第二章平面解析几何初步-小检测
上海洪山中学必修二第二章《解析几何初步》检测题(含答案解析)

一、选择题1.圆x 2+y 2-4x =0在点P (1,3)处的切线方程是( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=02.已知圆22:(2)(2)10+++=C x y ,若直线:2l y kx =-与圆交于,P Q 两点,则弦长PQ 的最小值是( ) A .5B .4C .25D .263.若直线2x y -=被圆()224x a y -+=所截得的弦长为22,则实数a 的值为( ) A .0或4B .1或3C .2-或6D .1-或34.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A .3172-B .10C .652-D .125.方程(1)210a x y a --++=(a R ∈)所表示的直线( ) A .恒过定点(2,3)- B .恒过定点(2,3) C .恒过点(3,2)-D .都是平行直线6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线已知ABC 的顶点(1,0),(0,2),B C AB AC -=,则ABC 的欧拉线方程为( )A .2430x y --=B .2430x y ++=C .4230--=x yD .2430x y +-=7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(3B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,49.已知E,F是四面体的棱AB,CD的中点,过EF的平面与棱AD,BC分别相交于G,H,则()A.GH平分EF,BH AGHC GD=B.EF平分GH,BH GDHC AG=C.EF平分GH,BH AGHC GD=D.GH平分EF,BH GDHC AG=10.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为()A.16B.13C.1 D.211.如图,正方形ABCD的边长为4,点E,F分别是AB,B C的中点,将ADE,EBF△,FCD分别沿DE,EF,FD折起,使得A,B,C三点重合于点A',若点G及四面体A DEF'的四个顶点都在同一个球面上,则以FDE为底面的三棱锥G-DEF的高h的最大值为()A263B463C.463D.26312.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A .8,14253V L ==+ B .8,1425V L ==+C .8,16253V L ==+D .8,1625VL ==+二、填空题13.m R ∈,动直线1:10l x my +-=过定点A ,动直线2:230l mx y m --=过定点B ,若直线1l 与2l 相交于点P (异于点,A B ),则PAB ∆周长的最大值为_________14.已知圆22C 9x y +=:,过定点(2,2)P 的动直线l 与圆C 交于,M N 两点, 则PM PN ⋅=______________.15.光线从点()0,5P -出发,经直线210x y -+=反射后到达点()2,0Q ,则光线从P 反射到Q 的总行程为______.16.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为_________.17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.18.在平面直角坐标系xOy 中,A 的坐标为(2,0),B 是第一象限内的一点,以C 为圆心的圆经过O 、A 、B 三点,且圆C 在点A ,B 处的切线相交于P ,若P 的坐标为(4,2),则直线PB 的方程为_____. 19.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 31,利用张衡的结论可得该正方体的内切球的表面积为___________. 20.已知等腰直角三角形ABC 中,2C π∠=,22CA =D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.21.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.22.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.23.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.24.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB P ABC -的体积为_____________.三、解答题25.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.26.在三棱锥A BCD -中,BCD △为等腰直角三角形,点E ,G 分别是线段BD ,CD 的中点,点F 在线段AB 上,且2BF FA =.若1AD =,3AB =,2CB CD ==.(Ⅰ)求证://AG 平面CEF ; (Ⅱ)求直线AD 与平面CEF 所成的角.27.如图,三棱锥V —ABC 中, VA=VB =AC=BC=2,AB =23VC=1.(1)证明: AB ⊥VC ; (2)求三棱锥V —ABC 的体积.28.如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出圆心坐标,由切线的性质得出切线的斜率,从而得切线方程. 【详解】由题意圆的标准方程为22(2)4x y -+=,圆心为(2,0)M ,30312PM k ==--,∴切线斜率为k =1)y x =-,化简得20x +=.故选:D . 【点睛】本题考查求圆的切线方程,由切线与过切点的半径相互垂直易得切线斜率,从而得切线方程,通常情况下要把方程化为一般式.2.D解析:D 【分析】由题意,求解圆的圆心坐标和半径,再利用圆的弦长公式,即可求解. 【详解】由题意,直线2y kx =-过定点(0,2)A -,又由圆22:(2)(2)10+++=C x y 的圆心坐标(2,2)--,半径r =,则A 点到圆心的距离可得2d ==,由圆的弦长公式,可得l ===即弦长PQ 的最小值为 D. 【点睛】本题主要考查了圆的弦长公式,圆的标准方程的应用,其中解答中求得圆的圆心坐标和半径,再利用圆的弦长公式求解是解答的关键,着重考查了推理与计算能力,属于基础题.3.A解析:A 【分析】利用垂径定理,结合点到线的距离公式求解. 【详解】由圆()224x a y -+=可知,圆心(),0a ,半径为:2,若直线2x y -=被圆()224x a y -+=所截得的弦长为则由垂径定理可知圆心到直线的距离:d =故d ==4a =或0a =.故选:A. 【点睛】本题考查直线与圆相交时弦长的求解,考查点到线距离公式的应用,属于基础题.4.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =.【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==,故PM PN +的最小值是1122C D r r --=.故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.5.A解析:A 【分析】将方程化为()()3(1)2y a x -=---,即可得出答案. 【详解】方程(1)210a x y a --++=可化为(1)223a x a y -+-=- 即()()3(1)2y a x -=--- 则恒过定点(2,3)- 故选:A 【点睛】本题主要考查了直线恒过定点问题,属于中档题.6.D解析:D 【分析】根据题意得出ABC 的欧拉线即为线段BC 的垂直平分线,然后求出线段BC 的垂直平分线的方程即可. 【详解】因为(1,0),(0,2)B C -,所以线段BC 的中点的坐标1,12⎛⎫-⎪⎝⎭,线段BC 所在直线的斜率2BC k =,则线段BC 的垂直平分线的方程为11122y x ⎛⎫-=-+ ⎪⎝⎭,即2430x y +-=,因为AB AC =,所以ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,所以ABC 的欧拉线方程为2430x y +-=.故选:D 【点睛】本题主要考走查直线的方程,解题的关键是准确找出欧拉线,属于中档题.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-21x AD +=在ADE 中,由三边关系得:22111124x x +>-,22111124x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.9.C解析:C 【分析】举特例舍去不正确选项,可得正确答案. 【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AG HC GD==,EF 平分GH , 即BH AG HC GD=,所以舍去ABD ,选C 故选:C10.B解析:B 【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果. 【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC -,如图所以:所以该几何体的体积为111121323V =⨯⨯⨯⨯=. 故选:B 【点睛】关键点点睛:根据三视图还原出直观图是本题解题关键.11.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =,2241625DE DF AD AE ==+=+=2222EF BE BF =+在DFE △中,22210cos 222522DE EF DF DEFDE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 310DF r DEF ===∠则球心到DEF 外心的距离为2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +的距离为263+. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.12.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、填空题13.【详解】由条件得直线过定点直线过定点且又直线所以∴当且仅当时等号成立∴即周长的最大值为答案:解析:2+【详解】由条件得直线1l 过定点(1,0)A ,直线2l 过定点,且2AB ==. 又直线12l l ⊥,所以222||||4PA PB AB +==,∴PA PB +≤=||||PA PB =时等号成立,∴2PA PB AB ++≤+PAB ∆周长的最大值为2+.答案:2+14.【分析】可分为直线斜率存在和不存在两种情况具体讨论当直线斜率存在时联立直线和圆结合韦达定理即可求解【详解】当直线斜率不存在时直线方程为:将代入得可设点则;当直线斜率存在时设直线方程为:联立则综上所述 解析:1-【分析】可分为直线斜率存在和不存在两种情况具体讨论,当直线斜率存在时,联立直线和圆,结合韦达定理即可求解 【详解】当直线斜率不存在时,直线方程为:2x =,将2x =代入22 9x y +=得y =点()(2,5,2,M N ,则()()5221PM PN ⋅=⨯=-;当直线斜率存在时,设直线方程为:()22y k x =-+,()()1122,,,M x y N x y联立()()()()2222221444190 229k x k k x y k y x x k ⎧⎪⇒++-+--=⎨=+=-+⎪⎩()212221224414191k k x x k k x x k ⎧-+=⎪+⎪⇒⎨--⎪⋅=⎪+⎩,则()()11222,2,2,2PM x y PM x y =--=--, ()()()()()()()21212122222122PM PN x x y y k x x ⋅=--+--=+--()()()()()2222212122224194411241241111k k k k k x x x x k k k k ⎡⎤---+=+-++=+-⋅+⋅=-⎢⎥+++⎢⎥⎣⎦综上所述,1PM PN ⋅=- 故答案为:1- 【点睛】本题考查由直线与圆的位置关系求解向量数量积的定值问题,解题过程中易遗漏斜率不存在的情况,考查了数形结合思想,数学运算的核心素养,属于中档题15.【分析】计算出点关于直线的对称点的坐标则光线的总行程为利用两点间的距离公式可得出结果【详解】设点关于直线的对称点为则解得即点因此光线从反射到的总行程为故答案为:【点睛】本题考查光线反射的问题一般要求【分析】计算出点P 关于直线210x y -+=的对称点P '的坐标,则光线的总行程为P Q ',利用两点间的距离公式可得出结果. 【详解】设点P 关于直线210x y -+=的对称点为(),P a b ',则5102512b a b a -⎧-+=⎪⎪⎨+⎪=-⎪⎩,解得245135a b ⎧=-⎪⎪⎨⎪=-⎪⎩,即点2413,55P ⎛⎫'-- ⎪⎝⎭, 因此,光线从P 反射到Q的总行程为P Q '==【点睛】本题考查光线反射的问题,一般要求出点关于直线的对称点,考查计算能力,属于中等题.16.0或6【分析】计算得到圆心半径根据得到利用圆心到直线的距离公式解得答案【详解】即圆心半径故圆心到直线的距离为即故或故答案为:或【点睛】本题考查了根据直线和圆的位置关系求参数意在考查学生的计算能力和转解析:0或6 【分析】计算得到圆心()1,2C -,半径3r =,根据AC BC ⊥得到d =距离公式解得答案. 【详解】222440x y x y ++--=,即()()22129x y ++-=,圆心()1,2C -,半径3r =.AC BC ⊥,故圆心到直线的距离为2d =d ==6a =或0a =. 故答案为:0或6. 【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。
高中数学平面解析几何初步检测考试题(附答案)

高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。
2020人教B版高中数学必修二第二章平面解析几何初步综合测试B含解析

【成才之路】2015-2016学年高中数学第二章平面解析几何初步综合测试B 新人教B版必修2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.直线x+(m+1)y+3=0与直线mx+2y-1=0平行,则m的值为( )A.1 B.-2C.2或-1 D.-2或1[答案] D[解析]由题意,得1×2-m(m+1)=0,即m2+m-2=0,解得m=-2或1.经检验知当m=-2或1,满足题意.2.(2015·辽宁沈阳二中高一期末测试)在空间直角坐标系中,以点A(4,1,9)、B(10,-1,6)、C(x,4,3)为顶点的△ABC是以BC为底边的等腰三角形,则实数x的值为( ) A.-2 B.2C.6 D.2或6[答案] D[解析]由题意得10-42+-1-12+6-92=x-42+4-12+3-92,解得x=2或6.3.(2015·甘肃天水市泰安县二中月考)直线l:x-y+1=0关于y轴对称的直线方程为( )A.x+y-1=0 B.x-y+1=0C.x+y+1=0 D.x-y-1=0[答案] A[解析]用-x替换方程x-y+1=0的x,得-x-y+1=0,即x+y-1=0,故选A.4.如果方程Ax+By+C=0表示的直线是y轴,则A、B、C满足( )A.B·C=0 B.A≠0C.B·C=0且A≠0 D.A≠0且B=C=0[答案] D[解析]直线是y轴,则斜率不存在且过点(0,0).斜率不存在,得B=0.A、B不同时为0,得A≠0,又过点(0,0),得C=0.5.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m的值为( )A .12B .-2C .-12或2D .-2或12[答案] C[解析] 由题意,得(m +2)(m -1)+m (m -4)=0, 解得m =-12或2.6.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心 [答案] C[解析] 本题考查直线与圆的位置关系,点到直线的距离公式. 圆心C (0,0)到直线kx -y +1=0的距离d =11+k2≤1< 2.所以直线与圆相交,故选C .7.(2015·云南曲靖市陆良县二中高一期末测试)若圆的一条直径的两端点分别是(-1,3)和(5,-5),则此圆的方程是( )A .x 2+y 2+4x +2y -20=0 B .x 2+y 2-4x -2y -20=0 C .x 2+y 2-4x +2y +20=0 D .x 2+y 2-4x +2y -20=0 [答案] D[解析] 圆心坐标为(2,-1),半径为2+12+-1-32=5,故所求圆的方程为(x -2)2+(y +1)2=25,即x 2+y 2-4x +2y -20=0.8.方程x 2+y 2+2kx +4y +3k +8=0表示圆,则k 的取值范围是( ) A .k =4或k =-1 B .k >4或k <-1 C .-1<k <4 D .以上都不对[答案] B[解析] 方程x 2+y 2+2kx +4y +3k +8=0,可化为(x +k )2+(y +2)2=k 2-3k -4,由题意,得k 2-3k -4>0,∴k >4或k <-1.9.(2015·广州二中高一期末测试)直线y =kx +1与圆x 2+y 2-2y =0的位置关系是( )A .相交B .相切C .相离D .取决于k 的值[答案] A[解析] 解法一:∵直线y =kx +1过定点(0,1),又点(0,1)在圆x 2+y 2-2y =0的内部, ∴直线与圆相交.解法二:由⎩⎪⎨⎪⎧y =kx +1x 2+y 2-2y =0,得(1+k 2)x 2-1=0,Δ=4(1+k 2)>0,故直线与圆相交.10.已知直线x +3y -7=0,kx -y -2=0与x 轴,y 轴围成的四边形有外接圆,则实数k 的值是( )A .-3B .3C .-6D .6[答案] B[解析] 由题意,知两直线垂直, ∴1·k +3·(-1)=0,∴k =3.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 [答案] B[解析] 设圆心坐标为(x ,y ),由题意知x >0,y =1. 由点到直线的距离公式,得|4x -3|42+32=1, ∴4x -3=±5,∵x >0,∴x =2.故所求圆的标准方程是(x -2)2+(y -1)2=1.12.将直线2x -y +λ=0沿x 轴向左平移一个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11[答案] A[解析] 直线2x -y +λ=0沿x 轴向左平移一个单位后为2(x +1)-y +λ=0,即2x -y +2+λ=0,又直线2x -y +2+λ=0与圆x 2+y 2+2x -4y =0相切,则|-2-2+2+λ|5=5,解得λ=-3或7.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·广州二中高一期末测试)已知a <0,直线l 1:2x +ay =2,l 2:a 2x +2y =1,若l 1⊥l 2,则a =________.[答案] -1[解析] ∵l 1⊥l 2,∴2a 2+2a =0, ∴a =-1或a =0.∵a <0,∴a =-1.14.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________. [答案] x -y +1=0[解析] 由x 2+2x +y 2=0得圆心C (-1,0), 所求直线与x +y =0垂直,∴所求直线的斜率为1, ∴所求直线的方程为x -y +1=0.15.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于____________.[答案]254[解析] ∵点A (1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y -5=0,令x =0,得y =52,令y =0,得x =5, ∴S △=12×52×5=254.16.一束光线从点A (-2,2)出发,经x 轴反射到圆C :(x -4)2+(y -6)2=1上的最短路程是______.[答案] 9[解析] A 关于x 轴对称点A 1(-2,-2),⊙C 的圆心C (4,6),|A 1C |=10, ∴最短路程为|A 1C |-1=9.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2015·湖南益阳市高一期末测试)已知两直线l 1:(3+m )x +9y =m -1,l 2:2x +(1+2m )y =6.(1)m 为何值时,l 1与l 2垂直; (2)m 为何值时,l 1与l 2平行.[解析] (1)由题意得2(3+m )+9(1+2m )=0, 解得m =1516.(2)由题意得(3+m )(1+2m )-18=0, 解得m =-5或32.当m =-5时,l 1与l 2重合;当m =32时,l 1与l 2平行.18.(本题满分12分)已知直线l 1:x +2y -3=0与l 2:2x -y -1=0的交点是P ,直线l 过点P 及点A (4,3).(1)求l 的方程;(2)求过点P 且与l 垂直的直线l ′的方程.[解析] (1)由⎩⎪⎨⎪⎧x +2y -3=02x -y -1=0,得⎩⎪⎨⎪⎧x =1y =1.∴P (1,1),∴l 的方程为:y -13-1=x -14-1,即l :2x -3y +1=0.(2)∵所求直线l ′与l 垂直, ∴斜率为-32.又∵l ′过点(1,1),∴所求直线l ′的方程为y -1=-32(x -1),即3x +2y -5=0.19.(本题满分12分)(2015·云南曲靖市陆良县二中高一期末测试)△ABC 中,点A (1,1)、B (4,2)、C (-4,6).(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高及△ABC 的面积.[解析] (1)BC 边的中点D 的坐标为(0,4),∴中线AD 的斜率k =4-10-1=-3,故中线AD 的方程为y -4=-3(x -0), 即3x +y -4=0.(2)BC 边所在直线的斜率为k BC =6-2-4-4=-12,BC 边所在直线的方程为y -2=-12(x -4),即x +2y -8=0.点A 到BC 边的距离d =|1+2-8|12+22=5, ∴BC 边上的高为5, |BC |=-4-42+6-22=4 5.∴S △ABC =12×45×5=10.20.(本题满分12分)如图所示,在Rt △ABC 中,已知A (-2,0),直角顶点B (0,-22),点C 在x 轴上.(1)求Rt △ABC 外接圆的方程;(2)求过点(-4,0)且与Rt △ABC 外接圆相切的直线的方程.[解析] (1)由题意可知点C 在x 轴的正半轴上,可设其坐标为(a,0),又AB ⊥BC ,则k AB ·k BC =-1,即-222·22a=-1,解得a =4. 则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x -1)2+y 2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y =kx +4,即 kx -y +4k =0. 当圆与直线相切时,有d =|5k |k 2+1=3,解得k =±34,故所求直线方程为y =34(x -4)或y =-34(x -4),即3x -4y -12=0或3x +4y -12=0.21.(本题满分12分)一圆与两平行直线x +3y -5=0和x +3y -3=0都相切,圆心在直线2x +y +1=0上,求圆的方程.[解析] 两平行直线之间的距离为|-5+3|1+9=210,∴圆的半径为110,设圆的方程为(x -a )2+(y -b )2=110,则⎩⎪⎨⎪⎧2a +b +1=0|a +3b -5|10=110|a +3b -3|10=110,解得⎩⎪⎨⎪⎧a =-75b =95.故所求圆的方程为⎝ ⎛⎭⎪⎫x +752+⎝ ⎛⎭⎪⎫y -952=110.22.(本题满分14分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值是多少?[解析] 解法一:将圆的一般方程化为标准方程得(x -1)2+(y -1)2=1,圆心C (1,1),r =1,如图所示,当动点P 沿直线3x +4y +8=0向左上方或向右下方无穷远处运动时,Rt△PAC 的面积S Rt △PAC =12|PA |·|AC |,|PA |越来越大,从而S 四边形PACB =|PA |·|AC |也越来越大.当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个特殊的位置,即CP 垂直于直线3x +4y +8=0时,S 四边形PACB 取得最小值.此时|PC |=|3×1+4×1+8|32+42=3,∴|PA |=|PC |2-|AC |2=32-12=22,故(S 四边形PACB )最小值=2·12·|PA |·|AC |=2 2.解法二:设点P 的坐标为(x ,y ), 则|PC |=x -12+y -12,由勾股定理及|AC |=1, 得|PA |=|PC |2-|AC |2=x -12+y -12-1,故S 四边形PACB =2S △PAC =2·12·|PA |·|AC |=|PA |=x -12+y -12-1.欲求S 四边形PACB的最小值,只需求|PA |的最小值,即定点C (1,1)与直线上动点P (x ,y )的距离的平方的最小值,也就是点C (1,1),到直线3x +4y +8=0距离的平方,这个最小值d 2=⎝ ⎛⎭⎪⎫|3×1+4×1+8|32+422=9. 故(S 四边形PACB )最小值=9-1=2 2.。
2022_2023学年高中数学第2章平面解析几何初步单元测评湘教版选择性必修第一册

第2章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022江苏南京六校高二联考)直线2x+3y+1=0的斜率和它在y轴上的截距分别为( )A.2,1B.C.-,-D.-,-2.已知直线l经过点(3,1),且直线l的一个法向量是(1,1),则l的方程是( )A.y=-x+4B.y=x-2C.y=-x+2D.y=x+23.(2022安徽池州高二期末)若圆C1:x2+y2-2x-4y-4=0,圆C2:x2+y2-6x-10y-2=0,则圆C1,C2的公切线条数为( )A.1B.2C.3D.44.(2022北京第十二中学高二期中)已知圆的一条直径的端点分别是A(-1,0),B(3,-4),则该圆的方程为( )A.(x+1)2+(y-2)2=8B.(x-1)2+(y+2)2=8C.(x+1)2+(y-2)2=32D.(x-1)2+(y+2)2=325.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为( )A.2x+3y-2=0B.2x+3y+3=0C.3x+2y-2=0D.3x+2y+3=06.经过点A(1,2)可作圆x2+y2+mx-2y+4=0的两条切线,则实数m的取值范围是( )A.(-∞,-2)∪(2,+∞)B.(-5,-2)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-5,-2)∪(2,+∞)7.(2022江苏阜宁中学高二月考)已知圆C1与圆C2:(x+2)2+(y-1)2=4关于直线y=x对称,则圆C1的方程为( )A.(x+1)2+(y-2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=4D.(x-1)2+(y+2)2=48.(2022四川成都树德中学高二月考)阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将该圆称为阿波罗尼斯圆.若平面内两定点A,B间的距离为2,动点P满足,当P,A,B不共线时,△PAB面积的最大值是( )A.2B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022山西长治二中高二月考)若l1与l2为两条不重合的直线,它们的倾斜角分别是α1,α2,下列命题是真命题的为( )A.若l1∥l2,则两条直线的斜率相等B.若两条直线的斜率相等,则l1∥l2C.若l1∥l2,则α1=α2D.若α1=α2,则l1∥l210.(2022湖北宜昌夷陵中学等高二联考)已知直线l的一个方向向量为u=-,且直线l经过点(1,-2),则下列结论中正确的是( )A.直线l的倾斜角等于150°B.直线l在x轴上的截距等于C.直线l与直线x-3y+2=0垂直D.直线l与直线x+y+2=0平行11.(2022江苏苏州第十中学高二月考)已知直线l1:x-y-1=0,动直线l2:(k+1)x+ky+k=0(k∈R),则下列结论正确的是( )A.存在k,使得直线l2的倾斜角为90°B.对任意的k,直线l1与l2都有公共点C.对任意的k,直线l1与l2都不重合D.对任意的k,直线l1与l2都不垂直12.(2022辽宁实验中学高二月考)已知实数x,y满足方程x2+y2-2x-4y+1=0,则下列说法正确的是( )A.x2+y2的最大值为2+B.(x+2)2+(y+1)2的最大值为22+12C.x+y的最大值为3+2D.4x-3y的最大值为8三、填空题:本题共4小题,每小题5分,共20分.13.我国古代名著《墨经》中给出了圆的定义为“一中同长也”.已知O为坐标原点,P(-1,),若☉O,☉P的“长”分别为1,r(r>0),且两圆相切,则r= .14.(2022江苏阜宁中学高二月考)已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m 的值为 .动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为 .15.(2022福建南安第三中学高二月考)一个圆过圆C:x2+y2-2x=0与直线l:x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程为 .16.(2022山东潍坊高二联考)已知P(3,-2),M为圆x2+(y-2)2=4上的动点,则线段MP长度的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l1:ax+2y+6=0和l2:x+(a-1)y+a2-1=0(a≠1),试求a为何值时,(1)l1∥l2; (2)l1⊥l2.18.(12分)已知圆C:x2+y2+2x-4y-4=0.(1)在下列两个条件中任选一个作答.①已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;②从圆外一点P(2,1)向圆引切线,求切线方程.(注:如果选择两个条件分别解答,按第一个解答计分)(2)若圆C2:x2+y2=4与圆C相交于D,E两点,求线段DE的长.19.(12分)(2022山东高二“学情检测”)已知△ABC的顶点A(4,2),AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.求:(1)顶点C的坐标;(2)点B到直线AC的距离.20.(12分)已知A(0,3),O为坐标原点,直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.21.(12分)(2022四川绵阳重点高中高二联考)已知圆C经过(2,4),(1,3)两点,圆心C在直线x-y+1=0上,过点A(0,1)且斜率为k的直线l与圆C相交于M,N两点.(1)求圆C的标准方程;(2)若=12(O为坐标原点),求直线l的斜率.22.(12分)(2022黑龙江哈尔滨九中高二期中)已知线段AB的端点B的坐标是(6,8),端点A在圆x2+y2=16上运动,M是线段AB的中点,且直线l过定点(1,0).(1)求点M的轨迹方程;(2)记(1)中求得的图形的圆心为C,若直线l与圆C交于P,Q两点,求△CPQ面积的最大值,并求此时直线l的方程.参考答案第2章测评1.D 将直线2x+3y+1=0化为斜截式,得y=-x-,所以直线的斜率为-,在y轴上的截距为-,故选D.2.A 由直线l的一个法向量可知直线的斜率为-1.∵直线l经过点(3,1),且直线l的斜率为-1,根据直线的点斜式可得直线l的方程是y-1=-(x-3),整理得y=-x+4,故选A.3.B 依题意,圆C1:(x-1)2+(y-2)2=9,圆心为C1(1,2),半径为r1=3,圆C2:(x-3)2+(y-5)2=36,圆心为C2(3,5),半径为r2=6.因为|C1C2|=,且r2-r1<<r1+r2,故圆C1,C2相交,则圆C1,C2有2条公切线.故选B.4.B 由题意可知,线段AB的中点为(1,-2),即该圆的圆心为(1,-2).又圆的半径为r=|AB|==2,故圆的方程为(x-1)2+(y+2)2=8.故选B.5.A 联立方程组解得则交点为A(-2,2).因为所求直线垂直于直线3x-2y+4=0,故所求直线的斜率k=-.故所求直线方程为y-2=-(x+2),即2x+3y-2=0.故选A.6.B 由圆x2+y2+mx-2y+4=0整理得x+2+(y-1)2=-3,∴-3>0,解得m<-2或m>2.由题意知点A在圆外,∴1+4+m-4+4>0,解得m>-5.综上可得,-5<m<-2或m>2.故选B.7.D 设圆心C2(-2,1)关于直线y=x的对称点C1的坐标为(a,b),则线段C1C2的中点为,且.则解得即圆C1的圆心为C1(1,-2).因为两圆关于直线对称,则圆的半径长度不变,即圆C1的半径为2,所以圆C1的方程为(x-1)2+(y+2)2=4.故选D.8.A 如图所示,以经过A,B两点的直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,则A(-1,0),B(1,0).设P(x,y),因为,所以,整理得x2+y2-6x+1=0,即(x-3)2+y2=8.因为P,A,B三点不共线,故当P点在y轴上时,△PAB面积最大,此时三角形的高为OP=2,所以△PAB面积的最大值是×2×2=2.故选A.9.CD 当α1=α2=90°时,l1∥l2,但两条直线斜率不存在,故A错误;若两条直线的斜率相等,且两直线不重合,可得l1∥l2,故B错误;若l1∥l2,由平行线的性质,可得α1=α2,故C正确;若α1=α2,由平行线的性质,可得l1∥l2,故D正确.故选CD.10.CD 因为直线l的一个方向向量为u=-,所以直线l的斜率为k==-.设直线的倾斜角为α(0≤α<π),则tanα=-,所以α==120°,故A错误;因为直线l经过点(1,-2),所以直线l的方程为y+2=-(x-1),令y=0,则x=-+1,所以直线l在x轴上的截距为-+1,故B错误;因为直线x-3y+2=0的斜率为,直线l的斜率为-,所以-=-1,所以直线l与直线x-3y+2=0垂直,故C正确;因为直线x+y+2=0的斜率为-,直线l的斜率也为-,且两直线截距不等,故两直线平行,故D 正确.故选CD.11.ABD 当k=0时,直线l2斜率不存在,此时l2的倾斜角为90°,故A正确;由可得x(2k+1)=0,对于任意的k,此方程组都有解,所以对任意的k,直线l1与l2都有公共点,故B正确;当k=-时,直线l2:x-y-=0,即x-y-1=0,此时直线l1与l2重合,故C不正确;由x-y-1=0可得直线l1的斜率为1,若直线l2与l1垂直,则直线l2的斜率为=-1,此方程无解,所以对任意的k,直线l1与l2都不垂直,故D正确.故选ABD.12.BCD 方程x2+y2-2x-4y+1=0整理可得(x-1)2+(y-2)2=4,则方程x2+y2-2x-4y+1=0表示的图形是以点C(1,2)为圆心,2为半径的圆,如图所示.代数式x2+y2表示圆C上的点P(x,y)到原点O的距离的平方,当点P为直线OC与圆C的交点,且C在线段OP上时,|OP|取得最大值,即|OP|max=|OC|+2=2+,所以(x2+y2)max==9+4,故A错误;由于代数式(x+2)2+(y+1)2表示圆C上的点Q(x,y)到点A(-2,-1)的距离的平方,当点Q为直线AC与圆C的交点,且点C在线段AQ上时,|AQ|取得最大值,即|AQ|max=|AC|+2=+2=3+2,所以[(x+2)2+(y+1)2]max==22+12,故B正确;设x+y=k,则直线x+y-k=0与圆C有公共点,所以圆心到直线的距离≤2,解得3-2≤k≤3+2,所以x+y的最大值为3+2,故C正确;设4x-3y=t,则直线4x-3y-t=0与圆C有公共点,所以≤2,解得-12≤t≤8,所以4x-3y的最大值为8,故D正确.故选BCD.13.1或3 由题意,O为坐标原点,P(-1,).根据圆的定义可知,☉O的圆心为O(0,0),半径为1,☉P的圆心为P(-1,),半径为r.因为两圆相切,则有|PO|=r+1或|PO|=|r-1|.因为|PO|==2,则有r+1=2或|r-1|=2,解得r=1或3.14.-1 2 由题意得m×(-m)-(-1)×1=0,所以m=±1.当m=1时,两直线重合,舍去,故m=-1.因为圆C的方程x2+y2+2x-24=0可化为(x+1)2+y2=25,即圆C的圆心为C(-1,0),半径为5.由于直线l:mx-y-1=0过定点P(0,-1),所以过点P且与PC垂直的弦的弦长最短,|PC|=,则最短弦长为2×=2.15.x2+(y+2)2=10 由解得所以圆C与直线l的交点为,B(1,1).因为直线AB的斜率为-,线段AB,所以线段AB的垂直平分线的斜率为2,则可得y-=2x-,即y=2x-2.又因为圆心在y轴,所以圆心为(0,-2),半径为圆心到交点B的距离,则所求圆的方程为x2+(y+2)2=10.16.[3,8] 因为圆x2+(y-2)2=4的圆心坐标为C(0,2),半径r=2.又P(3,-2),所以|PC|==5.因为M为圆上的动点,所以5-r≤|MP|≤5+r,即3≤| MP|≤8,所以线段MP长度的取值范围是[3,8].17.解(1)若l1∥l2,则解得故a=-1.(2)若l1⊥l2,则a+2(a-1)=0,解得a=.18.解(1)①将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.∵直线l在两坐标轴上的截距相等且不为零,故直线l的斜率为-1.设直线l的方程为y=-x+b,∵直线l与圆(x+1)2+(y-2)2=9相切,∴=3,整理得b=1±3.故所求直线l的方程为y=-x+1±3.②将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.当过点P的直线斜率不存在时,直线方程为x=2,此时圆心C到直线的距离为3,所以直线x=2是圆C的切线.当过点P的直线斜率存在时,设切线方程为y-1=k(x-2),即kx-y+1-2k=0.由题意可知=3,解得k=,∴切线方程为x-y+1-2×=0,整理得4x-3y-5=0.综上所述,切线方程为4x-3y-5=0或x=2.(2)联立两圆方程得①-②得2x-4y=0,则DE所在直线的方程为x-2y=0.则圆心C到直线DE的距离为d=.∴线段DE的长为2=4.19.解(1)设C(m,n),由于AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.则解得故可得顶点C的坐标为(3,0).(2)设B(a,b),则解得则可得B点坐标为,-.由(1)可得直线AC的方程为,整理得2x-y-6=0.故点B到直线AC的距离d=.20.解(1)由题得圆心在直线l:y=2x-4和直线y=x-1上,则可得解得即圆心C的坐标为(3,2).设过A(0,3)的圆C的切线方程为y-3=k(x-0),即kx-y+3=0,由直线kx-y+3=0与圆C相切,可得=1,解得k=0或k=-,故所求切线方程为y=3或3x+4y-12=0.(2)根据圆心C在直线l:y=2x-4上,可设圆心C为(a,2a-4),则圆的方程为(x-a)2+(y-2a+4)2=1.若圆C上存在点M,使|MA|=2|MO|,设M(x,y),∵|MA|=2|MO|,∴=2,整理可得x2+(y+1)2=4,故点M在以D(0,-1)为圆心,2为半径的圆上.又点M也在圆C上,故圆C和圆D有交点,∴2-1≤|CD|≤1+2,即1≤≤3,得解得0≤a≤,即a的取值范围为.21.解(1)设圆C的标准方程为(x-a)2+(y-b)2=r2(r>0),则由题意可得解得所以圆C的标准方程为(x-2)2+(y-3)2=1.(2)设直线l的方程为y=kx+1,设M(x1,y1),N(x2,y2),将y=kx+1代入(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0,x1+x2=,x1x2=.=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8=12,即=4,解得k=1.经检验,符合题意,所以直线l的斜率为1.22.解(1)设M(x,y),A(x0,y0),∵M是线段AB中点,∴整理可得∵点A在圆x2+y2=16上,∴(2x-6)2+(2y-8)2=16,整理得(x-3)2+(y-4)2=4,即M点的轨迹方程为(x-3)2+(y-4)2=4.(2)由直线l与圆C交于P,Q两点知直线l斜率存在且不为0.设直线l的方程为y=k(x-1),即kx-y-k=0,则圆心C到直线l距离d=,∵S△CPQ=|PQ|·d=d=2,当且仅当4-d2=d2,即d2=2时,等号成立.由d2=2得=2,解得k=1或k=7.故△CPQ面积的最大值为2,此时直线l的方程为x-y-1=0或7x-y-7=0.。
北京西城学习探究诊断高中数学必修二第二章平面解析几何初步练习

第二章平面解析几何初步测试十平面直角坐标系中的基本公式Ⅰ学习目标理解和掌握数轴上的基本公式,平面上两点间的距离公式,中点坐标公式.Ⅱ基础训练题一、选择题1.点A(-1,2)关于y轴的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)2.点A(-1,2)关于原点的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)3.已知数轴上A,B两点的坐标分别是x1,x2,且x1=1,d(A,B)=2,则x2等于( )(A)-1或3 (B)-3或3 (C)-1 (D)34.已知点M(-1,4),N(7,0),x轴上一点P满足|PM|=|PN|,那么P点的坐标为( )(A)(-2,0) (B)(-2,1) (C)(2,0) (D)(2,1)5.已知点P(x,5)关于点Q(1,y)的对称点是M(-1,-2),则x+y等于( )9(A)6 (B)12 (C)-6 (D)2二、填空题6.点A(-1,5),B(3,-3)的中点坐标为______.7.已知A(a,3),B(3,a),|AB|=2,则a=______.8.已知M(-1,-3),N(1,1),P(3,x)三点共线,则x=______.9.设点A(0,1),B(3,5),C(4,y),O为坐标原点.若OC∥AB,则y=______;若OC⊥AB,则y=______.10.设点P,Q分别是x轴和y轴上的点,且中点M(1,-2),则|PQ|等于______.三、解答题11.已知△ABC的顶点坐标为A(1,-1),B(-1,3),C(3,0).(1)求证:△ABC是直角三角形;(2)求AB边上的中线CM的长.12.已知矩形ABCD相邻两个顶点A(-1,3),B(-2,4),若矩形对角线交点在x轴上,求另两个顶点C和D的坐标.13.已知AD是△ABC底边的中线,用解析法证明:|AB|2+|AC|2=2(|AD|2+|DC|2).Ⅲ拓展训练题14.利用两点间距离公式求出满足下列条件的实数x的集合:(1)|x-1|+|x-2|=3;(2)|x-1|+|x-2|>3;(3)|x-1|+|x-2|≤3.测试十一 直线的方程Ⅰ 学习目标1.理解直线斜率和倾斜角的概念,掌握两点连线的斜率公式.2.掌握直线方程的点斜式、斜截式及一般式.Ⅱ 基础训练题一、选择题1.已知直线AB 的斜率为21,若点A (m ,-2),B (3,0),则m 的值为( ) (A )1 (B )-1 (C )-7(D )7 2.如图所示,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )(A )k 1<k 2<k 3(B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 23.直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )(A )k sin α>0 (B )k cos α>0 (C )k sin α=0 (D )k cos α符号不定4.一条光线从点M (5,3)射出,遇x 轴后反射,反射光线过点N (2,6),则反射光线所在直线方程是( )(A )3x -y -12=0 (B )3x +y +12=0(C )3x -y +12=0 (D )3x +y -12=05.直线x -2y +2k =0与两坐标轴围成的三角形面积不小于1,那么k 的取值范围是( )(A )k ≥-1 (B )k ≤1 (C )|k |≤1 (D )|k |≥1二、填空题6.斜率为-2且在x 轴上截距为-1的直线方程是______.7.y 轴上一点M 与点N (-3,1)所在直线的倾斜角为120°,则M 点坐标为______.8.已知直线3a x -2y -4a =0(a ≠0)在x 轴上的截距是它在y 轴上的截距的3倍,则a =______.9.已知直线l 过点A (-2,1)且与线段BC 相交,设B (-1,0),C (1,0),则直线l 的斜率k 的取值范围是______.10.如果直线l 沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后又回到原来的位置,则直线l 的斜率为______.三、解答题11.直线l 过原点且平分平行四边形ABCD 的面积.若平行四边形两个相对顶点为B (1,4),D (5,0),求直线l 的方程.12.直线l与直线y=1,x-y-7=0分别交于P、Q两点,线段PQ的中点为(1,-1).求直线l的方程.Ⅲ拓展训练题13.设A(0,3),B(3,3),C(2,0),直线x=a将△ABC分割成面积相等的两部分,求a 的值.14.一条直线l过点P(2,3),并且分别满足下列条件,求直线l的方程.(1)倾斜角是直线x-4y+3=0的倾斜角的两倍;(2)与x轴、y轴的正半轴交于A、B两点,且△AOB的面积最小;(3)|P A|²|PB|为最小(A、B分别为直线与x轴、y轴的正半轴的交点).测试十二 两条直线的位置关系(一)Ⅰ 学习目标掌握两条直线平行、垂直的条件,会利用两条直线平行、垂直的条件解决相关的问题.Ⅱ 基础训练题一、选择题1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么a 等于( )(A )-3 (B )-6 (C )-23 (D )32 2.如果直线ax +2y +2=0与直线3x -y -2=0垂直,那么a 等于( ) (A )-3 (B )-6 (C )-23 (D )32 3.若两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直,则( )(A )A 1A 2+B 1B 2=0 (B )A 1A 2-B 1B 2=0(C )2121B B A A =-1 (D )2121A A B B =1 4.设A ,B 是x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )(A )x +y -5=0 (B )2x -y -1=0(C )2y -x -4=0 (D )x +y -7=05.已知直线y =kx +2k +1与y =-21x +2的交点在第一象限,则k 的取值范围是( ). (A )-6<k <2(B )-21<k <21 (C )-61<k <21 (D )k <21 二、填空题6.以A (1,3)、B (-1,1)为端点的线段的垂直平分线方程是______.7.若三条直线l 1:2x -y =0,l 2:x +y -3=0,l 3:mx +ny +5=0交于一点,则实数m ,n 满足的关系式是______.8.直线y =2x +3关于点(2,3)对称的直线方程为______.9.直线2x -y +1=0绕着它与y 轴的交点逆时针旋转45°角,此时直线的方程为______.10.若三条直线x +y =2,x -y =0,x +ay =3构成三角形,则a 的取值范围是______.三、解答题11.求经过两条直线l 1:2x +3y +1=0和l 2:x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程.12.平行四边形ABCD 的两边AB ,AD 所在的直线方程分别为x +y -1=0,3x -y +4=0,其对角线的交点坐标为(3,3),求另两边BC ,CD 所在的直线方程.13.已知三角形三条边AB,BC,AC中点分别为D(2,1)、E(5,3)、F(3,-4).求各边所在直线的方程.14.已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使l1,l2分别满足下列条件:(1)l1,l2相交于点P(m,-1);(2)l1∥l2;(3)l1与l2重合.测试十三 两条直线的位置关系(二)Ⅰ 学习目标会应用点到直线的距离公式解决相关的问题.Ⅱ 基础训练题一、选择题1.点P (0,2)到直线y =3x 的距离是( )(A )1 (B )510 (C )2 (D )55 2.平行线3x +4y +2=0与3x +4y -12=0之间的距离为( ) (A )2 (B )310 (C )514 (D )33.若直线(2+m )x -y +5-n =0与x 轴平行且与x 轴相距5时,则m +n 等于( )(A )-2或8 (B )-2 (C )8 (D )04.直线l 1:ax -y +b =0与l 2:bx -y +a =0(ab ≠0,a ≠b )在坐标系中的位置可能是( )5.A 、B 、C 为△ABC 的三个内角, 它们的对边分别为a 、b 、c .已知原点到直线x sin A +y sin B +sin C =0的距离大于1,则此三角形形状为( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定二、填空题6.若直线ax +4y -2=0与直线2x -5y +c =0垂直相交于点(1,m ),则a =____,c =_____,m =______.7.已知定点A (0,1).点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是____.8.两平行直线分别过点(1,0)与(0,5),且距离为5,它们的方程为______.9.若点A (1,1)到直线l :x cos θ+y sin θ=2(θ为实数)的距离为f (θ),则f (θ)的最大值是___.10.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 中点M 到原点距离的最小值是______.三、解答题11.过点P (1,2)的直线l 与两点A (2,3),B (4,-5)的距离相等,求直线l 的方程.12.已知直线l :x +2y -2=0,试求:(1)与直线l 的距离为5的直线的方程;(2)点P (-2,-1)关于直线l 的对称点的坐标.13.已知△ABC的垂心H(5,2),且A(-10,2)、B(6,4),求点C的坐标.Ⅲ拓展训练题14.在△ABC中,点B(1,2),BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,求|BC|.测试十四 圆的方程Ⅰ 学习目标掌握圆的标准方程及一般方程,能根据已知条件求圆的方程.Ⅱ 基础训练题一、选择题1.圆x 2+y 2+ax =0的圆心的横坐标为1,则a 等于( )(A )1 (B )2 (C )-1 (D )-22.与圆C :x 2+y 2-2x -35=0的圆心相同,且面积为圆C 的一半的圆的方程是( )(A )(x -1)2+y 2=3 (B )(x -1)2+y 2=6(C )(x -1)2+y 2=9 (D )(x -1)2+y 2=183.曲线x 2+y 2+22x -22=0关于( )(A )直线x =2轴对称(B )直线y =-x 轴对称 (C )点(-2,2)中心对称 (D )点(-2,0)中心对称4.如果圆x 2+y 2+Dx +Ey +F =0与y 轴相交,且两个交点分别在原点两侧,那么( )(A )D ≠0,F >0 (B )E =0,F >0(C )F <0 (D )D =0,E ≠05.方程x -1=()211--y 所表示的曲线是( ) (A )一个圆 (B )两个圆(C )半个圆 (D )四分之一个圆二、填空题6.过原点的直线将圆x 2+y 2-2x +4y =0的面积平分,则此直线的方程为______.7.已知圆的方程(x -a )2+(y -b )2=r 2(r >0),试根据下列条件,分别写出a ,b ,r 应满足的条件.(1)圆过原点且与y 轴相切:______;(2)原点在圆内:______;(3)圆与x 轴相交:______.8.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是______. 9.P (x ,y )是圆x 2+y 2-2x +4y +1=0上任意一点,则x 2+y 2的最大值是______;点P 到直线3x +4y -15=0的最大距离是______.10.设P (x ,y )是圆(x -3)2+y 2=4上的点,则xy 的最小值是______. 三、解答题11.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,求a 的取值范围.12.求过三个点A (0,0),B (4,0),C (2,2)的圆的方程.13.已知圆C的圆心在直线x+y-1=0上,且A(-1,4)、B(1,2)是圆C上的两点,求圆C的方程.Ⅲ拓展训练题14.已知曲线C:x2+y2-4ax+2ay+20a-20=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上.测试十五 直线与圆的位置关系Ⅰ 学习目标1.会用解析法及几何的方法判定直线与圆的位置关系,并会求弦长和切线方程; 2.会用几何的方法判定圆和圆的位置关系.Ⅱ 基础训练题一、选择题1.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) (A )相离 (B )外切 (C )相交 (D )内切2.直线3x +4y +2=0与圆x 2+y 2+4y =0交于A 、B 两点,则线段AB 的垂直平分线的方程是( )(A )4x -3y -2=0 (B )4x -3y -6=0 (C )3x +4y +8=0 (D )3x -4y -8=0 3.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) (A )6π(B )4π (C )3π (D )2π 4.若圆x 2+y 2=r 2(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) (A )[4,6] (B )(4,6] (C )(4,6) (D )[4,6) 5.从直线y =3上的点向圆x 2+y 2=1作切线,则切线长的最小值是( ) (A )22(B )7(C )3(D )10二、填空题6.以点(-2,3)为圆心且与y 轴相切的圆的方程是______.7.已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是______.8.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是______.9.过定点(1,2)可作两直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则k 的取值范围是____. 10.直线x +3y -m =0与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是______. 三、解答题11.圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦. (1)当α=4π3时,求AB 的长; (2)当弦AB 被点P 平分时,求直线AB 的方程.12.求经过点P (6,-4)且被圆x 2+y 2=20截得的弦长为62的直线的方程.13.求过点P (4,-1)且与圆x 2+y 2+2x -6y +5=0外切于点M (1,2)的圆的方程.Ⅱ 拓展训练题14.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55. 求该圆的方程.测试十六空间直角坐标系Ⅰ学习目标1.理解空间直角坐标系的概念,能写出满足某些条件的点的坐标.2.会用空间两点间距离公式进行相关的计算.Ⅱ基础训练题一、选择题1.点A(2,0,3)在空间直角坐标系的位置是( )(A)y轴上(B)xOy平面上(C)xOz平面上(D)yOz平面上2.在空间直角坐标系中,点P(-2,-1,3)到原点的距离为( )(A)14(B)5(C)14 (D)53.点A(-1,2,1)在xOy平面上的射影点的坐标是( )(A)(-1,2,0) (B)(-1,-2,0)(C)(-1,0,0) (D)(1,-2,0)4.在空间直角坐标系中,两个点A(2,3,1)、A′(2,-3,1)关于( )对称(A)平面xOy (B)平面yOz(C)平面xOz(D)y轴5.设a是任意实数,则点P(a,1,2)的集合在空间直角坐标系中所表示的图形是( )(A)垂直于平面xOy的一条直线(B)垂直于平面yOz的一条直线(C)垂直于平面xOz的一条直线(D)以上均不正确二、填空题6.点M(4,-3,5)到x轴的距离为______.7.若点P(x,2,1)与Q(1,1,2)、R(2,1,1)的距离相等,则x的值为______.8.已知点A(-2,3,4),在y轴上求一点B,使|AB|=6,则点B的坐标为______.9.已知两点A(2,0,0),B(0,3,0),那么线段AB的中点的坐标是______.10.在空间直角坐标系中,点A(1,2,a)到点B(0,a,1)的距离的最小值为______.三、解答题11.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M关于各坐标面对称的点、关于各坐标轴对称的点的坐标.12.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M到原点、各坐标轴及各坐标面的距离.13.如图,正方体OABC-A1B1C1D1的棱长为a,|AM|=2|MB|,|B1N|=|NC1|,分别写出点M与点N的坐标.-1)的距离的两倍,求点P的坐标.测试十七 平面解析几何初步全章综合练习Ⅰ 基础训练题一、选择题1.方程y =k (x -2)表示( ) (A )经过点(-2,0)的所有直线 (B )经过点(2,0)的所有直线(C )经过点(2,0)且不垂直于x 轴的所有直线 (D )经过点(2,0)且去掉x 轴的所有直线2.点P (x ,y )在直线x +y -4=0上,O 为坐标原点,则|OP |的最小值为( ) (A )10(B )22(C )6(D )23.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) (A ))3π,6π[(B ))2π,6π((C ))2π,3π((D )]2π,6π[4.若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) (A )1或-1 (B )2或-2 (C )1 (D )-15.如果直线l 将圆:x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( ) (A )[0,2](B )[0,1](C )]21,0[(D ))21,0[二、填空题6.经过点P (-2,3)且在x 轴、y 轴上截距相等的直线方程为______.7.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为______. 8.已知圆x 2+(y -1)2=1及圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是______. 9.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线.A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为______.10.已知两个圆x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为______. 三、解答题11.已知直线l 1:2x -y +3=0与直线l 2关于直线y =-x 对称,求直线l 2的方程.12.圆心在直线x -2y -3=0上,且圆与两坐标轴都相切,求此圆的方程.13.求通过直线2x +y -4=0及圆x 2+y 2+2x -4y +1=0的交点,并且有最小面积的圆的方程.14.在△ABC中,顶点A(2,4)、B(-4,2),一条内角平分线所在直线方程为2x-y=0,求AC边所在的直线方程.Ⅱ拓展训练题15.已知过原点O的一条直线与函数y=log8x的图象交于A、B两点(A在B的右侧),分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.16*.已知圆C:(x-1)2+(y-2)2=25,及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长最短长度及此时的直线方程.参考答案第二章 平面解析几何初步 测试十 平面直角坐标系中的基本公式一、选择题1.B 2.C 3.A 4.C 5.D 提示:1.点(a ,b )关于x 轴、y 轴、坐标原点O 、直线y =x 的对称点坐标为(a ,-b ),(-a ,b ),(-a ,-b ),(b ,a ). 二、填空题6.(1,1); 7.2或4; 8.5; 9.3,316-; 10.52. 提示:9.若AB =(x 1,y 1),CD =(x 2,y 2),则∥⇔x 1y 2-x 2y 1=0(应注意向量平行与直线平行的关系); 则⊥⇔x 1x 2+y 1y 2=0(即⋅=0); 三、解答题11.(1)证明:由已知计算得5||,52)31()11(||22==--++=BC AB5||=AC ,所以,|AB |2+|AC |2=|BC |2,所以△ABC 是直角三角形.另解:由已知=(-2,4),=(2,1), 所以,AB ²AC =-2³2+4³1=0, 所以,AB ⊥AC ,△ABC 是直角三角形. (2)解:由已知,AB 的中点M 的坐标为)231,211(+--,即M (0,1), 所以,.1013||22=+=CM12.设矩形对角线交点为M (x ,0),因为|MA |=|MB |,则22224)2(3)1(++=++x x ,解得x =-5,所以M (-5,0).设C (x 1,y 1),因为M 为AC 中点,所以023,52111=+-=-y x , 解得x 1=-9,y 1=-3,所以,C (-9,-3),同理,D (-8,-4).注:本题也可以利用向量平行、垂直的有关知识来解. 13.提示:通过建立适当的坐标系,利用坐标法来证明.14.(1){x |x =0,x =3};(2){x |x <0或x >3};(3){x |0≤x ≤3}.测试十一 直线的方程一、选择题1 B2 B3 B4 D5 D 提示:3.由题意知,l 的倾斜角α为钝角,cos α<0,k <0,故k cos α>0.4.反射光线过点N (2,6),同时,还经过点M (5,3)关于x 轴的对称点M ′(5,-3),所以,反射光线的斜率为352)3(6-=---,直线方程为3x +y -12=0.要注意,“光线”问题常用对称点的思路去思考问题.5.直线x -2y +2k =0与两坐标轴交点为A (-2k ,0).B (0,k ), 所以,2|||2|21||||21k k k OB OA S AOB =⋅-=⋅=∆,由题意k 2≥1, 得|k |≥1为所求.二、填空题6.2x +y +2=0; 7.(0,-2); 8.a =-2; 9.311-≤≤-k ; 10.⋅-31提示:10.提示:设A (x 0,y 0)为直线l 上一点,根据题意,A 点沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后仍应在直线l 上,即点(x 0-3,y 0+1)在直线l 上.所以直线l 的斜率为⋅-=---+31310000x x y y三、解答题11.提示:平分平行四边形面积的直线必过平行四边形的对角线交点,即过BD 的中点(3,2).所以,所求直线方程为2x -3y =0.12.略解:设P (x 1,1),因为PQ 的中点为(1,-1),根据中点坐标公式,可得Q (2-x 1,-3),因为点Q 在直线x -y -7=0上, 所以,(2-x 1)-(-3)-7=0,解得x 1=-2,所以,P (-2,1),Q (4,-3),⋅-=----=3242)3(1/k所以,l :2x +3y +1=0.13.略解:由已知得AB ∥x 轴,作CD ⊥AB 于D ,∵C (2,0),A (0,3),B (3,3).∴S △ADC >S △BDC . ∵x =a 将△ABC 面积平分,∴x =a 在直线CD 左侧,即0<a <2.由题意得)3(2123321p ABC y a S -⋅=⋅⋅=∆,其中y p 表示AC 与x =a 的交点的纵坐标. ∵直线AC 的方程为132=+yx .即3x +2y -6=0.当x =a 时,236,236ay a y p -=∴-=,代入上式,得.3±=a∵a ∈(0,2).3=∴a 为所求.14.(1)设直线l 的倾斜角为α,则所求直线倾斜角为2α,由已知,41tan =α,所以,tan2α=158tan 1tan 22=-αα,所以,所求直线l 方程为)2(1583-=-x y ,即8x -15y +29=0.(2)依题意,设直线l 方程为y -3=k (x -2),k <0,则)0,32(kA -,B (0,3-2k ),S △AOB 1266)292(621=+≥-+-+==kk y x B A ,此时,kk 292-=-,即.23±=k ,因为k <0,所以23-=k ,所求直线l 方程为)2(233--=-x y ,即3x +2y -12=0. (3)依题意,设直线l 方程为y -3=k (x -2),k <0,则)23,0(),0,32(k B kA --,12)1(6||164499||||222≥-+-⨯=+⨯=+⨯+=⋅kk k k k k PB PA , 此时,kk -=-1,即k =±1,因为k <0,所以k =-1, 所求直线l 方程为y -3=-(x -2),即x +y -5=0.测试十二 两条直线的位置关系(一)一、选择题1.B 2.D 3.A 4.A 5.C 提示:5.提示:可以求出两条直线的交点坐标)1216,1242(+++-k k k k ,解不等式组⎪⎪⎩⎪⎪⎨⎧>++>+-0121601242k k k k,可得⋅<<-2161k 另外,注意到直线y =kx +2k +1可变形为y -1=k (x +2),即此直线过定点(-2,1),又,直线221+-=x y 与x 轴、y 轴的交点坐标为(4,0),(0,2).利用数形结合的思路可得结论. 二、填空题6.x +y -2=0; 7.m +2n +5=0; 8.2x -y -5=0; 9.3x +y -1=0; 10.a ∈R ,a ≠±1且a ≠2. 提示:9.设直线2x -y +1=0的倾斜角为α,由已知,所求直线的倾斜角为α+45°,因为tan α=2,所以,345tan tan 145tan tan )45tan(-=-+=+ααα,又直线2x -y +1=0与y 轴的交点为(0,1),所以,所求直线方程为3x +y -1=0.10.直线x +ay =3与另两条直线不平行也不重合,并且三条直线不过同一点. 三、解答题11.4x -3y +9=0.12.CD :x +y -11=0,BC :3x -y -16=0. 13.方法一:用中点.DE 中点)2,27(G ,又G 为BF 的中点,∴B (4,8). 同理,EF 中点).2,6(),21,4(-∴-C HDF 中点).6,0(),23,25(-∴-A M.01227,627:=---=∴y x x y AB BC :y +2=-5(x -6),5x +y -28=0..01832,632:=---=y x x y AC 方法二:用斜率. EF 斜率为)2(271:27-=-∴⋅x y AB ,得7x -2y -12=0. FD 斜率为-5.∴BC :y -3=-5(x -5),得5x +y -28=0. DE 斜率为)3(324:32-=+∴⋅x y AC ,得2x -3y -18=0, 14.解:(1)由⎩⎨⎧=--=+-,012,082m m n m 解得m =1,n =7.(2)易知m ≠0,所以,当182-=/=n m m 时, 即m =4,n ≠-2,或m =-4,n ≠2时l 1∥l 2.(3)结合(2)的结果,当m =4,n =-2,或m =-4,n =2时,l 1与l 2重合.测试十三 两条直线的位置关系(二)一、选择题1.B 2.C 3.A 4.D 5.C 提示: 5.由已知,1sin sin |sin |22>+BA C ,所以,sin 2C >sin 2A +sin 2B .又R CcB b A a 2sin sin sin ===,所以,c 2>a 2+b 2, 由余弦定理,得02cos 222<-+=abc b a C ,所以,C 为钝角,三角形为钝角三角形. 二、填空题6.10,-12,-2; 7.)21,21(-; 8.y =0,y =5或5x -12y -5=0,5x -12y +60=0; 9.22+; 10..23提示:7.当AB 与已知直线垂直时,线段AB 最短. 9.|2)cos 22sin 22(2||2cos sin |cos sin |2cos sin |)(22-+=-+=+-+=θθθθθθθθθf)4πsin(22|2)4πsin(2|+-=-+=θθ,所以,f (θ)的最大值为.22+10.由已知,点M 到两直线l 1,l 2的距离相等.即点M 在直线x +y -6=0上,于是,问题变成“点M 在直线x +y -6=0上运动,求原点到点M 的最小距离”,可利用第7题的思路加以解决. 三、解答题11.提示:满足题目条件的直线l 或者与直线AB 平行,或者经过线段AB 的中点.当直线l 与直线AB 平行时,l :4x +y -6=0;当直线l 经过线段AB 的中点时,l :3x +2y -7=0. 12.解:(1)设所求直线方程为x +2y +c =0,根据题意55|2|=+c ,解得c =3或c =-7, 所以,所求直线方程为x +2y +3=0或x +2y -7=0. (2)设P (-2,-1)关于直线l 的对称点为P ′(x 0,y 0). 则k pp 'k l =-1,且PP ′的中点在直线l 上,即点)21,22(00--y x 在直线l 上. 所以,⎪⎪⎩⎪⎪⎨⎧-=-⋅++=--⨯+-1)21(2102212220000x y y x ,即⎩⎨⎧=+-=-+0320820000y x y x ,解得⋅==519,5200y x 即)519,52('P .13.解:AB 斜率为81,设C 坐标(x 0,y 0). 所以,85200-=--x y ……………………①因为AH 斜率为0,∴BC 斜率不存在,即BC 直线方程为x =6, 所以,x 0=6.…………………………②②代入①,得y 0=-6.∴C 点坐标(6,-6). 14.略解:解⎩⎨⎧==+-,0,012y y x 得A (-1,0),所以AB :x -y +1=0.设C (x 0,y 0),因为BC 与BC 边上的高线垂直,并且C 关于直线y =0(∠A 的平分线)的对称点C ′在直线AB 上.所以,k BC =-2,C ′(x 0,-y 0)在直线AB 上.所以,⎪⎩⎪⎨⎧=++-=--012120000y x x y 解得x 0=5,y 0=-6,即C (5,-6),故|BC |=54.测试十四 圆的方程一、选择题1.D 2.D 3.D 4.C 5.C 提示:4.只需坐标原点在圆内,即原点与圆心的距离小于半径,已知圆圆心为)2,2(ED --,半径为)04(242222>-+-+F E D F E D ,结合44)02()02(2222FE D E D -+<-+-及D 2+E 2-4F >0,可得F <0.5.方程2)1(11--=-y x 可以等价变形为(x -1)2+(y -1)2=1,且x -1≥0,1-(y -1)2≥0.即(x -1)2+(y -1)2=1,且x ≥1,0≤y ≤2.所以,方程2)1(11--=-y x 所表示的曲线是半个圆.二、填空题 6.2x +y =0;7.(1)a 2+b 2=r 2且|a |=r 或b =0,|a |=r ;(2)a 2+b 2<r 2;(3)|b |<r ; 8.21; 9.6,549+; 10.⋅-552 提示:9.x 2+y 2的几何意义是点P (x ,y )到原点距离的平方.利用这个几何意义求解. 10.xy的几何意义是点P (x ,y )与原点连线的斜率.利用这个几何意义求解. 三、解答题11.提示:将方程配方为222431)()2(a a a y a x --=+++,则,04312>--a a 即3a 2+4a -4<0,(3a -2)(a +2)<0,解得,⋅<<-322a12.提示:方法一:设圆的方程为x 2+y 2+D x +Ey +F =0,由已知三个点在圆上,可得⎪⎩⎪⎨⎧=+++=++=082204160F E D F D F 解得D =-4,E =0,F =0,所以,所求圆方程为x 2+y 2-4x =0.方法二:注意到k AC =1,k BC =-1,k AC k BC =-1,所以,三角形ABC 是直角三角形,∠C =90°,所以,所求圆心为AB 边中点,即(2,0)点,可求半径r =2, 所以,所求圆的方程为(x -2)2+y 2=4.13.提示:因为A (-1,4),B (1,2)是圆C 上的两点,所以圆心在线段AB 的中垂线上,因为AB 中点坐标为(0,3),k AB =-1,所以线段AB 的中垂线方程为x -y +3=0,解⎩⎨⎧=-+=+-0103y x y x 得圆心坐标为(-1,2),半径,2)22()11(22=-+--=r所以,圆C 的方程为(x +1)2+(y -2)2=4.14.分析:(1)曲线C 方程可变形为(x 2+y 2-20)+a (-4x +2y +20)=0,由⎩⎨⎧=++-=-+020*******y x y x ,解得⎩⎨⎧-==24y x . 即点(4,-2)满足曲线C 的方程,故曲线C 过定点(4,-2).(2)曲线C 方程(x -2a )2+(y +a )2=5(a -2)2,因为a ≠2,所以曲线C 是圆心为(2a ,-a ),半径为|2|5-a 的圆. 设圆心坐标为(x ,y ),则有⎩⎨⎧-==ay a x 2,消去a 可得x y 21-=,故圆心必在直线x y 21-=. 测试十五 直线与圆的位置关系一、选择题1.C 2.B 3.C 4.C 5.A 提示:5.圆方程x 2+y 2=1,圆心(0,0),半径1,切线长的平方=圆心到直线y =3距离的最小值的平方.22813222==-=-r二、填空题6.(x +2)2+(y -3)2=4; 7.3; 8.x +y -4=0; 9.⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 ; 10..23<<m提示:9.圆方程配方为,4316)1()2(222k y k x -=+++依题意,2224316)12()21(k k ->+++,且,043162>-k解得k <-3或k >2,且338338<<-k ,所以,⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 . 10.结合图形,求出直线与圆在第一象限相切时的m 值为2,求出直线过(0,1)点时的m值为3.进而得出m 值范围. 三、解答题11.提示:(1)方法一:由已知,AB :x +y -1=0,与圆方程联立,解方程组得,2151±=x 则.304πcos||||12=-=x x AB 方法二:圆心到直线AB 的距离,222|1|=-=d 所以.3021822||22=-=-=dr AB(2)当弦AB 被点P 平分时,AB ⊥OP ,又k OP =-2, 所以,.052:,21=+-=y x AB k AB 12.提示:注意到,过点P (6,-4)倾斜角为90°的直线不满足题意,设所求直线为y +4=k (x -6),由弦长为26,圆半径为20,所以圆心O 到所求直线的距离为2, 即21|46|2=++k k ,解得k =-1或177-=k ,所以所求直线方程为x +y -2=0或7x +17y +26=0.13.略解:圆(x +1)2+(y -3)2=5的圆心为(-1,3),设圆心(a ,b ),得⎪⎩⎪⎨⎧---=--++-=-+-,112312)1()4()2()1(2222a b b a b a解得⎩⎨⎧==13b a ,圆心(3,1),半径为5,所以,所求圆方程为(x -3)2+(y -1)2=5.14.分析:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |,|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为r 2, 故r 2=2b 2.又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1. 又点P (a ,b )到直线x -2y =0的距离555|2|=-=b a d ,所以|a -2b |=1, 解⎩⎨⎧=-=-121|2|22a b b a ,得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a . 由于r 2=2b 2,知2=r ,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2.测试十六 空间直角坐标系一、选择题1.C 2.A 3.A 4.C 5.B 二、填空题6.34; 7.1; 8.(0,-1,0),(0,7,0); 9.)0,23,1(; 10.26.三、解答题11.答:点M 关于平面xOy 的对称点为(1,-2,-3);点M 关于平面yOz 的对称点为(-1,-2,3); 点M 关于平面xOz 的对称点为(1,2,3); 点M 关于x 轴的对称点为(1,2,-3);点M 关于y 轴的对称点为(-1,-2,-3);点M 关于z 轴的对称点为(-1,2,3). 12.答:点M 到原点的距离为14;点M 到平面xOy 的距离为3;点M 到平面yOz 的距离为1;点M 到平面xOz 的距离为2; 点M 到x 轴的距离为13;点M 到y 轴的距离为10; 点M 到z 轴的距离为5. 13.答:).,,21(),0,32,(a a a N a a M 14.答:(1,0,0)或(-1,0,0).测试十七 平面解析几何初步全章综合练习一、选择题1.C 2.B 3.B 4.D 5.A 提示:3.直线3:-=kx y l 过定点)3,0(-,直线2x +3y -6=0与x 轴、y 轴交点坐标为(3,0)、(0,2),作图分析可得答案. 二、填空题6.x +y -1=0,3x +2y =0; 7.0<m 2+n 2<3; 8.34; 9.22; 10.两圆(x -a )2+(y -b )2=r 2与(x -c )2+(y -d )2=r 2的对称轴的方程为2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0. 提示: 9.r PA S PACB ||212⨯=(r 是圆的半径),由已知r =1,所以,即求|P A |的最小值,又|P A |=12-PC ,而|PC |的最小值为C 到直线3x +4y +8=0的距离,即343|843|22=+++,所以,所求最小值为.22||212=⨯=r PA S PACB 三、解答题11.提示:直线l 1与l 2的交点坐标为(-1,1),直线l 1与y 轴交点坐标为(0,3),且(0,3)点关于直线y =-x 对称点坐标为(-3,0),所以,直线l 2过点(-3,0)和(-1,1),l 2:x -2y +3=0.12.提示:设圆心为(a ,b ),由已知|a |=|b |=r ,又a -2b -3=0,解⎩⎨⎧==--b a b a 032及⎩⎨⎧-==--b a b a 032得⎩⎨⎧-=-=33b a 或⎩⎨⎧-==11b a ,所以,所求圆方程为(x +3)2+(y +3)2=9或(x -1)2+(y +1)2=1.13.提示:所求圆即为以已知直线和已知圆相交的弦为直径的圆.解⎩⎨⎧=-+=+-++,042014222y x y x y x 得⎩⎨⎧==21y x 或⎪⎪⎩⎪⎪⎨⎧==51851y x .即直线与圆的交点坐标为)518,51(),2,1(,弦长为554, 所以圆心为)514,53(,半径为552, 所求圆方程为54)514()53(22=-+-y x . 14.提示:注意到点A (2,4)在直线2x -y =0上,所以,已知直线为∠A 的平分线l ,过B作与l 垂直的直线m :x +2y =0,l 与m 的交点为(0,0),B (-4,2)关于(0,0)的对称点为B ′(4,-2),AB ′所在直线即为AC 边所在的直线,所以AC 边所在的直线方程为3x +y -10=0.15.(1)证明:设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1、x 2>1,点A (x 1,log 8x 1),B (x 2,log 8x 2). 因为A 、B 在过点O 的直线上,⋅=∴228118log log x x x x又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于,log 32log log log ,log 32log log log 28828221881812x x x x x x ====所以OC 的斜率和OD 的斜率分别为:228222118112log 3log ,log 3log x x x xk x x x x k OD OC ====由此得k OC =k OD ,即点O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,解得x 2=31x .将其代入228118log log x x x x =,得1811831log 3log x x x x =. 由x 1>1,知log 8x 1≠0,故31x =3x 1,即31=x ,于是点A 的坐标为).3log ,3(816.分析:(1)直线l 的方程可化为x +y -4+m (2x +y -7)=0,则l 是过定点(3,1)的直线束.又(3-1)2+(1-2)2=5<25,∴点(3,1)在圆内部,因此不论m 为何实数,直线l 与圆恒相交.(2)由(1)可知,直线l 过点M (3,1),则过此点的直线l 与圆O 的半径垂直且M 为AB 中点时,l 被圆所截得的弦长|AB |最短.)542|(|22=-=OM r AB .此时212311=---=-=OMl k k , 直线方程为y -1=2(x -3),即2x -y -5=0.。
上海梅山第一中学必修二第二章《解析几何初步》测试(答案解析)

一、选择题1.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B .355C .1255D .6552.已知圆224x y +=与圆22260x y y +--=,则两圆的公共弦长为( ) A .3 B .23 C .2 D .13.如图,棱长为2的正四面体ABCD 的三个顶点,,A B C 分别在空间直角坐标系的坐标轴,,Ox Oy Oz 上,则定点D 的坐标为( )A .()1,1,1B .2,2,2C .3,3,3D .()2,2,2 4.如果圆()()228x a y a -+-=2的点,则实数a 的取值范围是( )A .()()3,11,3--⋃B .()3,3-C .[]1,1-D .[][]3,11,3--⋃ 5.方程(1)210a x y a --++=(a R ∈)所表示的直线( )A .恒过定点(2,3)-B .恒过定点(2,3)C .恒过点(3,2)-D .都是平行直线6.已知直线:20l x y ++=与圆22220x y x y a ++-+=所截的弦长为4,则实数a 为( )A .2-B .4-C .2D .4 7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π 8.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3O 的表面积是( )A .28π3B .14π3C .56π3D .7π 39.已知正三棱柱111ABC A B C -,的体积为343111ABC A B C -的外接球表面积为( )A .1123πB .563π C .2243π D .28π 10.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m nB .若//,//,//l m αβαβ,则//l mC .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α 11.三棱锥P ABC -中,6AB =,8AC =,90BAC ∠=︒,若52PA PB PC ===B 到平面PAC 的距离为( )A .32B .4141C 1534D .612.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE二、填空题13.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____. 14.若圆()()2234x a y a ++--=上总存在两个点到原点的距离为1,则实数a 的取值范围为______.15.将一张坐标纸折叠一次,使得点(0,2)与点(2,0)-重合,且点(2018,2019)与点(,)m n 重合,则m n -等于____.16.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为_________.17.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 两点关于直线0x y +=对称,则20182019k m -=______.18.已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.19.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.22.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.23.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.24.水平放置的ABC ∆的斜二测直观图如图所示,已知''4,''3B C A C ==,则ABC ∆中AB 边上的中线的长度为_______ .三、解答题25.在三棱锥P ABC -中,PAC ∆和PBC ∆是边长为2的等边三角形,2AB =,O ,D 分别是AB , PB 的中点.(1)求证://OD 平面PAC(2)求证:OP ⊥平面ABC(3)求三棱锥D OBC -的体积.26.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.27.如图,已知长方体1111ABCD A B C D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.28.如图,三棱锥V —ABC 中, VA=VB =AC=BC=2,AB =23,VC=1.(1)证明: AB ⊥VC ;(2)求三棱锥V —ABC 的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长.【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,②①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为,∴圆心到公共弦的距离为= ∴公共弦长==. 故答案为:C【点睛】 本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.B解析:B【分析】把两个圆的方程相减可得相交弦所在直线方程,通过半弦长,半径,弦心距的直角三角形,求出半弦长,即可得到公共弦长.【详解】圆224x y +=与圆22260x y y +--=的方程相减可得公共弦所在的直线方程为1y =-,由于圆224x y +=的圆心到直线1y =-的距离为1,且圆224x y +=的半径为2, 故公共弦的长为=故选:B .【点睛】本题考查两圆的位置关系,相交弦所在的直线方程,弦长,重点考查计算能力,属于基础题型.3.A解析:A【解析】的正四面体ABCD 可以放到正方体中,已知D 点、O 点的连线是正方体的体对角线,故D 点坐标为()1,1,1,选A.4.D解析:D【详解】圆心(),a a ,半径r =d ,因为圆()()228x a y a -+-=,则圆()()228x a y y a -+-=与圆222x y +=有公共点,'''r r r r r ∴=∴-≤≤+,,即13a ≤≤,解得13a ≤≤或31a -≤≤-,所以实数a 的取值范围是[][]3,11,3--⋃,故选D.5.A解析:A【分析】将方程化为()()3(1)2y a x -=---,即可得出答案.【详解】方程(1)210a x y a --++=可化为(1)223a x a y -+-=-即()()3(1)2y a x -=---则恒过定点(2,3)-故选:A【点睛】本题主要考查了直线恒过定点问题,属于中档题. 6.B解析:B【分析】根据圆的标准方程确定圆心和半径,由距离公式得出圆心到直线:20l x y ++=的距离d ,最后由弦长公式得出实数a .【详解】由22(1)(1)2x y a ++-=-可知,圆心为(1,1)-,半径2r a =<圆心到直线:20l x y ++=的距离d ==∣242r =r ∴=4a ∴=-故选:B【点睛】本题主要考查了由直线与圆相交的弦长求参数的值,属于中档题.7.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.A解析:A【分析】首先得到11AB A ∠是1AB 与底面111A B C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算.【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =. 设111AA A B a ==,则1113133232ABC A B C a V a a -=⨯==三棱柱 解得2a =.所以球O 的半径R ==,所以球O 的表面积2228π4π4π3S R ==⨯=. 故选:A .【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的. 9.A解析:A【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积.【详解】依题意,14AA ==,而21sin 24ABC S AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得42sin 603AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC ABC -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.10.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知:对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误; 对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确. 故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.11.C解析:C 【分析】取BC 中点为O ,连接OP ,OA ,根据题中条件,由线面垂直的判断定理,证明PO ⊥平面ABC ;求出三棱锥P ABC -的体积;以及PAC △的面积,设点B 到平面PAC 的距离为d ,根据等体积法,由P ABC B PAC V V --=,即可求出结果. 【详解】取BC 中点为O ,连接OP ,OA ,因为6AB =,8AC =,90BAC ∠=︒,所以226810BC =+=,则152AO BC ==; 又52PA PB PC ===222100PB PC BC +==,则PB BC ⊥,152PO BC ==, 所以22250PO OA PA +==,所以PO AO ⊥; 因为PB PC =,O 为BC 中点,所以PO BC ⊥,又BC AO O ⋂=,BC ⊂平面ABC ,AO ⊂平面ABC ,所以PO ⊥平面ABC ; 此时三棱锥P ABC -的体积为11168540332P ABC ABCV S PO -=⋅=⨯⨯⨯⨯=, 因为在PAC △中,52PA PC ==,8AC =,所以PAC △的面积为221843422PACAC SPA ⎛⎫=⨯-= ⎪⎝⎭, 设点B 到平面PAC 的距离为d , 由P ABC B PAC V V --=可得1403PACS d =⋅,所以153417434d ==. 故选:C. 【点睛】 方法点睛:求解空间中点P到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m,以及平面α的一条斜线PA所对应的向量PA,则点P到面α的距离即为PA m dm⋅=.12.C解析:C【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH的中点O,连接ON,BO,可以证明MN‖BO,利用BO与平面ABE的关系可以判定MN与平面ABE的关系,进而对选择支A 作出判定;根据MN与平面BCF的关系,利用面面平行的性质可以判定MN与平面ADE的关系,进而对选择支B作出判定;利用线面平行的判定定理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE的关系,进而对D作出判定.【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .二、填空题13.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两解析:1 【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.【详解】由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r,因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴, 则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --, 又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--.故答案为:1. 【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力.14.【分析】到原点的距离为1的轨迹为根据题意知两圆相交计算圆心距和半径关系得到答案【详解】到原点的距离为1的轨迹为根据题意知两圆相交故圆心距满足解得故答案为:【点睛】本题考查了根据圆和圆的位置关系求参数 解析:3,0【分析】到原点的距离为1的轨迹为221x y +=,根据题意知两圆相交,计算圆心距和半径关系得到答案. 【详解】到原点的距离为1的轨迹为221x y +=,根据题意知两圆相交,故圆心距d =2112d -<<+,解得30a -<<.故答案为:()3,0-. 【点睛】本题考查了根据圆和圆的位置关系求参数,意在考查学生的计算能力和转化能力.15.【分析】根据点的坐标关系知已知的两点关于y 轴对称则折痕即为y=-x 轴进一步根据关于y=-x 轴对称则横坐标纵坐标交换位置且改变符号可得答案【详解】∵将一张坐标纸折叠一次使得点(02)与(−20)重合∴ 解析:1-【分析】根据点的坐标关系,知已知的两点关于y 轴对称,则折痕即为y =-x 轴,进一步根据关于y =-x 轴对称,则横坐标,纵坐标交换位置,且改变符号,可得答案. 【详解】∵将一张坐标纸折叠一次,使得点(0,2)与(−2,0)重合, ∴折痕是y =−x .∴点(2018,2019)与点(−2019,−2018)重合, 故m =−2019,n =−2018, 故m −n =−1, 故答案为:−1. 【点睛】本题考查点关于直线对称问题,解题关键是找出点与点的关系求解即可,属于中等题.16.0或6【分析】计算得到圆心半径根据得到利用圆心到直线的距离公式解得答案【详解】即圆心半径故圆心到直线的距离为即故或故答案为:或【点睛】本题考查了根据直线和圆的位置关系求参数意在考查学生的计算能力和转解析:0或6 【分析】计算得到圆心()1,2C -,半径3r =,根据AC BC ⊥得到2d =,利用圆心到直线的距离公式解得答案. 【详解】222440x y x y ++--=,即()()22129x y ++-=,圆心()1,2C -,半径3r =.AC BC ⊥,故圆心到直线的距离为2d =2d ==,故6a =或0a =. 故答案为:0或6. 【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。
高中数学第二章平面解析几何初步2.1~2.2阶段检测(三)(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.1~2.2阶段检测(三)(含解析)新人教B 版必修2对应学生用书P61(范围:2.1~2.2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.斜率为2的直线的倾斜角α所在的范围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 因为斜率为1的直线的倾斜角是45°,斜率为2的直线的倾斜角大于45°,倾斜角大于90°且小于180°时,直线的斜率是负值,所以斜率为2的直线的倾斜角α的范围是45°<α<90°,故选B .2.在x 轴上的截距为2且倾斜角为60°的直线方程为( ) A .y =3x -2 3 B .y =3x +2 3 C .y =-3x -2 3 D .y =-3x +2 3 答案 A解析 由题可知直线的斜率k =ΔyΔx =tan60°=3,所以直线方程为y =3(x -2),即y =3x -23.3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13 答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值范围为-52<-a <43,解得a∈-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离 d =m 2+n 2=5+2n2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m=-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值范围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC ,∴k AB ·k BC =-1.又∵A(-3,0), ∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0).(2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值范围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值范围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 2=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1,。
成都市外国语学校必修二第二章《解析几何初步》测试(含答案解析)

一、选择题1.圆x 2+y 2-4x =0在点P (1,3)处的切线方程是( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=02.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离等于22a a b ++,则该双曲线的离心率是( ) A .2B .3C .2D .53.已知两定点(2,0)A -,(1,0)B ,如果动点P 满足2PA PB =,点Q 是圆22(2)(3)3x y -+-=上的动点,则PQ 的最大值为( )A .53-B .53+C .323+D .323- 4.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D .105.如下图所示,在正方体1111ABCD A BC D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 6.直线3y x m =+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( )A .(3,2)B .(3,3)C .323,⎛⎫ ⎪ ⎪⎝⎭D .231,⎛⎫⎪ ⎪⎝⎭7.在平面直角坐标系xOy 中,若圆()()222x a y a -+-=与圆()2268x y +-=外切,则实数a 的值为( ) A .1B .2C .3D .48.在底面为正方形的四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PA AD ⊥,PA AD =,则异面直线PB 与AC 所成的角为( )A .30B .45︒C .60︒D .90︒9.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π10.如图,在矩形ABCD 中,1AB =,3BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .10 D .211.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( ) A .20πB .12πC .8πD .4π12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C 322D .34二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.已知点()2,2A --,()4,2,点P 在圆224x y +=上运动,则22PA PB +的最小值是______.15.已知直线l 斜率的取值范围是()3,1-,则l 的倾斜角的取值范围是______. 16.光线从点()0,5P -出发,经直线210x y -+=反射后到达点()2,0Q ,则光线从P 反射到Q 的总行程为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC20.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若23PB =,则三棱锥P ABC -的外接球的体积为_________.21.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36按35计算,则棱长为6的正二十面体的外接球半径等于___________.22.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.23.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.24.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.三、解答题25.设某几何体的三视图如图(尺寸的长度单位为cm ),(1)用斜二测画法画出该几何体的直观图(不写画法); (2)求该几何体最长的棱长.26.如图,正四棱锥P ABCD -中,底面ABCD 的边长为4,4PD =,E 为PA 的中点.(1)求证://PC 平面EBD . (2)求三棱锥E ABD -的体积.27.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,6SA SD ==,22SB =,点E 是棱AD 的中点,点F 是棱SC 上靠近S 的一个三等分点.(1)求证:平面SBE ⊥平面ABCD ; (2)求三棱锥F SEB -的体积.28.如图,正三棱柱111ABC A B C -的棱长均为2,M 是侧棱1AA 的中点.(1)在图中作出平面ABC 与平面1MBC 的交线l (简要说明),并证明l ⊥平面11CBBC ;(2)求点C 到平面1MBC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】求出圆心坐标,由切线的性质得出切线的斜率,从而得切线方程. 【详解】由题意圆的标准方程为22(2)4x y -+=,圆心为(2,0)M ,012PM k ==-,∴切线斜率为3k =1)3y x =-,化简得20x +=.故选:D . 【点睛】本题考查求圆的切线方程,由切线与过切点的半径相互垂直易得切线斜率,从而得切线方程,通常情况下要把方程化为一般式.2.A解析:A 【分析】依题意求得,,A B C 的坐标,求得直线,BD CD 的方程,联立,BD CD 的方程求得D 点坐标,根据D 到直线BC 的距离等于a . 【详解】依题意可知()22,0,,,,b b A a B c C c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()22,AB CD a c a b k k a c a b -==--,()()22,ACBD a c a b k k a c a b -=-=-,所以直线BD :()()22a c ab y xc a b--=-①,直线CD :()()22a c ab y xc a b-+=--②, ①-②并化简得()42D b x c a c a =+-.由于D 到直线BC 的距离等于a a c =+,直线BC 方程为x c =,所以()42D b x c a a c a =+=--,化简得22,a b a b ==,所以双曲线为等轴双曲线,离心率为故选:A 【点睛】本小题主要考查直线和直线交点坐标的求法,考查直线方程点斜式,考查两条直线垂直斜率的关系,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.3.B解析:B【分析】先求出动点P 轨迹方程(圆),再根据两圆位置关系确定PQ 的最大值取法,计算即可得结果. 【详解】设(,)P x y ,因为2PA PB =22(2)4x y ∴-+=因此PQ 故选:B 【点睛】本题考查动点轨迹方程、根据两圆位置关系求最值,考查数形结合思想方法以及基本化简能力,属中档题.4.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B ,所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.5.D解析:D 【分析】设正方体1111ABCD A BC D -的棱长为2,利用正方体性质可求得MN =EF =知12MN EF≠,再利用三角形中位线性质知1//MNB C,从而//MN ED,又EF与ED相交,可知MN与EF异面,即可选出答案.【详解】设正方体1111ABCD A BC D-的棱长为2,则22112MN MC C N=+=作E点在平面ABCD的投影点G,即EG⊥平面ABCD,连接,EG GF,在直角EGF△中,1EG=,222GF AG AF=+=,则2222123EF EG GF=+=+=,所以12MN EF≠,故排除A、C连接DE,由E是平面11ADD A的中心,得112DE A D=又M N、分别是11B C、1CC的中点,所以1//MN B C又11//A DB C,所以//MN ED,又EF ED E⋂=,所以MN与EF异面故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.6.D解析:D【分析】求出直线过(0,1)时m的值,以及直线与圆相切时m的值,即可确定出满足题意m的范围.【详解】解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m=;当直线与圆相切时,圆心到切线的距离d r=21313=⎛⎫+⎪⎪⎝⎭,解得:23m =或23m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为2313m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.C解析:C 【分析】根据题意,求出两个圆的圆心以及半径,由圆与圆的位置关系可得222(6)(222)a a +-=,解可得a 的值,即可得答案.【详解】根据题意,圆22()()2x a y a -+-=的圆心为(,)a a ,半径12r 22(6)8x y +-=的圆心为(0,6),半径222r =若圆22()()2x a y a -+-=与圆22(6)8x y +-=相外切, 则有222(6)(222)a a +-=, 解可得:3a =; 故选:C. 【点睛】本题考查圆与圆的位置关系,注意圆与圆外切的判断条件,属于基础题.8.C解析:C 【分析】由已知可得PA ⊥平面ABCD ,底面ABCD 为正方形,分别过P ,D 点作AD ,AP 的平行线 交于M ,连接CM ,AM ,因为PB ∥CM ,所以ACM 就是异面直线PB 与AC 所成的角,再求解即可. 【详解】由题意:底面ABCD 为正方形, 侧面PAD ⊥底面ABCD ,PA AD ⊥, 面PAD面ABCD AD =,PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M , 连接CM ,AM , ∵PM ∥AD ,AD ∥BC , PM =AD ,AD =BC . ∴ PBCM 是平行四边形, ∴ PB ∥CM ,所以∠ACM 就是异面直线PB 与AC 所成的角. 设PA =AB =a ,在三角形ACM 中,2,2,2AM a AC a CM a ===, ∴三角形ACM 是等边三角形. 所以∠ACM 等于60°,即异面直线PB 与AC 所成的角为60°. 故选:C. 【点睛】思路点睛:先利用面面垂直得到PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,得到∠ACM 就是异面直线PB 与AC 所成的角.9.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.A解析:A 【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式()2222R r SA =+可计算得出三棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果. 【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==, 由正弦定理可得24sin ABr C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=.故选:A. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '=二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键 5 【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则2252(1)d ==+- 5【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.28【分析】设则由表示圆上的点与点间的距离的平方可得答案【详解】设则表示圆上的点与点间的距离的平方所以所以所以故的最小值是28故答案为:28【点睛】关键点睛:本题考查圆中的相关距离的最值问题解答本题解析:28 【分析】设(),P x y ,则22PA PB +()222113x y ⎡⎤=-++⎣⎦,由()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,可得答案. 【详解】设(),P x y ,则()()()()2222222242x y x y PA PB =++++--++2222428x y x =+-+()222214x y x =+-+()222113x y ⎡⎤=-++⎣⎦()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方. 所以211PB R OB ≥-=-=,所以()2211x y -+≥所以()()22211321+1328x y ⎡⎤-++≥⨯=⎣⎦故22PA PB +的最小值是28 故答案为:28 【点睛】关键点睛:本题考查圆中的相关距离的最值问题,解答本题的关键是22PA PB +()222113x y ⎡⎤=-++⎣⎦,又()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,根据211PB R OB ≥-=-=,可求解,属于中档题. 15.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k<时,倾斜角23παπ<<,综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭,故答案为:2 0,,43πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.16.【分析】计算出点关于直线的对称点的坐标则光线的总行程为利用两点间的距离公式可得出结果【详解】设点关于直线的对称点为则解得即点因此光线从反射到的总行程为故答案为:【点睛】本题考查光线反射的问题一般要求【分析】计算出点P关于直线210x y-+=的对称点P'的坐标,则光线的总行程为P Q',利用两点间的距离公式可得出结果.【详解】设点P关于直线210x y-+=的对称点为(),P a b',则5102512baba-⎧-+=⎪⎪⎨+⎪=-⎪⎩,解得245135ab⎧=-⎪⎪⎨⎪=-⎪⎩,即点2413,55P⎛⎫'--⎪⎝⎭,因此,光线从P反射到Q的总行程为P Q'==【点睛】本题考查光线反射的问题,一般要求出点关于直线的对称点,考查计算能力,属于中等题. 17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数解析:3【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为:解析:【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值. 【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平 解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥. 设三棱锥P ABC -外接球半径为R ,则22222(2)3(23)R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.21.【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球设正五边形的外接圆半径为由平面几何知识可求得外接球的半径【详解】由图正二十面体的外接球即为上方正五棱锥的外接球设其半径为正五边形的外接圆半【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球,设正五边形的外接圆半径为r ,由平面几何知识可求得外接球的半径.【详解】由图,正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R ,正五边形的外接圆半径为r ,则33sin 365r ==,得=5r ,所以正五棱=所以(2225R R =+,解得11R =. 【点睛】关键点点睛:本题考查几何体的外接球的问题,关键在于确定外接球的球心和半径. 22.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又解析:【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EM M ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =,∴平面//NMC 平面1C EF . P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =,∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P 长度的取值范围是[32,25]. 故答案为:[32,25]【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.23.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面解析:3【分析】取PA的中点E,连接EB,EC,推出PA⊥平面BCE,故点M的轨迹为线段CE,解出即可.【详解】取PA的中点E,连接EB,EC,因为几何体是正四面体P﹣ABC,所以BE⊥PA,EC⊥PA,EB∩EC=E,∴PA⊥平面BCE,且动点M在正四面体侧面PAC上运动,总保持MB PA⊥,∴点M的轨迹为线段CE,正四面体P﹣ABC的棱长为2,在等边三角形PAC中求得CE=323⨯=.故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.24.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫-⎪⎝⎭【分析】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于二面角D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,求出二面角D AC B--的平面角和二面角D BC A--的平面角即可.【详解】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,设正四面体的棱长为2a,如图所示,取AC的中点E,连接DE、BE,易知DEB∠为二面角D AC B--的平面角,3DE BE a==,所以()()()2223321cos3233a a aDEBa a+-∠==⨯⨯,同理可得:二面角D BC A --的平面角的补角的余弦值为13-, 故二面角D PC B --的平面角的余弦值的取值范围是11,33⎛⎫- ⎪⎝⎭, 故答案为:11,33⎛⎫- ⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.三、解答题25.(1)答案见解析;(2)4cm .【分析】(1)直接画出三棱锥S ABC -即可;(2)作SE ⊥面ABC ,取线段AC 中点为D ,分别在等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △中,求出线段长度,得到该几何体最长的棱长.【详解】(1)(2)如下图,SE ⊥面ABC ,线段AC 中点为D 2,3,1,4,2,=1SE cm AE cm CE cm AC cm AD DC cm DE cm ======,BD AC ⊥,3BD cm =,在等腰ABC 中,222313cm AB AC ==+=在Rt SEA △中,22222313cm SA SE AE =+=+=在Rt SEC △中,2222215cm SC SE CE =+=+=在Rt BDE △中,22223110cm BE BD DE =+=+=SE ⊥面ABC ,SE BE ∴⊥ 在Rt SEB △中,22222(10)14cm SB SE BE =+=+= 在三梭锥S-ABC 中,SC AB AC SA SB AC <==<<,所以最长的棱为AC ,长为4cm【点睛】关键点点睛:本题考查几何体的三视图,以及棱锥的性质,解决本题的关键点是作出SE ⊥面ABC ,取线段AC 中点为D ,由三视图得出等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △,分别求出线段长度,得出答案,考查学生空间想象能力与计算能力,属于中档题.26.(1)证明见解析;(2)823. 【分析】(1)连接AC 交BD 于点O ,连接EO ,利用三角形中位线定理可得//EO PC ,再由线面平行的判定定理可得结论;(2)先证明PO ⊥面ABCD ,由E 是PA 的中点,可得E 到面ABCD 的距离12PO =,再利用棱锥的体积公式可得答案.【详解】(1)连接AC 交BD 于点O ,连接EO .四边形ABCD 为正方形,所以O 为AC 中点,又E 为PA 中点, //EO PC ∴,又EO ⊂面EBD ,PC ⊄面EBD ,//PC ∴面EBD .(2)正四棱锥P ABCD -中,PA PC =,O 是AC 的中点PO AC ∴⊥,PD PB =,O 是BD 的中点PO BD ∴⊥,又AC 与BD 在平面ABCD 内相交,所以PO ⊥面ABCD E 是PA 的中点,E ∴到面ABCD 的距离12PO =,18,2ABD S AB AD PO ∆=⋅⋅===,132E ABD ABD PO V S -∆=⋅⋅=【点睛】方法点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.27.(1)证明见解析;(2 【分析】(1)根据等腰三角形三线合一证明SE AD ⊥,BE AD ⊥,即可证明出AD ⊥平面SEB ,所以平面SBE ⊥平面ABCD ;(2)先证明出BC ⊥平面SEB ,利用三角形相似可得F 到平面SBE 的距离1233d BC ==,计算出SEB △的面积,再代入体积计算公式求解.【详解】(1)证明:∵E 是AD 的中点,SA SD ==SE AD ⊥因为ABCD 是菱形,60BAD ∠=︒,∴BE AD ⊥,∵BE SE E =∩∴AD ⊥平面SEB ,∵AD ⊂平面ABCD ,∴平面SBE ⊥平面ABCD .(2)连接BE ,AC 相交于点G ,则由三角形相似得2CG AG =∵//AD BC ,∴BC ⊥平面SEB ,∵点E 是棱AD 的中点,F 是棱SC 上靠近S 的一个三等分点.∴//SA FG ,∴21CF CG BC SF GA AE ===,∴F 到平面SBE 的距离1233d BC ==,122SBE S ∆==∴三棱锥F SEB -的体积13F SEB SBE V S d -∆=⨯⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何初步检测题
考试时间 45分钟 总分 100分
一、选择题(7’× 5)
1.已知直线的方程是21y x +=--,则 ( )
A.直线经过点(2,-1),斜率为-1 B .直线经过点(1,-2),斜率为-1
C.直线经过点(-2,-1),斜率为1
D.直线经过点(-1,-2),斜率为-1
2.过点A(4,1)且在两坐标轴上的截距相等的直线的方程是 ( )
A.5x y +=
B.5x y -=
C.5x y +=或40x y -=
D.5x y -=或40x y +=
3.斜率为-3,在x 轴上的截距为2的直线的一般式方程是 ( )
A.360x y ++=
B.320x y -+=
C.360x y +-=
D.320x y --=
4.直线20x y k -+=与4210x y -+=的位置关系是 ( )
A.平行
B.不平行
C.平行或重合
D.既不平行也不重合
5.已知A(-4,-5)、B(6,-1),则以线段AB 为直径的圆的方程是 ( )
A.()()221329x y ++-=
B.()()22
1329x y +++=
C.()()2213116x y ++-=
D.()()2213116x y -++=
二、填空题(7’× 2)
6.若直线x +2my -1=0与直线(3m -1)x -my -1=0平行,那么实数m 的值为_________.
7.点P(5a +1,12a )在圆()2
211x y -+=的内部,则a 的取值范围是_________.
三、解答题(14’ + 17’+ 20’)
8.已知P(3,m )在过点M(2,-1)和点N(-3,4)的直线上,则m 的值是多少?
9.直线l 过点P(-2,3)且与x 轴、y 轴分别交与A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程.
10.已知点P (0,5)及圆C :22
412240x y x y ++-+=,
(1)若直线l 过P 且被圆C 截得的线段长为l 的方程;
(2)求过P 点的弦的中点的轨迹方程.
答题纸
班级:姓名:分数:I选择题、填空题
II解答题
第二章平面解析几何初步检测题
一、选择题
2.D
3.C
4.C 7.C 8.B
二、填空题
12. 0或16; 14. 111313
a -<<. 三、解答题
11. –2;
16. 解:(法一)设A(x,0) 、B(0,y),由中点坐标公式得:002,322
x y ++=-= 解得:x =-4,y =6 又直线l 过点(-2,3)、(-4,0)
∴ 直线l 的方程为:320342
y x -+=--+ 即3x -2y +12=0 (法二)设直线l 的斜率为k ,
∵直线l 过点(-2,3), ∴直线l 的方程为y -3=k(x +2)
令x =0得y =2k +3;令y =0得x =32k -
-. ∴A 、B 两点的坐标分别为A(32k
-
-,0)、B(0,2k +3). ∵AB 的中点为(-2,3) ∴32
222332
k k ⎧--⎪=-⎪⎨⎪+=⎪⎩ ,解之得k =32 ∴直线l 的方程为y -3=32
(x +2) 即直线l 的方程为3x -2y +12=0.
18. 解:(1)圆心为(2,6)-,半径为4
,弦长为
2
d == 若直线l 无斜率,则其方程为0x =,则圆心(2,6)-到直线l 的距离为2,符合条件.
若直线l 有斜率,设其方程为5y kx -=,一般式为50kx y -+=,则有
2=,解得34k =
,综上,直线方程为342000x y x -+==或; (2)设过P 点的弦的中点坐标为(,)x y ,则该弦所在直线与过圆心与弦中点(,)x y 的直线垂直,则有561(0,2)2y y x x x x --∙=-≠≠-+,化简得22211300x y x y ++-+=, 且弦的中点坐标分别为(0,5),(0,6),(2,5),(2,6)--时仍满足上式,因此弦的中点轨迹方程为22211300x y x y ++-+=.。