ENVI高光谱数据处理流程
ENVI预处理

本小节包括以下内容:∙ ∙ ●数据预处理一般流程介绍∙ ∙ ●预处理常见名词解释∙ ∙ ●ENVI中的数据预处理1、数据预处理一般流程数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。
图1数据预处理一般流程各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。
2、数据预处理的各个流程介绍(一)几何精校正与影像配准引起影像几何变形一般分为两大类:系统性和非系统性。
系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。
在做几何校正前,先要知道几个概念:地理编码:把图像矫正到一种统一标准的坐标系。
地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。
图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准影像几何精校正,一般步骤如下,(1)GCP(地面控制点)的选取这是几何校正中最重要的一步。
可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。
选取得控制点有以下特征:1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等;2、地面控制点上的地物不随时间而变化。
GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。
卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。
(2)建立几何校正模型地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。
高光谱数据处理的相关方法

高光谱数据的处理步骤
1.先将原始的光谱反射在软件Viewspec pro 中进行异常值的删除,然后将重复的测量进行平均。
具体步骤如下
双击图标打开软件,(图1)点击File open 打开文件,默认路径为ViewSpecPro文件夹。
为了使打开和存储路径是储存数据的文件夹,需要对打开路径进行修改
将导出的txt文本中的直接复制到execl中。
此时需要注意小数位数的选择。
4到5位较好。
在此软件中可以进行反射率的一阶导,二阶导等的基础变化。
2利用origin对数据进行平滑。
步骤如下
首先打开软件将波段和对应的反射率复制进去然后进行一介导和平滑。
界面如下
一介导
平滑
制图比较效果
原始的
一介导平滑前
一介导平滑后
在ENVI中统去除
首先建立光谱数据库步骤如下
文件的保存为sli格式
点击polt出现右面的图
连续统去除
统去除后的效果图
统去除数据的保存
同去除前后的效果比较数据的打开类似前面。
高光谱数据处理业务流程

高光谱数据处理业务流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高光谱数据处理是一项专业性很强的技术活动,其主要目的是为了从高光谱遥感数据中提取有价值的信息,以支持地物分类、资源调查、环境监测等应用。
ENVI高光谱数据分析操作手册

感兴趣区和掩膜的选择和使用可具体情况具体分析,运行一项或两项均可。
北京卓立汉光仪器有限公司
4. 滤波
打开图像,FilterConvolutions and Morphology。在Convolutions and Morphology Tools 中,选择 Convolutions滤波类型(高通滤波 器、低通滤波 器、拉普拉斯算子、方向滤波器、高斯高通滤波器、高斯低通滤波器、中值滤波 器、Sobel、Roberts、自定义卷积核)。
2.3.2.3. 保存波谱库
北京卓立汉光仪器有限公司 在Spectral Libraries Resampling Parameters对话框中,为Resample Wavelength To选择匹配源,一般选择图像文件为参考。 输出重采样波谱库.sli
北京卓立汉光仪器有限公司
3. 感兴趣区和掩膜
3.1. 感兴趣区(ROI)
Display 窗 口 中 , Overlay → Region of Interest , 在 ROI 对 话 框 中 , 单 击 ROI_Type→Polygon. 绘制窗口中,选择Image,绘制一个多边形,右键结束,可根据需要多绘制 几个。
主菜单→Basic Tools→Subset Data via ROIs,选择裁剪图像。 在Saptial Subset via ROIs Parameters中,设置参数。 Select Input ROIs,选择绘制的ROI。 Mask Pixel Outside of ROIs选择yes。
4.1. 设置参数
Kernel Size(卷积核大小):奇数。 Image Add Back(加回值):将原始图像中的部分加回到卷积滤波结果图像中, Editable Kernel(卷积核中各项的值)。
高光谱数据的制图方法简介

高光谱数据的制图方法简介ENVI软件在Spectral菜单中提供许多波谱制图方法,包括:二进制编码、波谱角制图、线性波段预测(LS-Fit)、线性波谱分匹配滤波、混合调制匹配滤波、包络线去除,以及波谱特征拟合等。
本文主要介绍几种高光谱数据处理的过程操作。
1.二进制编码二进制编码分类技术根据波段值落在波谱均值的下方或上方,将数据和端元分别编码为0和1。
在编码过程中,使用一个高级的(exclusive)OR函数,用于将需要编码的数据波谱与参照波谱相比较,从而生成一幅分类图像。
选择菜单栏Spectral—Mapping Methods—Binary Encoding。
在打开的窗口设置参数如下:图1-1 二进制编码分类参数设置注意:“OutputRuleImages”切换按钮被设置为“No”,规则图像将不被保存。
分类结束后,规则图像将出现在可用波段列表中,可以在任何显示窗口中显示(或链接/覆盖),并可以使用ENVI的像元位置/值功能进行查询。
结果显示如图1-2:图1-2 原影像图(左)与二进制编码分类结果图(右)2. 波谱角分类波谱角分类(SAM)是一种基于自身的波谱分类方法,这种方法将图像波谱与参照波谱在N-维空间进行匹配。
SAM用到的参照端元波谱可以来自于ASCII文件、波谱库、统计文件或直接从图像中抽取(如ROI均值波谱),本实验中用的是ROI均值波谱。
SAM把端元波谱(被认为是一个N维向量,N维波段数)和像元向量放在n维空间中进行角度比较。
较小的角度代表象元与参照波谱匹配紧密。
这一技术用于数据定标时,对照度和反照率的影响并不敏感。
选择菜单栏Spectral—Mapping Methods—Spectral Angle Mapper。
设置参数如图2-1,波谱角分类结果,如图2-2:图2-1 波谱角分类参数设置图2-2 波谱角分类结果影像3.LS-Fit(线性波段预测)LS-Fit使用一个最小方框(least squares)拟合技术来进行线性波段预测。
ENVI的高光谱处理

专题二十四 使用ENVI的高光谱工具处理多光谱数据(节选)1.1.专题概述本专题的目的是向用户展示如何使用ENVI先进的高光谱工具对多光谱数据进行分析。
要更好地理解高光谱处理的概念及其工具,请参见ENVI高光谱辅导指南。
要获取额外的详细信息,请参见《ENVI遥感影像处理实用手册》(ENVI User’s Guide)或者ENVI的在线帮助。
♦本专题中使用的文件光盘:《ENVI遥感影像处理专题与实践》附带光盘 #1♦背景知识ENVI并非仅设计成高光谱影像处理系统。
在1992年,ENVI的开发者就决定开发出一个通用的影像处理软件,它包含一整套的基本处理工具,弥补了商业软件缺乏强大灵活处理功能的不足,使得它能够处理各种科学格式的影像数据。
它对全色、多光谱、高光谱以及基本和改进雷达影像数据都提供了支持。
当前,ENVI包含了与其它主要影像处理系统(例如:ERDAS,ERMapper和PCI)相同的基本处理功能。
其中,ENVI在前沿遥感研究中采用了许多不同的先进算法。
虽然这些算法都是在处理成像光谱仪数据或者多达上百个波谱波段的高光谱数据基础之上发展而来,但是它们也可以应用到多光谱数据和其它标准数据类型的处理上。
本专题将对某些分析Landsat Thematic Mapper(TM)数据的方法进行介绍。
本专题分为两个独立的部分:1)使用标准或者经典多光谱分析技术,对TM影像数据进行典型的多光谱分析,2)使用ENVI高光谱工具对相同的数据集进行分析。
1.2.使用ENVI的高光谱工具分析多光谱数据♦读取TM影像数据z要从磁带中读取数据,可以在ENVI主菜单中选择File → Tape Utilities → Read Known Tape Formats → Landsat TM(或者对于新的EDC-格式的磁带选择NLAPS)。
z要从光盘中读取数据,可以选择File →Open External File → Landsat → Fast,或者选择File → Open External File → Landsat → NLAPS(对于NLAPS数据)。
envi高光谱数据处理流程

envi高光谱数据处理流程
envi高光谱数据处理流程是一种非常常用的数据处理方法,主要应用于高光谱遥感数据处理。
其主要流程包括:数据预处理、光谱反射率计算、特征提取与分类等几个步骤。
1、数据预处理:数据预处理包括数据校正、波长校准及大气校正等过程。
其中,数据校正主要是将数据进行去背景、去噪、去影响等处理。
波长校准是将采集到的数据进行波长校准,保证数据的准确性。
大气校正是将采集的数据进行大气校正,降低大气对数据的影响。
2、光谱反射率计算:光谱反射率计算是将采集到的数据进行转换,得到地表反射率信息。
这个过程主要通过将采集到的数据进行比对处理,计算出地表反射率。
3、特征提取:特征提取是将采集到的数据进行特征分析,得到地物分类信息。
这个过程主要通过对采集到的数据进行分析,计算出每个波段的特征,然后根据这些特征进行分类。
4、分类:分类是将采集到的数据进行分类,识别出地表不同的类别。
这个过程主要通过将采集到的数据进行分析,然后根据不同的特征进行分类,最终得到地表不同的类别。
总之,envi高光谱数据处理流程是一个比较全面、细致的数据处理方法,可以有效地对高光谱遥感数据进行处理,得到准确的地表信息。
- 1 -。
高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册1.常见参数选择主菜单→File→Preferences●用户自定义文件(User Defined Files)图形颜色文件,颜色表文件,ENVI的菜单文件,地图投影文件等。
需重启ENVI ●默认文件目录(Default Directories)默认数据目录,临时文件目录,默认输出文件目录,ENVI补丁文件、光谱库文件、备用头文件目录等,需重启ENVI。
●显示设置(Display Default)可以设置三窗口中各个分窗口的显示大小,窗口显示式样等。
其中可以设置数据显示拉伸方式(Display Default Stretch),默认为2%线性拉伸。
●其他设置(Miscollaneous)制图单位(Page Unit),默认为英寸(Inches),可设置为厘米(Centimeters)还有缓冲大小(cache size),可以设置为物理内存的50-75%左右。
Image Tile Size不能超过4M。
2.显示图像及其波谱2.1.打开文件●主菜单,Open Image File→文件名.raw。
●或Window→Available Bands List→File →Open Image File→文件名.raw。
2.2.显示图像●显示单波段灰度级图像:Gray color,选择的波段一般是图像显示最清晰的波段。
●显示伪彩色图像:RGB color,选择具有明显吸收谷、强烈反射作用和所含信息量较大的波段作为彩色合成RGB波段。
●显示真彩色图像:波段列表(Available Bands List)中,右键→Load TrueColor 。
●图像保存:Display窗口,File→Save Image As→Image File,选择输出格式、路径和名称,OK。
●动画显示:Display窗口,Tools→Animation,动态显示各波段图像,能很快的分辨出包含信息量较多的波段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ENVI高光谱数据处理流程
1.数据预处理
数据预处理是高光谱数据处理流程中的第一步,其主要目的是去除数
据中的噪声并增加图像质量。
常用的预处理方法包括:大气校正、大气校
正之后的辐射校正、大气校正之后的大气校正等。
-大气校正:高光谱数据中的大气散射会引入许多噪声。
大气校正的
目的是根据大气散射的物理原理,通过对高光谱数据进行光谱校正和辐射
校正,去除大气散射带来的干扰。
-辐射校正:高光谱数据中的辐射能量受到地面温度、雨水和云等因
素的影响,导致数据中存在辐射偏差。
辐射校正的目的是根据卫星的辐射
源数据和大地辐射能量的关系,对高光谱数据进行校正,消除辐射偏差。
-大气校正之后的大气校正:在进行大气校正之后,仍然可能存在一
些小范围的大气散射。
大气校正之后的大气校正的目的是再次进行大气散
射校正,进一步提高图像质量。
2.特征提取
特征提取是高光谱数据处理流程中的核心步骤,其主要目的是从高光
谱数据中提取出对地物分类和解译有用的特征信息。
-光谱特征提取:光谱特征提取是指根据高光谱数据中不同波段的辐
射能量变化,提取出反映地物光谱特性的特征参数。
常用的光谱特征包括:光谱曲线的均值、方差、斜率等。
-空间特征提取:空间特征提取是指从高光谱数据的空间分布中提取
出反映地物空间特性的特征参数。
常用的空间特征包括:纹理特征、形状
特征、边缘特征等。
3.分类与监督解译
分类与监督解译是高光谱数据处理流程中的关键步骤,其主要目的是
将预处理和特征提取之后得到的数据进行分类和解译。
-监督分类:监督分类是指通过已知的训练样本数据,建立分类模型,并将该模型应用于未知的高光谱数据,将数据分成不同的类别。
常用的监
督分类方法有:最大似然分类、支持向量机分类、随机森林分类等。
-非监督分类:非监督分类是指利用高光谱数据本身的统计特性,将
数据按照统计特性对其进行分类。
常用的非监督分类方法有:K-均值聚类、多元高斯聚类等。
4.地物解译与验证
地物解译与验证是高光谱数据处理流程中的最后一步,其主要目的是
对分类结果进行解译和验证,以评估分类的准确性。
-地物解译:地物解译是指根据分类结果,将不同类别的地物识别并
标记出来。
地物解译可以通过人工解译、图像处理软件的辅助解译等方式
进行。
- 准确性验证:准确性验证是指对分类结果进行准确性和精确度的评估。
常用的验证方法包括:混淆矩阵分析、Kappa系数计算等。
综上所述,ENVI高光谱数据处理流程主要包括数据预处理、特征提取、分类与监督和非监督解译等步骤。
通过这些步骤,可以提高高光谱数
据的质量,并从中提取出对地物分类和解译有用的特征信息。
最后,通过地物解译与验证,可以评估分类的准确性,确保处理结果的可靠性。