考查的是二次函数的性质,关键是二次函数图象上点的坐标的应用.9.【答案】3【解析】解:在实数,,,,,中,是无理数的有:,,,是无理数的有3个,故答案为:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数,结合所给数据进行判断即可.本题考查了无理数的定义,解题的关键是掌握无理数的几种形式.10.【答案】【解析】解:七边形的外角和等于故答案为:根据多边形的外角和等于360度即可求解.本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于是解题的关键.11.【答案】【解析】解:如图,,,,,,四边形ABCD是菱形,,,,,故答案为:利用菱形的面积公式求出,利用菱形的性质得到,,,利用勾股定理求出AB的长即可.本题主要考查了菱形的性质,勾股定理,熟知菱形的性质是解题的关键.12.【答案】6【解析】解:点,,,反比例函数,,故答案为:求阴影部分的面积,先根据点的坐标求出矩形DPCO的面积,再根据k的几何意义求出和,最后根据得出答案.本题主要考查了反比例函数中k的几何意义,解答本题的关键是熟练掌握反比例函数的性质.13.【答案】【解析】解:如图,延长EB至G,使,连接CG,矩形ABCD中,,,,在和中,,≌,,,又,,在和中,,≌,,设,则,在中,,,整理得:,解得:,又,,,故答案为:延长EB至G,使,连接CG,证明≌,得到,再证明≌即可求解.本题考查了矩形的性质,全等三角形的判定与性质,勾股定理,掌握相关性质是解题的关键.14.【答案】解:【解析】根据实数的运算法则计算即可求解.本题考查了实数的运算.15.【答案】解:,解不等式①,得:,解不等式②,得:,不等式组的解集为:【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解确定不等式组的解集,熟知口诀是解答此题的关键.16.【答案】解:原式,当时,原式【解析】先根据分式的混合运算法则把原式化简,再将a的值代入计算可得.本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.17.【答案】解:如图,点P即为所求,.【解析】根据平行四边形、平行线的性质求出,先作出的平分线BM,然后作出的平分线即可.本题考查了平行四边形的性质,尺规作图法,掌握如何用尺规作图法作出角平分线是解答本题的关键.18.【答案】证明:A,B,C,D四点在同一条直线上,,,,,,在和中,,≌,【解析】利用AAS证明≌,得对应边相等.本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解答本题的关键.19.【答案】【解析】解:小乐从五张卡片中随机抽取一张卡片,是他喜欢的赛事的情况有2种,是他喜欢的赛事的概率是,故答案为:;设足球、乒乓球、羽毛球,篮球、排球,画树状图如下:由树状图知,共有20种等可能结果,其中他俩抽取的卡片上都是“三大球”中的赛事项目的有6种结果,则他俩抽取的卡片上都是“三大球”中的赛事项目的概率为共有5种等可能出现的结果,其中抽到小乐喜欢的赛事的有2种,由概率的定义可得答案;用树状图列举出所有等可能出现的结果,再根据概率的定义进行计算即可.本题考查列表法或树状图法,用树状图表示所有等可能的出现的结果是正确解答的关键.20.【答案】5【解析】解:找出,,关于y轴的对称点,,,连接各点,如图1:即为所求.连接,如图2:由格点可知:,故答案为:找出,,关于y轴的对称点,,,连接各点即可;由格点知识,利用勾股定理即可求解.本题考查了网格作图-轴对称图形,坐标与图形,勾股定理,熟练掌握轴对称的性质是解题的关键.21.【答案】解:由题意得,,,,解得:,桶内所装液体的体积立方米答:桶内所装液体的体积为立方米.【解析】根据油面和桶底是一组平行线,利用平行线分线段成比例定理求得,再利用圆柱的体积公式计算即可解答.本题考查了平行线分线段成比例定理,掌握平行线分线段成比例定理是关键.22.【答案】解:设函数关系式为根据题意,得,解得,当时,,小明与烟花之间的大致距离为【解析】设声速与气温为之间的函数关系式为,根据题意列方程解方程即可解答;把代入中表达式求出y,再根据时间、速度之间的关系即可解答.本题主要考查了一次函数与实际问题,利用待定系数法求一次函数解析式,函数的三种表示形式,函数的定义,掌握函数的三种表示方式是解题的关键.23.【答案】2【解析】解:阅读1本的人数有人,这50名学生寒假阅读的书本数的中位数是从小到大排列后的第25、26位的数据的平均数,第25、26位都是2本,则中位数是2本,补全频数分布直方图如图:故答案为:2;平均数是本;该校学生寒假阅读书本数在3本及以上的人数约有本先由总人数减去其他篇数的人数求得阅读1本的人数,再根据中位数的定义求解;根据平均数的计算方法求解即可;用总人数乘以样本中3本及以上的人数所占比例即可得.本题考查的是频数分布直方图的应用,求中位数和平均数,样本估计总体,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.24.【答案】证明:,,,,,,解:连接AE,设AC与交于F,连接BF,如图:为直径,,,,,即,,在中,,,,即,或舍去,,,即,,,,,,,,∽,,即,【解析】由,得到,进而得到即可求证;连接AE,设AC与交于F,连接BF,通过圆周角定理得到,,进而得出,求出AF,再证明∽即可求解.本题考查了平行线的判定,相似三角形的判定与性质,等腰三角形的性质,圆周角定理,解题的关键是学会添加辅助线,构造基本图形解决问题.25.【答案】解:如图1,设CD交x轴于点E,过点B作,垂足为F,由题意可知,米,米,米,,米,米,,,;这种电缆线的架设符合要求,理由如下:如图2,作轴,交抛物线于点G,交BD于点H,、C段所挂电缆线的形状与抛物线一样,设A、C所挂电缆线抛物线的解析式为,抛物线过点,,,解得,所以抛物线解析式为,设直线BD的解析式为,直线BD过点,,,解得,所以直线BD的解析式为,设点,则,,,,,当时,GH有最小值为18,,这种电缆线的架设符合要求.【解析】如图,设CD交x轴于点E,过点B作,垂足为F,分别求出与点B、C、D相关线段的长,然后根据点的坐标特征写出坐标即可;如图,作轴,交抛物线于点G,交BD于点H,用待定系数法分别求出A、C所挂电缆线抛物线和直线BD的解析式,设G、H的坐标,计算出GH的长度,然后根据二次函数的性质求出GH的最小值,然后和米比较即可作出判断.本题考查了二次函数的应用,解答本题的关键是点的坐标和对应线段的长度的相互转换、用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识.26.【答案】解:旋转,,,,又,≌,,;,,,为AB的中点,,即,过点D作于点M,于点N,又,四边形DMON是矩形,,又,,又,,≌,,点D在的平分线上,取点,连接,,则和A关于的平分线对称,,,当点、D、E三点共线时,最小,最小值为,的最小值为【解析】证明≌,得出,可得出,然后利用勾股定理求解即可;过点D作于点M,于点N,证明≌,可得出点D在的平分线上,取点,连接,,则和A关于的平分线对称,由得出当点、D、E三点共线时,最小,最后利用两点间距离公式求解即可.本题考查了全等三角形的判定与性质,旋转的性质,矩形的性质与判断,勾股定理等知识,根据题意添加合适辅助线,构造全等三角形是解题的关键.。

2024年陕西省西安市碑林区西北工大附中中考数学二模试卷及答案解析

2024年陕西省西安市碑林区西北工大附中中考数学二模试卷及答案解析

2024年陕西省西安市碑林区西北工大附中中考数学二模试卷一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的)1.(3分)﹣2的绝对值是()A.2B.﹣2C.D.﹣2.(3分)如图,该三棱柱的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a2+a2=a4B.a3•a2=a6C.a6÷a2=a3D.(a3)3=a9 4.(3分)如图,直线l∥AB,D为直线l上一点,∠1=58°,CE为∠ACD的角平分线,交直线l于点E,则∠ACE=()A.29°B.51°C.61°D.122°5.(3分)将一次函数y=2x﹣2图象向上平移3个单位,若平移后一次函数经过点(﹣6,a),则a的值为()A.13B.7C.﹣8D.﹣116.(3分)如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,点E、F、G、H 分别为边AB、BC、CD、DA的中点,则四边形EFGH的面积是()A.24B.12C.10D.67.(3分)如图,⊙O半径长2cm,点A、B、C是⊙O三等分点,点D为圆上一点,连接AD,且AD=2cm,CD交AB于点E,则∠BED=()A.75°B.65°C.60°D.55°8.(3分)已知抛物线y=ax2﹣4ax+b(a<0)经过A(m﹣3,y1),B(m+1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1>y2,则m的值可能是()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,计15分)9.(3分)比较大小:4(填“>”,“<”或“=”).10.(3分)2024年春节期间,西安大唐不夜城全天客流量在650000人左右,将650000用科学记数法表示为.11.(3分)约1500年前,我国伟大的数学家和天文学家祖冲之计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率精确到小数点后7位的人.如图,若⊙O 的半径为2,若用⊙O的内接正六边形的周长来估计⊙O的周长,则⊙O的周长与其内接正六边形的周长的差值为.(结果保留π)12.(3分)如图,反比例函数的图象上有一点P,PA⊥x轴于点A(﹣2,0),点B为直线x=1上一点,连接AB,PB,若△PAB的面积是6,则k的值为.13.(3分)如图,菱形ABCD的边长是10,,DE⊥CD交AB于点E,点P 为直线DE上一点,点P与点P′关于AC对称,F为BC中点,连接P′F、P′A,则|P′F﹣P′A|的最大值是.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:﹣+2cos30°﹣|﹣2|+2﹣1.15.(5分)解不等式组:.16.(5分)化简:.17.(5分)如图,已知正方形ABCD,请用尺规作图法,在正方形ABCD内部找一点P,使得PB=PC,且∠PBA=30°.(保留作图痕迹,不写作法)18.(5分)如图,点D、C为线段BE上一点,且BD=CE,AC∥DF,AB∥EF.求证:AB =EF.19.(5分)如图,已知△ABC的三个顶点坐标分别是A(3,5),B(1,2),C(4,1).(1)将△ABC向左平移5个单位,再向下平移2个单位,得到△A1B1C1,且点A、B、C的对应点为A1、B1、C1,请在网格中画出△A1B1C1;(2)点A、A1两点之间距离是.20.(5分)春节是流行疾病的高发季节,为此初三1班展开以“养成良好卫生习惯,做好手部消毒”的主题班会,并在市场购买乙醇类喷雾消毒剂,其中包含100ml、200ml、300ml、500ml共四种容量不同的消毒剂,现将这四种消毒剂各取一瓶分别装到4个封装后完全相同的纸箱,并将这4个纸箱随机摆放.(1)若小明从这4个纸箱中随机选取一个,则所选纸箱里消毒剂容量恰好为300ml的概率是.(2)若小明从这4个纸箱中随机选取2个,请利用列表或树状图的方法,求所选两个纸箱里消毒剂的容量之和大于400ml的概率.21.(6分)陕甘边革命根据地照金纪念馆广场上屹立着三位革命家的塑像,高高矗立,身姿伟岸.某数学兴趣小组计划在假期前往照金革命根据地学习,并测量塑像高度,活动方案如下:测量方案:如图,点B、E、F、D四点在同一条直线上,在点E处放置平面镜,此时小明视线刚好在平面镜内看到塑像顶端C的像,在点F处安装测倾器,测得塑像顶端C的仰角约为51.3°.数据收集:测得眼睛离地面高度AB=1.6米,BE=2米,EF=4米,GF=1.4米,AB⊥BD,GF⊥BD,CD⊥BD.解决问题:求塑像CD的高度.(结果精确到0.1米;参考数据:sin51.3°≈0.78,cos51.3°≈0.63,tan51.3°≈1.25)22.(7分)为了迎接“三八”妇女节,某商家决定售卖康乃馨和玫瑰花两种花,康乃馨和玫瑰花的进价、售价如表所示:进价(元/支)售价(元/支)康乃馨69玫瑰花812已知该商家计划购进康乃馨和玫瑰花共5000支,且购买康乃馨的数量不少于玫瑰花的数量的,设康乃馨购买x支,出售康乃馨和玫瑰花的总利润为y元.(1)求y与x的函数表达式;(2)当x取何值时,商家获得最大利润,最大利润是多少元?23.(7分)某校为了普及环保知识,从七、八两个年级中各选出10名学生参加环保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:平均数众数中位数七年级参赛学生成绩85.5m87八年级参赛学生成绩85.585n根据以上信息,回答下列问题:(1)填空:m=,n=;“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.24.(8分)如图,AB为⊙O的直径,点C在⊙O上,∠ACB的平分线交⊙O于点D,过点D作DE∥AB,交CB的延长线于点E.(1)求证:ED是⊙O的切线;(2)若AC=9,BC=3,求CD的长.25.(8分)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.26.(10分)(1)如图1,在△AOB中,OA=OB,∠AOB=120°,AB=12,若⊙O的半径为2,点P在⊙O上,M是线段AB上一动点,连接PM,求线段PM的最小值,并说明理由.新定义:在平面直角坐标系中,已知点M为定点,对点A给出如下定义,在射线AM上,若MN=kMA(k>0,且k为整数),则称N是点A的“k倍点”.(2)如图2,点A是半径为1的⊙O上一点,且M(3,1),N是点A的“二倍点”,点P为直线y=x上一点,是否存在点P,使得线段PN最小;若存在,请求出PN的最小值,并直接写出此时N点的坐标;若不存在,请说明理由.2024年陕西省西安市碑林区西北工大附中中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,计24分。

2022学年陕西省西安市西北工大附中中考数学模试卷(含答案解析)

2022学年陕西省西安市西北工大附中中考数学模试卷(含答案解析)

2022学年陕西省西安市西北工大附中中考数学模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.83B.8 C.43D.62.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.3.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.4.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB 等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF5.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是()A.若AB=CD,则四边形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;C.若AO COOB OD=,则四边形ABCD一定是矩形;D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.6.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣37.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40°B.45°C.50°D.55°8.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.49.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差10.下列各数中,比﹣1大1的是()A.0 B.1 C.2 D.﹣3二、填空题(共7小题,每小题3分,满分21分)11.在ABC 中,若211sin (cos )022A B -+-=,则C ∠的度数是______. 12.如果75x 3n y m+4与﹣3x 6y 2n 是同类项,那么mn 的值为_____. 13.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.14.计算a 10÷a 5=_______. 15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 16.因式分解:2()4()a a b a b ---=___.17.小华到商场购买贺卡,他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡.若小华先买了3张3D 立体贺卡,则剩下的钱恰好还能买______张普通贺卡.三、解答题(共7小题,满分69分)18.(10分)如图,直线:3l y x =-+与x 轴交于点M ,与y 轴交于点A ,且与双曲线k y x=的一个交点为(1,)B m -,将直线l 在x 轴下方的部分沿x 轴翻折,得到一个“V ”形折线AMN 的新函数.若点P 是线段BM 上一动点(不包括端点),过点P 作x 轴的平行线,与新函数交于另一点C ,与双曲线交于点D .(1)若点P的横坐标为a,求MPD的面积;(用含a的式子表示)(2)探索:在点P的运动过程中,四边形BDMC能否为平行四边形?若能,求出此时点P的坐标;若不能,请说明理由.19.(5分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.20.(8分)计算:(π﹣1)0+|﹣1|24÷6+(﹣1)﹣1.21.(10分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.学员培训时段培训学时培训总费用小明普通时段206000元高峰时段 5节假日时段15小华普通时段305400元高峰时段 2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的12,若小陈普通时段培训了x学时,培训总费用为y元①求y与x之间的函数关系式,并确定自变量x的取值范围;②小陈如何选择培训时段,才能使得本次培训的总费用最低?22.(10分)“知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?23.(12分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.24.(14分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【答案解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:如图,连接OB,∵BE=BF,OE=OF,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=23, ∴AC=2BC=43,∴AB=22AC BC -=22(43)(23)-=6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.2、D【答案解析】测试卷分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D .考点:D.3、B【答案解析】测试卷解析:能够凑成完全平方公式,则4a 前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选B .考点:1.概率公式;2.完全平方式.4、C【答案解析】根据全等三角形的判定与性质,可得∠ACB=∠DBE 的关系,根据三角形外角的性质,可得答案.【题目详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【答案点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.5、C【答案解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD=结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立. 故选C.6、B【答案解析】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.7、C【答案解析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.【题目详解】∵OB=OC,∴∠OBC=∠OCB.又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C.【答案点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.8、C【答案解析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【题目详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【答案点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.9、B【答案解析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【题目详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5, ∴对于不同的正整数x ,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x ,众数不会发生改变,众数依然是5吨.故选B .【答案点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.10、A【答案解析】用-1加上1,求出比-1大1的是多少即可.【题目详解】∵-1+1=1,∴比-1大1的是1.故选:A .【答案点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.二、填空题(共7小题,每小题3分,满分21分)11、90【答案解析】 先根据非负数的性质求出1sinA 2=,1cosB 2=,再由特殊角的三角函数值求出A ∠与B ∠的值,根据三角形内角和定理即可得出结论.【题目详解】在ABC 中,211sinA (cosB )022-+-=, 1sinA 2∴=,1cosB 2=, A 30∠∴=,B 60∠=,C 180306090∠∴=--=,故答案为:90.【答案点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.12、0【答案解析】根据同类项的特点,可知3n=6,解得n=2,m+4=2n ,解得m=0,所以mn=0.故答案为0点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.13、π﹣1.【答案解析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【题目详解】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴DC =12AB =1,四边形DMCN 是正方形,DM则扇形FDE 的面积是:2902360π⨯=π. ∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴CD 平分∠BCA .又∵DM ⊥BC ,DN ⊥AC ,∴DM =DN .∵∠GDH =∠MDN =90°,∴∠GDM =∠HDN .在△DMG 和△DNH 中,∵DMG DNH GDM HDN DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH(AAS ),∴S 四边形DGCH =S 四边形DMCN =1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【答案点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG ≌△DNH ,得到S 四边形DGCH =S 四边形DMCN 是关键.14、a 1.【答案解析】测试卷分析:根据同底数幂的除法底数不变指数相减,可得答案.原式=a 10-1=a 1,故答案为a 1.考点:同底数幂的除法.15、8个【答案解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【题目详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【答案点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.16、()()()22a b a a -+-【答案解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.17、1【答案解析】根据已知他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡得:1张3D 立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡,根据3张3D 立体贺卡y +张普通贺卡5=张3D 立体贺卡,可得结论.【题目详解】解:设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡.则1张普通贺卡为:5x 1x 204=元, 由题意得:15x 3x x y 4-=⋅, y 8=,答:剩下的钱恰好还能买1张普通贺卡.故答案为:1.【答案点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价=单价⨯数量列式计算.三、解答题(共7小题,满分69分)18、(1)213222=-++S a a ;(2)不能成为平行四边形,理由见解析 【答案解析】(1)将点B 坐标代入一次函数3y x =-+上可得出点B 的坐标,由点B 的坐标,利用待定系数法可求出反比例函数解析式,根据M 点的坐标为(3,0),可以判断出13a -<<,再由点P 的横坐标可得出点P 的坐标是(,3)P a a -+,结合PD ∥x 轴可得出点D 的坐标,再利用三角形的面积公式即可用含a 的式子表示出△MPD 的面积;(2)当P 为BM 的中点时,利用中点坐标公式可得出点P 的坐标,结合PD ∥x 轴可得出点D 的坐标,由折叠的性质可得出直线MN 的解析式,利用一次函数图象上点的坐标特征可得出点C 的坐标,由点P ,C ,D 的坐标可得出PD≠PC ,由此即可得出四边形BDMC 不能成为平行四边形.【题目详解】解:(1)∵点(1,)B m -在直线3y x =-+上,∴4m =.∵点(1,4)B -在k y x =的图像上, ∴4k =-,∴4y x =-. 设(,3)P a a -+,则4,33D a a -⎛⎫-+ ⎪-+⎝⎭. ∵(3,0)M ∴13a -<<.记MPD 的面积为S ,∴14(3)23S a a a -⎛⎫=--+ ⎪-+⎝⎭213222a a =-++.(2)当点P 为BM 中点时,其坐标为(1,2)P ,∴(2,2)D -.∵直线l 在x 轴下方的部分沿x 轴翻折得MN 表示的函数表达式是:3(3)y x x =-,∴(5,2)C ,∴3PD =,4PC =∴PC 与PD 不能互相平分,∴四边形不能成为平行四边形.【答案点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.19、(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【答案解析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【题目详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=1(名), ∴1800名学生中估计最喜爱科普类书籍的学生人数为1.20、2【答案解析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【题目详解】解:原式=2+2﹣+2 =2﹣2+2=2. 【答案点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.21、(1)120,180;(2)①y=-60x+7200,0≤x≤403;②x=403时,y 有最小值,此时y 最小=-60×403+7200=6400(元). 【答案解析】(1)根据小明和小华的培训结算表列出关于a 、b 的二元一次方程组,解方程即可求解;(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y 与x 之间的函数关系式,进而确定自变量x 的取值范围;②根据一次函数的性质结合自变量的取值范围即可求解.【题目详解】(1)由题意,得{20a 20b 600030a 10b 5400+=+=, 解得{a 120b 180==,故a ,b 的值分别是120,180;(2)①由题意,得y=120x+180(40-x ),化简得y=-60x+7200,∵普通时段的培训学时不会超过其他两个时段总学时的12, ∴x≤12(40-x ),解得x≤403, 又x≥0, ∴0≤x≤403; ②∵y=-60x+7200,k=-60<0,∴y 随x 的增大而减小,∴x 取最大值时,y 有最小值,∵0≤x≤403; ∴x=403时,y 有最小值,此时y 最小=-60×403+7200=6400(元). 【答案点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.22、(1)24,120°;(2)见解析;(3)1000人【答案解析】(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.【题目详解】解:(1)该校参加航模比赛的总人数是6÷25%=24(人),则参加空模人数为24﹣(6+4+6)=8(人),∴空模所在扇形的圆心角的度数是360°×824=120°, 故答案为:24,120°;(2)补全条形统计图如下:(3)估算今年参加航模比赛的获奖人数约是2500×3280=1000(人).【答案点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23、(1)y=12x2+x﹣32(2)存在,(﹣1﹣22,2)或(﹣1+22,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1 【答案解析】(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,32)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【题目详解】(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,32)代入抛物线解析式得09a-3b+c0a+b+c32c⎧⎪=⎪=⎨⎪⎪=-⎩,解得:a=12,b=1,c=﹣32∴抛物线解析式:y=12x2+x﹣32(2)存在.∵y=12x2+x﹣32=12(x+1)2﹣2∴P点坐标为(﹣1,﹣2)∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,设E(a,2),∴12a2+a﹣32=2解得a1=﹣1﹣22,a2=﹣1+22∴符合条件的点E的坐标为(﹣1﹣22,2)或(﹣1+22,2)(3)∵点A(﹣3,0),点B(1,0),∴AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形∴AB∥PF,AB=PF=4∵点P 坐标(﹣1,﹣2)∴点F 坐标为(3,﹣2),(﹣5,﹣2)∴平行四边形的面积=4×2=1若AB 为对角线,以A 、B 、P 、F 为顶点的四边形为平行四边形∴AB 与PF 互相平分设点F (x ,y )且点A (﹣3,0),点B (1,0),点P (﹣1,﹣2) ∴3112200222x y -+-+⎧=⎪⎪⎨+-+⎪=⎪⎩ , ∴x=﹣1,y=2∴点F (﹣1,2)∴平行四边形的面积=12×4×4=1 综上所述:点F 的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.【答案点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.24、共有7人,这个物品的价格是53元.【答案解析】根据题意,找出等量关系,列出一元一次方程.【题目详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【答案点睛】本题考查了二元一次方程的应用.。

西工大初三模考二数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的图象与x轴的交点为A、B,则线段AB的中点坐标为()。

A. (1, 0)B. (2, 0)C. (3, 0)D. (1, 1)答案:B2. 在等腰三角形ABC中,AB=AC,且AB=8cm,底边BC=6cm,则顶角A的度数为()。

A. 30°B. 45°C. 60°D. 90°答案:D3. 已知一元二次方程x^2 - 5x + 6 = 0的两个根分别为x1和x2,则x1+x2的值为()。

A. 5B. 6C. 10D. 12答案:A4. 下列各组数中,能构成等差数列的是()。

A. 2, 4, 6, 8, 10B. 1, 3, 5, 7, 9C. 3, 6, 9, 12, 15D. 4, 8, 12, 16, 20答案:C5. 已知正方形的对角线长度为10cm,则该正方形的面积为()。

A. 50cm²B. 100cm²C. 25cm²D. 200cm²答案:B6. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()。

A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A7. 下列函数中,y=√(x-1)的定义域为()。

A. x≥1B. x≤1C. x>1D. x<1答案:A8. 已知三角形ABC中,∠A=45°,∠B=60°,则∠C的度数为()。

A. 45°B. 60°C. 75°D. 90°答案:C9. 在一次函数y=kx+b中,若k<0,则该函数的图象()。

A. 通过第一、二、四象限B. 通过第一、二、三象限C. 通过第一、三、四象限D. 通过第二、三、四象限答案:C10. 若等比数列{an}的第一项为a1,公比为q,且a1=3,a3=27,则q的值为()。

备战2020中考西北工业大学附属中学中考第二次模拟考试数学试题含答案【含多套模拟】

中学数学二模模拟试卷一、选择题(本大题共10小题,共30.0分)1.在实数|-3|,-2,0,π中,最小的数是()A. B. C. 0 D.2.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.3.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.下列计算正确的是()A. B. C. D.5.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.6.如图,圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A. 3B. 4C. 5D. 67.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C. 4D. 58.已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A. B. C. D.9.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.B.C.D. 2010.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A. 7B. 8C. 9D. 10二、填空题(本大题共6小题,共18.0分)11.0.000000602用科学记数法可表示为______.12.若方程=-1的解是负数,则a的取值范围是______.13.如果从某个多边形的一个顶点出发的对角线共有3条,那么该多边形的内角和是______度.14.已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为______.15.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是______.16.在边长为4的等边三角形ABC中,P是BC边上的一个动点,过点P分别作PM⊥AB于M,PN⊥AC于N,连接PA,则下列说法正确的是______(填序号).①若PB=1,则;②若PB=2,则S△ABC=8S△BMP;③四边形;④若0<PB≤1,则S四边形AMPN最大值是.三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:(x+1-)÷(-4),其中x=2cos30°四、解答题(本大题共8小题,共92.0分)18.计算:+|-2|+tan60°-(-2)0+()-219.在平行四边形ABCD中,E为BC边上的一点,连结AE.若AB=AE,求证:∠DAE=∠D.20.张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:根据信息解答下列问题:(1)填空:m=______,n=______;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在______组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.21.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax-b2=0的一个根吗?说明理由.②若AD=EC,求的值.22.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?23.在边长为12的正方形ABCD中,P为AD的中点,连结PC,(1)作出以BC为直径的⊙O,交PC于点Q(要求尺规作图,不要求写作法,保留作图痕迹);(2)连结AQ,证明:AQ为⊙O的切线;(3)求QC的长与cos∠DAQ的值;24.已知AP是半圆O的直径,点C是半圆O上的一个动点(不与点A、P重合),联结AC,以直线AC为对称轴翻折AO,将点O的对称点记为O1,射线AO1交半圆O于点B,联结OC.(1)如图1,求证:AB∥OC;(2)如图2,当点B与点O1重合时,求证:;(3)过点C作射线AO1的垂线,垂足为E,联结OE交AC于F.当AO=5,O1B=1时,求的值.25.已知抛物线C1:y=ax2+bx-(a≠0)经过点A(1,0)和B(-3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标.(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的上方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标.(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.答案和解析1.【答案】B【解析】解:在实数|-3|,-2,0,π中,|-3|=3,则-2<0<|-3|<π,故最小的数是:-2.故选:B.直接利用利用绝对值的性质化简,进而比较大小得出答案.此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.【答案】A【解析】解:该几何体的俯视图为故选:A.俯视图有3列,从左到右正方形个数分别是2,2,1.本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.3.【答案】A【解析】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.【答案】A【解析】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6-2=a4,故本选项错误.故选:A.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.5.【答案】C【解析】解:由数轴上点的位置,得a<-4<b<0<c<1<d.A、a<-4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.6.【答案】A【解析】解:∵圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×5,解得r=3.故选:A.直接根据弧长公式即可得出结论.本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.7.【答案】D【解析】【分析】本题考查了菱形的性质、应用面积法构造方程,以及反比例函数图象上点的坐标与k之间的关系.根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答】解:连接AC,BD,AC与BD、x轴分别交于点E、F,由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线,∴S=4×AE·BE=,菱形ABCD∴AE=,设点B的坐标为(4,y),则A点坐标为(1,y+),∵点A、B同在y=图象上,∴4y=1·(y+),∴y=,∴B点坐标为(4,),∴k=5,故选D.8.【答案】A【解析】解:当y=0,则0=x2-4x+3,(x-1)(x-3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2-4x+3=(x-2)2-1,∴M点坐标为:(2,-1),∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选:A.直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.9.【答案】B【解析】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180-70)°=130°,∴∠PMN==25°.故选:B.根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.10.【答案】B【解析】解:连结OQ、OP,作OH⊥l于H,如图,则OH=3,∵PQ为⊙O的切线,∴OQ⊥PQ,在Rt△POQ中,PQ==,当OP最小时,PQ最小,正方形PQRS的面积最小,而当OP=OH=3时,OP最小,所以PQ的最小值为=2,所以正方形PQRS的面积最小值为8.故选:B.连结OQ、OP,作OH⊥l于H,如图,则OH=3,根据切线的性质得OQ⊥PQ,利用勾股定理得到PQ==,根据垂线段最短,当OP=OH=3时,OP最小,于是PQ的最小值为2,即可得到正方形PQRS的面积最小值为8.本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.11.【答案】6.02×10-7【解析】解:0.000000602=6.02×10-7.故答案为:6.02×10-7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】a>-2且a≠4【解析】解:去分母得2x+a=-x-2,解得x=-,因为方程=-1的解是负数,所以-<0,解得a>-2,而x+2≠0,即-+2≠0,解得a≠4,所以a的范围为a>-2且a≠4.故答案为a>-2且a≠4.先去分母得到关于x的与一次方程吗,解方程得到x=-,利用方程=-1的解是负数得到-<0,加上分母不为零得-+2≠0,然后解两个不等式得到a的范围.本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.【答案】720【解析】解:∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,内角和=(6-2)×180°=720°故答案是:720.由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.14.【答案】10cm或6.5cm【解析】解:①若直角三角形的斜边与12cm长的直角边相差8cm,则斜边长为20cm,∴斜边上的中线长为10cm;②若直角三角形的斜边与xcm长的直角边相差8cm,则斜边长为(x+8)cm,由勾股定理可得,122+x2=(x+8)2,解得x=5,∴斜边长为13cm,∴斜边上的中线长为6.5cm;故答案为:10cm或6.5cm.分两种情况讨论::①直角三角形的斜边与12cm长的直角边相差8cm,②直角三角形的斜边与xcm长的直角边相差8cm,依据勾股定理以及直角三角形斜边上中线的性质,即可得到结论.本题主要考查了直角三角形斜边上中线的性质,注意在直角三角形中,斜边上的中线等于斜边的一半.15.【答案】【解析】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3-x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3-x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.16.【答案】①②【解析】解:①∵PM⊥AB,△ABC是等边三角形,∴∠BPM=30°,∴BM=BP=,PM===,AM=AB-BM=4-=,∴PA===,故①正确;②PB=2,则P为BC的中点,PA为△ABC的高,BM=BP=1,PM===,PA===2,∴S△ABC=BC•PA=×4×2=4,S△BMP=BM•PM=×1×=,∴S△ABC=8S△BMP,故②正确;③设BP=x,则CP=4-x,∵△ABC是等边三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(4-x)=2-,PN=(4-x),∴AM=4-x,AN=2+x,∴四边形AMPN的周长=x+(4-x)+4-x+2+x=2+6,故③不正确;④由③得:S=×(4-x)•x+[4-(4-x)]•(4-x)=-x2+四边形AMPNx+2,=-(x-2)2+3,若0<PB≤1,当x=1,即PB=1时,S的值最大=-(x-1)2+3=,故④不正确;四边形AMPN故答案为:①②.①由等边三角形的性质和直角三角形的性质得出BM=BP=,PM=,AM=AB-BM=,由勾股定理求出PA的长,即可得出结论;②PB=2,则P为BC的中点,PA为△ABC的高,BM=BP=1,由勾股定理求出PM=,PA=2,由三角形面积公式即可得出结论;③设BP=x,则CP=4-x,由等边三角形的性质和直角三角形的性质得出BM=x,PM=x,CN=(4-x),PN=(4-x),求出AM=4-x,AN=2+x,得出四边形AMPN的周长,即可得出结论;④由③得:S=-x2+x+2=-(x-2)2+3,求出0<PB≤1时,四边形AMPNPB=1时的面积最大,代入二次函数进行计算即可得出结论.本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形面积公式以及二次函数关系式;熟练掌握等边三角形和直角三角形的性质,求出二次函数关系式是解决问题的关键.17.【答案】解:原式=÷=•=•=,当x=2×=时,原式==-7-4.【解析】原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=-0.5+2-2+-1+4=3+0.5.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和立方根的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】证明:∵四边形ABCD是平行四边形∴AD∥BC,∠B=∠D∴∠DAE=∠AEB∵AB=AE∴∠B=∠AEB∴∠D=∠DAE【解析】由平行四边形的性质可得AD∥BC,∠B=∠D,可得∠DAE=∠AEB,由等腰三角形的性质可得∠B=∠AEB,即可得结论.本题考查了平行四边形的性质,等腰三角形的性质,熟练运用平行四边形的性质是本题的关键.20.【答案】0.3 0.1 B【解析】解:(1)2÷0.1=20,m==0.3,n==0.1;故答案为0.3;0.1;条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)==.(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【答案】解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°-∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=-a,解方程x2+2ax-b2=0得,x==-a,∴线段AD的长是方程x2+2ax-b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.【解析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.22.【答案】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元),填写表格如下:()设该一次函数解析式为(),把点(5,90),(6,60)代入,得,解得:.故该一次函数解析式为:y=-30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(-30x+240)(x-5×0.8)=-30(x-6)2+120,∵-30x+240≥75,即x≤5.5,∴当x=5.5时,当日可获得利润最大,最大利润为112.5元.【解析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x-4),进而利用配方法求出函数最值即可.此题主要考查了待定系数法求一次函数解析式以及二次函数的应用,根据销售问题的相等关系得出W与x的函数关系式是解题关键.23.【答案】解:(1)如图,点Q为所作;(2)证明:过Q点作QE⊥BC于E,交AD于F,连接BQ、OQ、OA,如图,∵四边形ABCD为正方形,∴BC=CD=AD=AB=12,AD∥BC,在Rt△PCD中,PC==6,∵BC为直径,∴∠BQC=90°,∵PD∥BC∴∠CPD=∠BCQ,∴Rt△BCQ∽Rt△CPD,∴CQ:PD=BC:CP,即CQ:6=12:6,∴CQ=,∵CQ2=CE•CB,∴CE==,在Rt△CEQ中,QE==,∴FQ=12-=,∵AF=AD-FD=AD-CE=12-=.∴AQ==12,在△OAB和△OQA中,∴△OAB≌△OQA(SSS),∴∠OQA=∠OBA=90°,∴OQ⊥AQ,∴AQ为⊙O的切线;(3)由(2)得CQ=,AF=,AQ=12,∴cos∠EAQ==,即cos∠DAQ的值为.【解析】(1)作BC的垂直平分得到BC的中点O,然后作出⊙O;(2)过Q点作QE⊥BC于E,交AD于F,连接BQ、OQ、OA,如图,利用勾股定理计算PC=6,证明Rt△BCQ∽Rt△CPD,利用相似比计算出CQ=,再利用射影定理计算CE=,则可得到QE=,所以FQ=,从而利用勾股定理计算出AQ=12,于是可证明△OAB≌△OQA得到∠OQA=∠OBA=90°,然后根据切线的判定定理可判断AQ为⊙O的切线;(3)由(2)得CQ=,AF=,AQ=12,然后根据余弦的定义得到即cos∠DAQ 的值.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了正方形的性质、圆周角定理和切线的判定.24.【答案】解:(1)∵点O1与点O关于直线AC对称,∴∠OAC=∠O1AC.在⊙O中,∴∠OAC=∠C.∴∠C=∠O1AC,∴O1A∥OC,即AB∥OC;(2)方法一:如图2,连结OB.∵点O1与点O关于直线AC对称,AC⊥OO1,由点O1与点B重合,可得AC⊥OB.∵点O是圆心,AC⊥OB,∴;方法2:∵点O1与点O关于直线AC对称,∴AO=AO1,CO=CO1,由点O1与点B重合,可得AO=AB,CB=CO,∵OA=OC,∴AB=CB.∴;(3)当点O1在线段AB上(如图3),过点O作OH⊥AB,垂足为H.∵OH⊥AB,CE⊥AB,∴OH∥CE,又∵AB∥OC,∴HE=OC=5.∵AB=AO1+O1B=AO+O1B=6且OH⊥AB,∴AH=AB=3.∴AE=EH+AH=5+3=8,∵AB∥OC,∴==,当点O1在线段AB的延长线上,如图4,过点O作OH⊥AB,垂足为H.∵OH⊥AB,CE⊥AB,∴OH∥CE,又∵AB∥OC,∴HE=OC=5.∵AB=AO1-O1B=AO-O1B=4,又∵OH⊥AB,∴AH=AB=2.∴AE=EH+AH=5+2=7,∵AB∥OC,∴==.(1)利用对称性得出∠OAC=∠O 1AC ,再利用等边对等角得出∠OAC=∠C ,即可得出∠C=∠O 1AC ,求出AB ∥OC 即可;(2)由点O 1与点O 关于直线AC 对称,AC ⊥OO 1,由点O 1与点B 重合,可得AC ⊥OB ,再利用垂径定理推论得出AB=CB ;(3)分别根据当点O 1在线段AB 上以及当点O 1在线段AB 的延长线上时分别求出AE 的长即可得出答案.此题主要考查了圆的综合应用以及垂径定理和关于直线对称的性质等知识,利用数形结合以及分类讨论的思想得出是解题关键.25.【答案】解:(1)解:(1)∵抛物线C 1:y =ax 2+bx -(a ≠0)经过点A (1,0)和B (-3,0),∴解得, ∴抛物线C 1的解析式为y =x 2+x -,∵y = x 2+x - =(x +1)2-2, ∴顶点C 的坐标为(-1,-2);(2)如图1,作CH ⊥中学数学二模模拟试卷一、选择题(共12小题,每小题3分,每小题只有一个正确答案,共36分) 1.在0、21、-2、-1四个数中,最小的数是( ) A .-2 B . -1 C .0 D .21 2.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是是( )A .248a a a =÷B .1243a a a =⋅C .1055a a a =+D .52322x x x =⋅3.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D4.由吴京特别出演的国产科幻大片《流浪地球》自今年一月份放映以来实现票房与口碑的双丰收,票房有望突破50亿元。

陕西西北工业大学附中中考二模试卷--数学(解析版)

陕西省西北工业大学附中中考数学二模试卷一、选择题(共 10 小题,每小题 3 分,满分 30 分)1.下列各数中是负数的是()A .|﹣6|B .(﹣6)﹣1C .﹣(﹣6)D .(﹣6)2.如图是由 4 个大小相同的正方体搭成的几何体,其俯视图是( )A .B .C .D .3.计算(﹣3a 3)2 的结果是()A .﹣6a 5B .6a5C .9a6D .﹣9a 64.某商场一天中售出某种品牌的运动鞋 11 双,其中各种尺码的鞋的销售量如下表所示,鞋的尺码(单位:cm )销售量(单位:双)23123.5224224.5 255 1那么这 11 双鞋的尺码组成的一组数据中,众数与中位数分别为()A .23.5,24B .24,24.5C .24,24D .24.5,24.55.如图,△ABC 中,D ,E 两点分别在 AB ,AC 边上,且 DE ∥BC ,如果 ,AC=6,那么 AE 的长为( )A .3B .4C .9D .126.如图,菱形 ABCD 的对角线相交于点 O ,若 AC=12,AB=7,则菱形 ABCD 的面积是()A .12B .36C .24D .607.不等式组A .1B .2C .5的最小整数解为()D .68.已知 x 、x 是方程 x 2=2x+1 的两个根,则12的值为( )A .B .2C .D .﹣29.如图,四边形 A BCD 中,∠A=60°,AD=2,AB=3,点 M ,N 分别为线段 BC ,AB 上的动点(含端点,但点 M 不与 点 B 重合),点 E ,F 分别为 DM ,MN 的中点,则 EF 长度的最大值为()A .B .C .D .10.如图,二次函数 y =ax2+bx+c (a ≠0)的图象与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,且 OA=OC ,则下列结论①abc <0;②b 2﹣4ac >0;③ac ﹣b+1=0;④OA OB= . 其中正确结论的个数是()A .1B .2C .3D .4二、填空题(共 4 小题,每小题 3 分,满分 12 分)11.分解因式:a3﹣a=.12.A.已知圆锥的底面半径长为5,圆锥侧面展开后得到一个半圆,则该圆锥的母线长为.B.(用计算器)若某人沿坡角为23°的斜坡前进168cm,则他上升的高度是(精确到0.01m)13.如图,反比例函数y=的图象与矩形AOBC的边AC交于E,且AE=2CE,与另一边BC交于点D,连接DE,若S△CED=1,则k的值为.14.如图,∠BAC=120°,AD平分∠BAC,且AD=4,点P是射线AB上一动点,连接DP,△PAD的外接圆于AC交于点Q,则线段QP的最小值是.三、解答题15.计算:(﹣)﹣2﹣(π﹣)0﹣|﹣2|+2sin60°.16.化简:﹣,并求值,其中a=3+.17.如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平△分ABC的面积(不需写作法,保留作图痕迹)18.为了降低塑料袋﹣﹣“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查,小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是度,0.3元部分所对应的圆心角是度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?19.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证△:ABC与△DEC全等.20.如图,现有甲、乙两个小分队分别同时从B、C两地出发前往A地,甲沿线路BA行进,乙沿线路CA行进,已知C在A的南偏东55°方向,AB的坡度为1:5,同时由于地震原因造成BC路段泥石堵塞,在BC路段中位于A 的正南方向上有一清障处H,负责抢修BC路段,已知BH为12000m.(1)求BC的长度;(2)如果两个分队在前往A地时匀速前行,且甲的速度是乙的速度的三倍.试判断哪个分队先到达A地.(tan55°≈1.4,sin55°≈0.84,cos55°≈0.6,≈5.01,结果保留整数)21.某市为鼓励居民节约用水,规定如下用水收费标准:每户每月的用水量不超过12吨(含12吨)时,水费按a元/吨收费;超过时,不超过12吨(含12吨)时,水费按a元/吨收费;超过时,不超过12吨的部分仍按a元/吨收费,超过的部分按b元/吨(b>a)收费,已知该市小明家今年3月份和4月份的用水量、水费如表所示:月份3 4用水量(立方米)2820水费(元)5635.2(1)求a,b的值;(2)设某户1个月的用水量为x(吨),应交水费y(元),求出y与x之间的函数关系式;(3)已知某户5月份的用水量为18吨,求该户5月份的水费.22.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)23.如图,AB为⊙O的直径,CO⊥AB于点O,D在⊙O上,连接BD、CD,延长CD与AB的延长线交于E,F在BE 上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=10,tan∠BDF=,求EF的长.24.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C,将C向右平移m个单位得到抛物线C,C与C的在第一象限交点为M,1 12 1 2过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.25.已知△R t ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在△R t ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在△R t ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016年陕西省西北工业大学附中中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各数中是负数的是()A.|﹣6|B.(﹣6)﹣1C.﹣(﹣6)D.(﹣6)0【考点】绝对值;正数和负数;相反数;零指数幂;负整数指数幂.【专题】推理填空题.【分析】首先求出每个选项中的数各是多少;然后根据负数小于0,判断出各数中是负数的是哪个即可.【解答】解:|﹣6|=6>0,(﹣6)﹣1=﹣<0,﹣(﹣6)=6>0,(﹣6)0=1>0,∴各数中是负数的是(﹣6)﹣1.故选:B.【点评】此题主要考查了绝对值的含义和求法,负整数指数幂的求法,以及负数的含义和应用,要熟练掌握.2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到一行正方形的个数为3,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【考点】幂的乘方与积的乘方.【专题】计算题.【分析】先根据积的乘方,再根据幂的乘方计算即可.【解答】解:(﹣3a3)2=9a6.故选C.【点评】本题考查了积的乘方与幂的乘方.注意负数的偶次幂是正数;幂的乘方底数不变,指数相乘.4.某商场一天中售出某种品牌的运动鞋11双,其中各种尺码的鞋的销售量如下表所示,鞋的尺码(单位:cm)销售量(单位:双)23123.5224224.52551那么这11双鞋的尺码组成的一组数据中,众数与中位数分别为()A.23.5,24B.24,24.5 C.24,24D.24.5,24.5【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:23、23.5、23.5、24、24、24.5、24.5、24.5、24.5、24.5、25,数据24.5出现了五次最多为众数.24.5处在第6位为中位数.所以众数是24.5,中位数是24.5.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果,AC=6,那么AE的长为()A.3B.4C.9D.12【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,得到比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,又AC=6,∴AE=4,故选:B.【点评】本题考查平行线分线段成比例定理,正确运用定理、找准对应关系是解题的关键.6.如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD的面积是()A.12B.36C.24D.60【考点】菱形的性质.【分析】由菱形的性质得出A C⊥BD,OA=OC=AC=6,OB=OD=BD,由勾股定理求出O B,得出B D的长,菱形ABCD 的面积=AC×BD,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AC⊥BD,OA=OC=AC=6,OB=OD=BD,∴OB=∴BD=2,==,∴菱形ABCD的面积=AC×BD=×12×2=12;故选:A.【点评】本题考查了菱形的性质、勾股定理、菱形面积的计算;熟练掌握菱形的性质,由勾股定理求出O B是解决问题的关键.7.不等式组A.1B.2C.5的最小整数解为()D.6【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,从而可得最小整数解.【解答】解:解不等式﹣a≥﹣6,得:a≤6,解不等式>5,得:a>1,∴1<a≤6,∴该不等式组的最小整数解为2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知x、x是方程x2=2x+1的两个根,则1 2A.B.2C.D.﹣2【考点】根与系数的关系.【专题】计算题.的值为()【分析】先把方程化为一般式得x2﹣2x﹣1=0,根据根与系数的关系得到x+x=﹣2,x•x=﹣1,再把原式通分得1 2 1 2,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2﹣2x﹣1=0,根据题意得x+x=﹣2,x•x=﹣1,1 2 1 2==﹣2.∴原式=故选D.【点评】本题考查了一元二次方程a x2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x,x,则x+x=﹣,1 2 1 2x x= .1 29.如图,四边形A BCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.B.C.D.【考点】三角形中位线定理.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值.【解答】解:连接DB,过点D作DH⊥AB交AB于点H,∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在△R t ADH中,∵∠A=60°∴DH=ADsin60°=2×=,AH=ADcos60°=2×=1,∴BH=AB﹣AH=3﹣1=2,∴DB===,∴EF = DB=max, ∴EF 的最大值为故答案为:A ..【点评】本题考查的是三角形中位线定理、勾股定理的应用,掌握三角形的中位线平行于第三边,并且等于第三 边的一半是解题的关键.10.如图,二次函数 y =ax 2+bx+c (a ≠0)的图象与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,且 OA=OC ,则下列结论 ①abc <0;②b 2﹣4ac >0;③ac ﹣b+1=0;④OA OB= .其中正确结论的个数是( )A .1B .2C .3D .4【考点】抛物线与 x 轴的交点;二次函数图象与系数的关系.【专题】数形结合.【分析】利用抛物线开口方向得到 a <0,利用抛物线的对称轴位置得到 b <0,利用抛物线与 y 轴的交点位置得到 c <0,则可对①进行判断;利用抛物线与 x 轴有 2 个交点可对②进行判断;把 A 点坐标代入解析式可对③进 行判断;设 A 、B 两点的横坐标为 x 、x ,则 OA=﹣x ,OB=x ,利用根与系数的关系可对④进行判断.1 2 1 2【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在 y 轴的右侧,∴b<0,∵抛物线与 y 轴的交点在 x 轴下方,∴c<0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵OA=OC,C(0,c),∴A(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A、B两点的横坐标为x、x,则OA=﹣x,OB=x,1 2 1 2∵x•x=,1 2∴OA•OB=﹣,所以④错误.故选C.【点评】本题考查了抛物线与x轴的交点:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△2=b﹣4ac决定抛物线与x轴的交点个数△,=b2﹣4ac>0时,抛物线与x轴有2个交点;△2=b﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了二次函数图象与系数的关系.二、填空题(共4小题,每小题3分,满分12分)11.分解因式:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.1312.A.已知圆锥的底面半径长为5,圆锥侧面展开后得到一个半圆,则该圆锥的母线长为10.B.(用计算器)若某人沿坡角为23°的斜坡前进168cm,则他上升的高度是65.64m(精确到0.01m)【考点】解直角三角形的应用-坡度坡角问题;圆锥的计算.【分析】A、侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可;B、在三角函数中,根据坡度角的正弦值=垂直高度:坡面距离即可解答.【解答】解:A、设母线长为x,根据题意得:2πx÷2=2π×5,解得:x=10.故答案为:10;B、如图,∠A=23°,∠C=90°,则他上升的高度BC=ABsin23°=168sin23°≈65.64(米).故答案为:65.64m.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角问题以及圆锥的计算,通过构造直角三角形,利用锐角三角函数求解是解题关键.13.如图,反比例函数y=的图象与矩形AOBC的边AC交于E,且AE=2CE,与另一边BC交于点D,连接DE,若S=1,则k的值为3.△CED【考点】反比例函数系数k的几何意义.【分析】设E的坐标是(m,n),则C的坐标是(3m,n),在y=出mn,即可得出选项.【解答】解:设E的坐标是(m,n),则C的坐标是(3m,n),中,令x=3m,解得y= ,根据面积公式求在y=中,令x=3m,解得:y=,∵S△ECD=1,∴CE•CD=1,∴|m|•|n﹣|=1,解得:mn=3,∴k=3,故答案为:3.【点评】本题考查了反比例函数系数k的几何意义,三角形的面积的应用,解此题的关键是得出等式|m|•|n﹣|=1.14.如图,∠BAC=120°,AD平分∠BAC,且AD=4,点P是射线AB上一动点,连接DP,△PAD的外接圆于AC交于点Q,则线段QP的最小值是2.【考点】三角形的外接圆与外心.【分析】根据圆周角定理求出∠DQP=∠DPQ=60°,求△出PDQ是等边三角形,推出P Q=DP,求出P D的最小值,即可得出答案.【解答】解:连接DQ,∵∠BAC=120°,AD平分∠BAC,∴∠CAD=∠DAB=60°,∴∠DQP=∠DAB=60°,∠DPQ=∠DAC=60°,∴∠DQP=∠DPQ=60°,∴△PDQ是等边三角形,∴DP=PQ,2 2 2在△DAP中,由余弦定理得:DP=AD+AP﹣2•AD•AP•cos∠DAP,∵∠DAP=60°,AD=4,∴DP2=PA2﹣4PA+16=(PA﹣2)2+12,有最小值12,即当PA=2时,DP2即DP=2,∴PQ的最小值是2,故答案为:2.【点评】本题考查了三角形的外接圆,圆周角定理,等边三角形的性质和判定的应用,能求出D P的长是解此题的关键.三、解答题(共11小题,满分77分)15.计算:(﹣)﹣2﹣(π﹣)0﹣|﹣2|+2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据负整数指数幂的意义,零指数的规定,绝对值的定义,锐角三角函数的定义即可求出该式子的值.【解答】解:原式=(﹣2)2﹣1+(﹣2)+2×=4﹣1+﹣2+=1+2,【点评】本题考查实数的运算,涉及负整指数幂,零指数,绝对值,锐角三角函数等知识,综合程度较高,需要学生理解各知识后才能正确运算.16.化简:•﹣,并求值,其中a=3+.【考点】分式的化简求值.【分析】先将分式化简,然后将a的值代入即可.【解答】解:原式==+==将a=3+代入∴原式==,,+【点评】本题考查分式化简,涉及因式分解,分式的性质,二次根式的性质.17.如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平△分ABC的面积(不需写作法,保留作图痕迹)【考点】作图—复杂作图.【分析】首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD 即可.【解答】解:如图所示:,直线AD即为所求.【点评】此题主要考查了作图﹣﹣复杂作图,关键是掌握线段垂直平分线的作法,掌握三角形的中线平分三角形的面积.18.为了降低塑料袋﹣﹣“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查,小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是120人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是99度,0.3元部分所对应的圆心角是36度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?【考点】条形统计图;扇形统计图.【分析】(1)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.已知自备的有45人,占比例为;可求得总人数.(2)根据各类别人数等于总数可得0.1元的人数,补全条形图;用各类别人数占被调查人数的比例可求得扇形统计图中0.2、0.3元元部分所对应的圆心角.(3)用样本估计总体,按比例可估算出市场需销售塑料购物袋数目.【解答】解:(1)自备的有45人,占比例为总人数为45÷=120人;故答案为:120.(2)0.1元的人数为:120﹣45﹣33﹣12=30(人),条形统计图如图所示,180.2 元的有 33 人,占0.3 元的有 12 人,占故答案为:99,36.(3)3000×=1875,,其圆心角是 = ,其圆心角是×360°=99°×360°=36°;答:该市场需销售塑料购物袋的个数是 1875 个.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,四边形 ABCD 中,E 点在 AD 上,其中∠BAE=∠BCE=∠ACD=90°,且 BC=CE ,求证 △:ABC 与△DEC 全等.【考点】全等三角形的判定.【专题】证明题.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D ,再加上 BC=CE ,可证得结论. 【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△≌ABC△DEC(AAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即S SS、SAS、ASA、AAS和HL.20.如图,现有甲、乙两个小分队分别同时从B、C两地出发前往A地,甲沿线路BA行进,乙沿线路CA行进,已知C在A的南偏东55°方向,AB的坡度为1:5,同时由于地震原因造成BC路段泥石堵塞,在BC路段中位于A 的正南方向上有一清障处H,负责抢修BC路段,已知BH为12000m.(1)求BC的长度;(2)如果两个分队在前往A地时匀速前行,且甲的速度是乙的速度的三倍.试判断哪个分队先到达A地.(tan55°≈1.4,sin55°≈0.84,cos55°≈0.6,≈5.01,结果保留整数)【考点】解直角三角形的应用-方向角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)利用坡度的定义得出AH的长,再利用tan∠HAC=,得出CH的长,进而得出答案;(2)利用勾股定理得出AB的长利用cos∠HAC=,得出AC的长进而得出答案.【解答】解:(1)连接AH∵H在A的正南方向,∴AH⊥BC,∵AB的坡度为:1:5,∴在△R t ABH中,=,∴AH=12000×=2400(m)∵在△R t ACH中,tan∠HAC=,∴1.4=,即CH=3360m∴BC=BH+CH=15360m,答:BC的长为15360m;(2)乙先到达目的地,理由如下:在△R t ACH中,cos∠HAC=∴0.6=,即AC=,=4000(m),在△R t ABH中,由勾股定理得:AB==,设AH=x,BH=5x,=x≈5.01×2400=12024(m),∵3AC=12000<12024=AB,∴乙分队先到达目的地.【点评】此题主要考查了解直角三角形的应用以及勾股定理得应用,根据题意熟练应用锐角三角函数关系是解题关键.21.某市为鼓励居民节约用水,规定如下用水收费标准:每户每月的用水量不超过12吨(含12吨)时,水费按a元/吨收费;超过时,不超过12吨(含12吨)时,水费按a元/吨收费;超过时,不超过12吨的部分仍按a元/吨收费,超过的部分按b元/吨(b>a)收费,已知该市小明家今年3月份和4月份的用水量、水费如表所示:月份3 4用水量(立方米)2820水费(元)5635.2(1)求a,b的值;(2)设某户1个月的用水量为x(吨),应交水费y(元),求出y与x之间的函数关系式;(3)已知某户5月份的用水量为18吨,求该户5月份的水费.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)由题意可知,3、4月都超出12吨,所以费用应该由两部分组成,列出方程组即可求出a、b的值;(2)由于用水量不确定,所以需要分类讨论,第一种情况为当0<x≤12时,第二种情况为x>12,;(3)由题意知,x=18吨,代入(2)中相应的解析式即可求出5月份的水费.【解答】解:(1)由题意列出方程为:,解得:,答:a=1.2,b=2.6;(2)当0<x≤12时,y=1.2x,当x>12时,∴y=12×1.2+2.6(x﹣12)=2.6x﹣16.8综上所述:y=;(3)令x=18∴y=2.6×18﹣16.8=30答:该户5月份的水费为30元.【点评】本题考查一次函数的应用,涉及分段函数,分类讨论,解方程等知识,综合程度较高,属于中等题型.22.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【考点】游戏公平性;列表法与树状图法.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.(2)解题思路同上.【解答】解:(1)甲同学的方案不公平.理由如下:列表法,小明小刚23452(2,3)(2,4)(2,5)3(3,2)(3,4)(3,5)4(4,2)(4,3)(4,5)5(5,2)(5,3)(5,4)所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)不公平.理由如下:=,小明小刚23422(3,2)(2,3)(2,4)(3,4)4(4,2)(4,3)所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:= ,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【点评】此题主要考查了游戏公平性,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上的完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,AB为⊙O的直径,CO⊥AB于点O,D在⊙O上,连接BD、CD,延长CD与AB的延长线交于E,F在BE 上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=10,tan∠BDF=,求EF的长.【考点】切线的判定;勾股定理;垂径定理;解直角三角形.【分析】(1)连结OD,如图,由CO⊥AB得∠E+∠C=90°,根据等腰三角形的性质由F E=FD,OD=OC得到∠E=∠FDE,∠C=∠ODC,于是有∠FDE+∠ODC=90°,则可根据切线的判定定理得到F D是⊙O的切线;(2)连结AD,如图,利用圆周角定理,由AB为⊙O的直径得到∠ADB=90°,则∠A+∠ABD=90°,加上∠OBD=∠ODB,∠BDF+∠ODB=90°,则∠A=∠BDF,易得△FBD∽△,FDA根据相似的性质得=,再在△R t ABD中,根据正切的定义得到tan∠A=tan∠BDF=【解答】(1)证明:连结OD,如图,∵CO⊥AB,∴∠E+∠C=90°,∵FE=FD,OD=OC,=,于是可计算出DF=2.5,从而得到EF=2.5.∴∠E=∠FDE,∠C=∠ODC,∴∠FDE+∠ODC=90°,∴∠ODF=90°,∴OD⊥DF,∴FD是⊙O的切线;(2)解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△∽FBD△,FDA∴=,=,在△R t ABD中,tan∠A=tan∠BDF=∴=,∴DF=2.5,∴EF=2.5.已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.24.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C,将C向右平移m个单位得到抛物线C,C与C的在第一象限交点为M,1 12 1 2过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.【考点】抛物线与x轴的交点;二次函数图象与几何变换;等腰三角形的性质.【分析】(1)利用交点式求二次函数的解析式,并配方求对称轴;(2)先求直线AC的解析式,根据各自的解析式设出M(x,﹣x2++2),H(x,﹣x+2),由图得△CMH 为等腰三角形时,CM=CH,则有GH+GM=4,列式计算求出M的坐标,把M的坐标代入平移后的解析式可并得出m的值.【解答】解:(1)当x=0时,y=ax2+bx+2=2,∴抛物线经过(0,2),∵抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,设抛物线的解析式为:y=a(x﹣4)(x+1),把(0,2)代入得:2=a(0﹣4)(0+1),a=﹣,∴y=﹣(x﹣4)(x+1)=﹣x2++2=﹣(x﹣)2+,∴抛物线的解析式为:y=﹣x2++2,对称轴是:直线x=;(2)设直线AC的解析式为:y=kx+b,把A(4,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=﹣x+2,设M(x,﹣x2++2),H(x,﹣x+2),∵△CMH为等腰三角形,∴CM=CH,∴C是MH垂直平分线上的点,∴GH+GM=4,则﹣x2++2+(﹣x+2)=4,解得:x=0(舍),x=2,1 2∴M(2,3),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(2,3)代入得:m=1.【点评】本题是二次函数与几何变换,考查了二次函数的性质和等腰三角形的性质,同时还考查了利用待定系数法求二次函数和一次函数的解析式,本题的关键是根据垂直平分线的逆定理得G H+GM=4,列方程可解决此题.25.已知△R t ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在△R t ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在△R t ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.。

2024届陕西史上最全的中考二模数学试题含解析

2024届陕西史上最全的中考二模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=02.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π-B .433π-C .8333π- D .9344π- 3.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-4.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( )A .a≠±1B .a =1C .a =﹣1D .a =±15.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π--B .2212π-- C .2222π-- D .2214π--6.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.227.下列运算正确的是( )A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()8.估计112-的值在( )A .0到l 之间B .1到2之间C .2到3之间D .3到4之间9.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A .B .C .D .10.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知,如图,AB//CD,∠DCF=100°,则∠AEF 的度数为 ( )A .120°B .110°C .100°D .80°12.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( )A .①②B .①③C .①④D .①③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.当x=_________时,分式323xx -+的值为零.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.15.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.16.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.17.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.18.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).20.(6分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.21.(6分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?22.(8分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.23.(8分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.26.(12分)如图,已知AD 是ABC △的中线,M 是AD 的中点,过A 点作AE BC ∥,CM 的延长线与AE 相交于点E ,与AB 相交于点F .(1)求证:四边形AEBD 是平行四边形;(2)如果3AC AF =,求证四边形AEBD 是矩形.27.(12分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少? (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解题分析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.2、A【解题分析】解:连接OB 、OC ,连接AO 并延长交BC 于H ,则AH ⊥BC .∵△ABC 是等边三角形,∴BH 33OH =1,∴△OBC 的面积= 12×BC ×OH 3则△OBA 的面积=△OAC 的面积=△OBC 的面积3BOC =120°,∴图中的阴影部分面积=2240223360π⨯-8233π-A . 点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.3、D【解题分析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案. 【题目详解】22()()=b a a b b a b a b a a a ba a a -++-÷⨯=-+ 2ab -=()2b a a b ∴-=--=-故选:D .【题目点拨】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.4、C【解题分析】根据一元一次方程的定义即可求出答案.【题目详解】 由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1 故选C .【题目点拨】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.5、B【解题分析】先利用三角函数求出∠BAE =45°,则BE =AB DAE =45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可.【题目详解】解:∵AE =AD =2,而AB ,∴cos ∠BAE =AB AE ,∴∠BAE =45°,∴BE =AB BEA =45°.∵AD ∥BC ,∴∠DAE =∠BEA =45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD ﹣12﹣2452360π⋅⋅﹣1﹣2π. 故选B .【题目点拨】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.6、A【解题分析】根据绝对值的性质进行解答即可.【题目详解】实数﹣5.1的绝对值是5.1.故选A .【题目点拨】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.7、D【解题分析】根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.【题目详解】解:A 、B 两项不是同类项,所以不能合并,故A 、B 错误,C 、D 考查幂的乘方运算,底数不变,指数相乘.326x x ()= ,故D 正确;【题目点拨】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.8、B【解题分析】∵9<11<16,∴34<<,∴122<<故选B.9、C【解题分析】看到的棱用实线体现.故选C.10、A【解题分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【题目详解】解:点(2,3)所在的象限是第一象限.故答案为:A【题目点拨】考核知识点:点的坐标与象限的关系.11、D【解题分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算即可.【题目详解】解:依题意得:2﹣x=1且2x+2≠1.解得x=2,故答案为2.【题目点拨】本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.14、【解题分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【题目详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【题目点拨】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15、160°【解题分析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.16、(1,0);(﹣5,﹣2).【解题分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【题目详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2). 故答案为:(1,0)、(-5,-2).17、1【解题分析】连接OB ,由矩形的性质和已知条件得出△OBD 的面积=△OBE 的面积=12四边形ODBE 的面积,再求出△OCE 的面积为2,即可得出k 的值.【题目详解】连接OB ,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=kx(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=12四边形ODBE的面积=1,∵BE=2EC,∴△OCE的面积=12△OBE的面积=2,∴k=1.故答案为:1.【题目点拨】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.18、4;【解题分析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解题分析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=AB tan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=AB tan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.20、(1)k=b2+4b;(2).【解题分析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.21、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解题分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【题目详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【题目点拨】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.22、(1)坡底C点到大楼距离AC的值为203米;(2)斜坡CD的长度为803-120米.【解题分析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=60203603ABtan==︒(米)答:坡底C点到大楼距离AC的值是203米.(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,∴AF=DE,DF=AE.设CD=x米,在Rt△CDE中,DE=12x米,3米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-12x(米)∵DF=AE=AC+CE,∴3312x解得:3(米)故斜坡CD的长度为(3)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.23、(1)作图见解析;(2)5 2【解题分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【题目详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=12BC=52.24、(1)C(2,-1),A(1,0);(2)①3,②0<t<12+2,1)或(2+2,1)或(-1,0)【解题分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L 双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【题目详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=2+2或x=-2+2.∴点P的坐标为(2+2,1)或(-2+2,1),当点P(-1,0)时,也满足条件.综上所述,满足条件的点(2+2,1)或(-2+2,1)或(-1,0)【题目点拨】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.25、(1)证明见解析;(2).【解题分析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO, OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.26、(1)见解析;(2)见解析.【解题分析】(1)先判定AEM DCM ≌,可得AE CD =,再根据AD 是ABC △的中线,即可得到AD CD BD ==,依据AE BD ,即可得出四边形AEBD 是平行四边形;(2)先判定AEF BCF ∽,即可得到3AB AF =,依据3AC AF =,可得AB AC =根据AD 是ABC △的中线,可得AD BC ⊥,进而得出四边形AEBD 是矩形.【题目详解】证明:(1)M 是AD 的中点,AM DM ∴=,AE BC ∥,AEM DCM ∴∠∠=,又AME DMC ∠∠=,AEM DCM ∴≌,AE CD ∴=,又AD 是ABC △的中线,AD CD BD ∴==,又AE BD ∥,∴四边形AEBD 是平行四边形;(2)AE BC ∥,AEF BCF ∴∽, ∴AF AE 1BF BC 2==,即2BF AF =, 3AB AF ∴=,又3AC AF =,AB AC ∴=,又AD 是ABC △的中线,AD BC ∴⊥, 又四边形AEBD 是平行四边形,∴四边形AEBD 是矩形.【题目点拨】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.27、18 60分【解题分析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x =18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省西工大附中2013年中考数学二模试卷一、选择题(共10小题,每小题3分,计30分)1.(3分)5月18日某地的最低气温是11℃,最高气温是27℃,下面用数轴表示这一天气温的变化范围正确的是()A.B.C.D.考点:在数轴上表示不等式的解集分析:最低气温是11℃,则气温一定大于或等于11℃,最高气温是27℃则气温一定小于或定于27℃.解答:解:最低气温与最高气温也是这一天的实时温度,所以在数轴上两端应该为实心圆点,而不是空心圆点,其它的温度应该是它们的中间温度.故选A.点评:本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.2.(3分)下列计算正确的是()A.a+2a=3a2B.a2•a3=a6C.a3÷a=a2D.(﹣2a2)3=2a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:对各选项分别进行合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方等运算,选出正确选项即可.解答:解:A、a+2a=3a,该式计算错误,故本选项错误;B、a2•a3=a5,该式计算错误,故本选项错误;C、a3÷a=a2,该式计算正确,故本选项正确;D、(﹣2a2)3=﹣8a6,该式计算错误,故本选项错误;故选C.点评:本题考查了合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方等知识,属于基础题,掌握各知识点运算法则是解题关键.3.(3分)三角形的外心是三角形外接圆的圆心,它也是三角形()A.三条内角平分线的交点B.三边垂直平分线的交点C.三边中线的交点D.三条高线的交点考点:三角形的外接圆与外心分析:根据垂直平分线上的点到线段的两个端点的距离相等得出三角形三边垂直平分线的交点到三角形的三个顶点的距离相等,即可得出答案.解答:解:∵三角形的外心是三角形外接圆的圆心,是三角形三边垂直平分线的交点,∴选项A、C、D错误,选项B正确;故选B.点评:本题考查了三角形的外接圆与外心,线段垂直平分线的性质的应用.4.(3分)某班团支部统计了该班甲、乙、丙、丁四名同学在5月份“书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间与方差s2如表所示,你认为表现最好的是()甲乙丙丁1.2 1.5 1.5 1.2S20.2 0.3 0.1 0.1A.甲B.乙C.丙D.丁考点:方差;算术平均数分析:根据方差和平均数的意义进行分析.先通过平均数进行比较,平均数越大越好;再比较方差,方差越小越稳定.解答:解:∵乙、丙的平均数大于甲、丁的平均数,故乙、丙表现较好;又∵丙的方差小于乙的方差,则丙的表现比较稳定,所以丙的表现最好.故选C.点评:本题考查了方差和算术平均数,理解它们的意义是解题的关键.5.(3分)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个考点:由三视图判断几何体分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.解答:解:由俯视图易得最底层有5个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是6个或7个或8个.故小立方体的个数不可能是9.故选D.点评:查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.6.(3分)(2012•枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x(1+30%)B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%×80%=2080考点:由实际问题抽象出一元一次方程分析:设该电器的成本价为x元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.解答:解:设该电器的成本价为x元,x(1+30%)×80%=2080.故选A.点评:本题考查理解题意的能力,以售价作为等量关系列方程求解.7.(3分)(2004•重庆)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°考点:菱形的性质分析:连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF 的度数,则∠CDF也就求得了.解答:解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.点评:本题考查全等三角形的判定条件,菱形的性质,垂直平分线的性质.8.(3分)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:正比例函数的性质分析:根据正比例函数的性质可得﹣3m>0,解不等式可得m的取值范围,再根据各象限内点的坐标符号可得答案.解答:解:∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得:m<0,∴P(m,5)在第二象限,故选:B.点评:此题主要考查了正比例函数的性质,以及各象限内点的坐标符号,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y 随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.9.(3分)量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第25秒时,点E在量角器上对应的读数是()度.A.25 B.50 C.75 D.100考点:圆周角定理.分析:首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.解答:解:连接OE,∵射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,∴第25秒时,∠ACE=2°×25=50°,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA=2×50°=100°.故选D.点评:此题考查了圆周角定理.此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.10.(3分)对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①③B.①④C.②③D.②④考点:二次函数的性质专题:压轴题.分析:根据△=4m2﹣4×(﹣3)=4m2+12>0,根据△的意义对①进行判断;由a=1>0得抛物线开口向上,抛物线对称轴为直线x=﹣=m,由于当x≤1时y随x的增大而减小,则直线x=1在直线x=m的左侧,于是可对②进行判断;配方得到y=(x﹣m)2﹣m2﹣3,则抛物线向左平移3个单位的解析式为y=(x﹣m+3)2﹣m2﹣3,把原点坐标代入计算出m的值,则可对③进行判断;根据抛物线的对称性由当x=4时的函数值与x=2时的函数值相等得到抛物线的对称轴为直线x=3,则m=3,所以抛物线解析式为y=x2﹣6x ﹣3,然后计算x=6时的函数值,则可对④进行判断.解答:解:∵△=4m2﹣4×(﹣3)=4m2+12>0,∴抛物线与x轴有两个公共点,所以①正确;∵a=1>0,∴抛物线开口向上,抛物线对称轴为直线x=﹣=m,当在对称轴左侧时,y随x的增大而减小,而当x≤1时y随x的增大而减小,∴m≥1,所以②错误;∵y=(x﹣m)2﹣m2﹣3,∴抛物线向左平移3个单位的解析式为y=(x﹣m+3)2﹣m2﹣3,把(0,O)代入得(m﹣3)2﹣m2﹣3=0,解得m=1,所以③错误;∵当x=4时的函数值与x=2时的函数值相等,∴抛物线的对称轴为直线x=3,则x=m=3,∴抛物线解析式为y=x2﹣6x﹣3,当x=6时的函数值为﹣3,所以④正确.故选B.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣,抛物线顶点坐标为(﹣,);抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共6小题,每小题3分,计18分)11.(3分)计算:= 1 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=++×1﹣=1.故答案为1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(3分)(2012•南宁)分解因式:ax2﹣4ax+4a= a(x﹣2)2.考点:提公因式法与公式法的综合运用分析:先提取公因式a,再利用完全平方公式进行二次分解.解答:解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.13.(3分)(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 2 .考点:旋转的性质;等边三角形的性质分析:由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.解答:解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.点评:此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.14.(3分)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.已知一个圆锥的底面半径为3,母线长为10,则这个圆锥的侧面积为30π.B.用科学记算器计算: 2.64 .(精确到0.01)考点:圆锥的计算;计算器—三角函数分析:A、首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解;B、首先代入和cos32°的近似值,然后进行计算即可.解答:解:A、底面周长是:6π,则圆锥的侧面积是:×6π×10=30π,故答案是:30π;B、cos32°≈3.162×0.848≈2.64,故答案是:2.64.点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(3分)(2010•小店区)如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.考点:反比例函数系数k的几何意义专题:压轴题;数形结合;转化思想.分析:由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.解答:\解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.点评:本题主要考查了待定系数法求反比例函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.16.(3分)如图,在正方形ABCD中,∠DAC的平分线交DC于点E,点P、Q分别是AD和AE 上的动点,若DQ+PQ的最小值是2,则正方形ABCD的周长为.考点:轴对称-最短路线问题;正方形的性质专题:压轴题.分析:过D作DF⊥AE于F,延长DF交AC于D′,过D′作D′P′⊥AD于P′,D′P′交AE 于Q′.由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值,再根据等腰直角三角形的性质求出正方形的边长,则周长=4×边长.解答:解:过D作DF⊥AE于F,延长DF交AC于D′,过D′作D′P′⊥AD于P′,D′P′交AE于Q′.∵DD′⊥AE于F,∴∠AFD=∠AFD′=90°,∵∠DAC的平分线交DC于点E,∴∠DAE=∠CAE,∵在△DAF与△D′AF中,,∴△DAF≌△D′AF(ASA),∴D′是D关于AE的对称点,AD=AD′,∴D′P′即为DQ+PQ的最小值.∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′=2,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=8,∴AD′=2,AD=AD′=2∴正方形ABCD的周长=4AD=8.故答案为8.点评:本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键.三、解答题(共9小题,计72分)17.(5分)先化简,再求值:,其中.考点:分式的化简求值专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•=,当a=时,原式==﹣﹣1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(6分)(2012•南宁)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.考点:全等三角形的判定与性质专题:压轴题.分析:(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.解答:解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:∵在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD,∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.点评:本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD 是关键.19.(7分)(2012•泰兴市一模)国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了500 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有12000 人;(3)根据统计结果,请你简单谈谈自己的看法.考点:扇形统计图;用样本估计总体;条形统计图专题:压轴题.分析:(1)扇形统计图中缺少的是第三项:三姿良好,所占的百分比是1减去其它各项的百分比;条形统计图中:求得三姿良好的人数即可表示;(2)根据坐姿不良的是100人,占20%,即可求得抽查的人数;利用10万乘以三姿良好的比例即可求解;(3)根据统计表即可说明即可,答案唯一.解答:解:(1)扇形图中填:三姿良好12%,条形统计图,如图所示(2)500,12000;(3)答案不唯一,如中学生应该坚持锻炼身体,努力纠正坐姿、站姿、走姿中的不良习惯,促进身心健康发育.点评:本题主要考查扇形统计图的画法及用样本估计总体等知识.根据扇形统计图可以得到百分比,根据条形统计图可以得到每组的人数.20.(8分)如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B四点在平行于斑马线的同一直线上)(参考数据:,,)考点:解直角三角形的应用分析:由∠FAE=15°,∠FAD=30°可知∠EAD=15°,根据AF∥BE可知∠AED=∠FAE=15°,∠ADB=∠FAD=30°,设AB=x,则在Rt△AEB中,EB=,在Rt△ADB中,BD=,再把两式联立即可求出CD的值.解答:解:∵∠FAE=15°,∠FAD=30°,∴∠EAD=15°,∵AF∥BE,∴∠AED=∠FAE=15°,∠ADB=∠FAD=30°,设AB=x,则在Rt△AEB中,EB==,∵ED=4,ED+BD=EB,∴BD=﹣4,在Rt△ADB中,BD==,∴﹣4=,即(﹣)x=4,解得x=2,∴BD==2,∵BD=CD+BC=CD+0.8,∴CD=2﹣0.8≈2×1.732﹣0.8≈2.7>2,故符合标准.答:该旅游车停车符合规定的安全标准.点评:本题考查的是解直角三角形的应用,根据题意找出符合条件的直角三角形,利用直角三角形的性质进行解答是解答本题的关键.21.(8分)(2012•郯城县一模)A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y (千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.考点:一次函数的应用专题:压轴题.分析:(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.解答:解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).点评:此题主要考查利用待定系数法求函数解析式,以及基本数量关系:路程÷时间=速度,解答时注意数形结合.22.(8分)(2010•丹东)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.考点:游戏公平性;概率公式;列表法与树状图法分析:游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小贝赢或小晶赢的概率是否相等,求出概率比较,即可得出结论.解答:解:(1)P(抽到2)=;(3分)(2)根据题意可列表2 23 62 2,2 2,2 2,3 2,62 2,2 2,2 2,3 2,63 3,2 3,2 3,3 3,66 6,2 6,2 6,3 6,6(5分)从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,∴P(两位数不超过32)=.(7分)∴游戏不公平.(8分)调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.(10分)法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数超过32的得5分;能使游戏公平.(10分)法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.(只要游戏规则调整正确即得2分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2012•大连)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.考点:切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质专题:几何综合题;压轴题.分析:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则=,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;(2)首先证明△FBD∽△BAD,依据相似三角形的对应边的比相等,即可求DF的长,继而求得答案.解答:解:(1)ED与⊙O的位置关系是相切.理由如下:连接OD,∵∠CAB的平分线交⊙O于点D,∴=,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AC,∵DE⊥AC,∴DE∥BC,∴OD⊥DE,∴ED与⊙O的位置关系是相切;(2)连接BD.∵AB是直径,∴∠ADB=90°,在直角△ABD中,BD===,∵AB为直径,∴∠ACB=∠ADB=90°,又∵∠AFC=∠BFD,∴∠FBD=∠CAD=∠BAD∴△FBD∽△BAD,∴=∴FD=∴AF=AD﹣FD=5﹣=.点评:本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF 的长的问题转化成求相似三角形的问题是关键.24.(10分)如图,在平面直角坐标系中xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过A、C两点,并与x轴的正半轴交于点B.(1)求点C的坐标;(2)求抛物线的函数表达式;(3)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F,是否存在这样的点E,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)首先求得m的值和直线的解析式,进而得出C点坐标;(2)根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;(3)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.如答图1所示,过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解.解答:解:(1)∵y=x+m经过点(﹣3,0),∴0=﹣+m,解得:m=,∴直线解析式为:y=x+,C(0,);(2)∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),∴另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x﹣5),∵抛物线经过C(0,),∴=a•3(﹣5),解得a=﹣,∴抛物线解析式为y=﹣x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,在△CAO和△EFG中,∴△CAO≌△EFG(AAS),∴EG=CO=,即y E=,∴=﹣x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,﹣=﹣x2+x+,解得:x=1±,(负数舍去),则x=1+,可得E′(+1,﹣),S▱ACE′F′=.点评:本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程根与系数的关系以及二次根式的运算、平行四边形、全等三角形等.本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.25.(12分)(2007•陕西)如图,⊙O的半径均为R.(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中画出弦AB,CD,使图②仍为中心对称图形;(2)如图③,在⊙O中,AB=CD=m(0<m<2R),且AB与CD交于点E,夹角为锐角α.求四边形ACBD的面积(用含m,α的式子表示);(3)若线段AB,CD是⊙O的两条弦,且AB=CD=R,你认为在以点A,B,C,D为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.考点:圆的认识;轴对称图形;中心对称图形;解直角三角形专题:综合题;压轴题;开放型.分析:(1)使图①为轴对称图形而不是中心对称图形;可让弦AB=CD且AB与CD不平行(相交时交点不为圆心).使图②仍为中心对称图形;可让AB=CD且AB∥CD,也可让AB,CD作为两条圆内不重合的直径.(2)可以以CD或AB为底来求两三角形的面积和,先作高,然后用AE,BE(CE,DE 也可以)和sinα表示出这两个三角形的高,然后根据三角形的面积公式可得出CD×(AE+BE)•sinα,AE+BE正好是AB的长,因此两三角形的面积和就能求出来了.(3)要分两种情况进行讨论:当两弦相交时,情况与(2)相同,可用(2)的结果来得出四边形的面积(此时四边形的面积正好是两个三角形的面积和).当两弦不相交时,我们可连接圆心和四边形的四个顶点,将四边形分成4个三角形来求解,由于AB=CD=R,那么我们可得出三角形OAB和OCD应该是个等腰直角三角形,那么他们的面积和就应该是R2,下面再求出三角形AOD和BOC的面积和,我们由于∠AOD+∠BOC=180°,我们可根据这个特殊条件来构建全等三角形求解.延长BO交圆于E,那么三角形AOD就应该和三角形CEO全等,那么求出三角形BCE的面积就求出了三角形AOD和BOC的面积和,那么要想使四边形的面积最大,三角形BEC中高就必须最大,也就是半径的长,此时三角形BEC的面积就是R2,三角形BEC是个等腰直角三角形,那么四边形ABCD就是个正方形,因此四边形ABCD的最大面积就是2R2.因此当∠AOD=∠BOC=90°时,四边形ABCD的面积就最大,最大为2R2.解答:解:(1)答案不唯一,如图①、②(2)过点A,B分别作CD的垂线,垂足分别为M,N,∵S△ACD=CD•AM=CD•AE•sinα,S△BCD=CD•BN=CD•BE•sinα,∴S四边形ACBD=S△ACD+S△BCD=CD•AE•sinα+CD•BE•sinα=CD•(AE+BE)sinα=CD•AB•sinα=m2•sinα.(3)存在.分两种情况说明如下:①当AB与CD相交时,由(2)及AB=CD=知S四边形ACBD=AB•CD•sinα=R2sinα,②当AB与CD不相交时,如图④.∵AB=CD=,OC=OD=OA=OB=R,∴∠AOB=∠COD=90°.而S四边形ABCD=S Rt△AOB+S Rt△OCD+S△AOD+S△BOC=R2+S△AOD+S△BOC延长BO交⊙O于点E,连接EC,则∠1+∠3=∠2+∠3=90°.∴∠1=∠2.∴△AOD≌△C OE.∴S△AOD=S△OCE∴S△AOD+S△BOC=S△OCE+S△BOC=S△BCE过点C作CH⊥BE,垂足为H,则S△BCE=BE•CH=R•CH.∴当CH=R时,S△BCE取最大值R2综合①、②可知,当∠1=∠2=90°.即四边形ABCD是边长为的正方形时,S四边形ABCD=R2+R2=2R2为最大值.点评:本题主要考查了圆内轴对称和中心对称图形的区别以及解直角三角形,全等三角形的判定和性质等知识点.在求三角形的面积时,要根据已知的条件来选择底边,这样可使解题更加简便.。

相关文档
最新文档