MTBE装置物料性质

MTBE装置物料性质
MTBE装置物料性质

MTBE装置物料性质C4

正丁烷

2.对环境的影响:

一、健康危害

侵入途径:吸入。

健康危害:高浓度有窒息和麻醉作用。

二、毒理学资料及环境行为

急性毒性:LC50658000ppm,4小时(大鼠吸入);人吸入23.73g/m3×10分钟,嗜睡、头晕、严重者昏迷。

亚急性和慢性毒性:动物吸入25.2、116、332、800mg/m3,未见中毒反应。

危险特性:易燃。与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与氧化剂接触会猛烈反应。气体比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

气体检测管法

4.实验室监测方法:

气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社

5.环境标准:

前苏联车间空气中有害物质的最高容许浓度 300mg/m3

前苏联(1975)居民区大气中有害物最大允许浓度200mg/m3(最大值)

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。

二、防护措施

呼吸系统防护:一般不需要特殊防护,但建议特殊情况下,佩带自吸过滤式防毒面具(半面罩)。

眼睛防护:一般不需要特别防护,高浓度接触时可戴安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴一般作业防护手套。

其它:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。

三、急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

异丁烷

1.物质的理化常数:

2.对环境的影响:

一、健康危害

侵入途径:吸入。

健康危害:具有弱刺激性和麻醉作用。

二、毒理学资料及环境行为

危险特性:易燃气体。与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与氧化剂接触会猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

4.实验室监测方法:

气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社

5.环境标准:

前苏联(1975) 车间卫生标准300mg/m3

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。

二、防护措施

呼吸系统防护:一般不需要特殊防护,但建议特殊情况下,佩带自吸过滤式防毒面具(半面罩)。

眼睛防护:一般不需要特别防护,高浓度接触时可戴安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴一般作业防护手套。

其它:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。

三、急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

异丁烯

眼睛防护:必要时,戴化学安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴一般作业防护手套。

其它:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。

三、急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

甲醇

1.物质的理化常数:

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。

急性中毒:短时大量吸入出现轻度眼及上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。

慢性影响:神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。

二、毒理学资料及环境行为

毒性:属中等毒类。

急性毒性:LD505628mg/kg(大鼠经口);15800mg/kg(兔经皮);LC5082776mg/kg,4小时(大鼠吸入);人经口5~10ml,潜伏期8~36小时,致昏迷;人经口15ml,48小时内产生视网膜炎,失明;人经口30~100ml中枢神经系统严重损害,呼吸衰弱,死亡。

亚急性和慢性毒性:大鼠吸入50mg/m3,12小时/天,3个月,在8~10周内可见到气管、支气管粘膜损害,大脑皮质细胞营养障碍等。

致突变性:微生物致突变:啤酒酵母菌12pph。DNA抑制:人类淋巴细胞300mmol/L。

生殖毒性:大鼠经口最低中毒浓度(TDL0):7500mg/kg(孕7~19天),对新生鼠行为有影响。

大鼠吸入最低中毒浓度(TCL0):20000ppm(7小时),(孕1~22天),引起肌肉骨骼、心血管系统和泌尿系统发育异常。

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

气体检测管法;便携式气相色谱法;直接进水样气相色谱法

气体速测管(北京劳保所产品)

4.实验室监测方法:

5.环境标准:

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内。回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:可能接触其蒸气时,应该佩戴过滤式防毒面罩(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴橡胶手套。

其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。实行就业前和定期的体检。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:饮足量温水,催吐,用清水或1%硫代硫酸钠溶液洗胃。就医。

灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。

MTBE

1.物质的理化常数:

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品蒸气或雾对眼睛、粘膜和上呼吸道有刺激作用,可引起化学性肺炎。对皮肤有刺激性。

二、毒理学资料及环境行为

毒性:属低毒类。

急性毒性:LD503030mg/kg(大鼠经口);>7500mg/kg(兔经皮);LC5085000mg/m3,4小时(大鼠吸入)

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热或与氧化剂接触,有引起燃烧爆炸有危险。与氧化剂接触会猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

便携式气相色谱法

4.实验室监测方法:

气相色谱法

5.环境标准:

美国车间卫生标准144mg/m3

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:可能接触其蒸气时,佩戴过滤式防毒面具(半面罩)。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴橡胶手套。

其它:工作现场严禁吸烟。工作毕,淋浴更衣。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,

立即进行人工呼吸。就医。

食入:饮足量温水,催吐,就医。

灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。

第三章 材料的磁学性能

一,一,基本概念 1. 1.磁畴:在未加磁场时铁磁金属内部已经磁化到饱和状态的小区域。 2. 2.磁导率:磁导率是磁性材料最重要的物理量之一,表示磁性材料传导和 通过磁力线的能力,用μ表示,其中μ=B/H.单位为亨利/米(H·m-1). 3. 3.自发磁化:在未加磁场时铁磁金属内部的自旋磁矩已经自发地排向了同 一方向的现象. 4. 4.磁滞损失:磁滞回线所包围的面积相当于磁化一周所产生的能量损耗。 5. 5.磁晶各向异性: 6. 6.退磁场:非闭合回路磁体磁化后,磁体内部产生一个与磁化方向相反的磁场。 第三章材料的磁学性能 随着近代科学技术的发展,金属和合金磁性材料,由于它的电阻率低、损耗大,已不能满足应用的需要,尤其是高频范围。 磁性无机材料除了有高电阻、低损耗的优点以外,还具有各种不同的磁学性能,因此它们在无线电电子学、自动控制、电子计算机、信息存储、激光调制等方面,都有广泛的应用。磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体(ferrite)。它的电阻率为10~106Ω·m,属于半导体范畴。目前,铁氧体已发展成为一门独立的学科。 本章介绍磁性材料的一般磁性能,着重讨论铁氧体材料的性能与应用。 7.1磁矩和磁化强度 7.1.1磁矩 (1)定义 在磁场的作用下,物质中形成了成对的N、S磁极,称这种现象为磁化。与讨论电场时的电荷相对应,引入磁量的概念,并把磁量叫做磁极强度或磁荷。将一对等量异号的磁极相距很小的距离,把这样的体系叫做磁偶极子。 在外磁场的影响下,磁偶极子沿磁场方向排列。为达到与磁场平行,该磁矩在力矩 T=Lq m Hsin (7.1) 的作用下,发生旋转。式中的系数Lq m定义为磁矩M(Wb·m)。 磁矩这一物理量是磁相互作用的基本条件,是物质中所有磁现象的根源。磁矩的概念可用于说明原子、分子等微观世界产生磁性的原因。 (2)原子磁矩 物质是原子核和电子的集合体,要理解物质的磁性起源,就要考虑原子具有的磁矩。现在我们可以从以下三方面来分析原子中的磁矩。 ①电子轨道运动产生的磁矩 ②电子自旋产生的磁矩 ③原子核的磁矩 7.1.2磁化强度 磁化强度的物理意义是单位体积中的磁矩总和。设体积元△V内磁矩的矢量和为∑M,则磁化强度M为 (7.2) 式中M i的单位为Wb·m,V的单位为m3,因而磁化强度M的单位为Wb·m2,即与磁场强度H的单位一致。

土木工程材料基本性质(1)

1.土木工程材料基本性质:物理性质:密度,孔隙率,含水率,几何尺寸。力 学性质:强度,弹性模量,抗冲击,抗剪性,抗扭曲性。耐久性能:抗渗性,抗冻性,抗腐蚀性等。 2.胶凝材料:是在物理,化学作用下将其他物理胶结为具有一定力学强度的整 体物质。 3.石灰:石灰的主要原料是以碳酸钙为主要成分的矿物,天然岩石,常用的有 石灰石,白云石或贝壳等。 4.水泥:水泥是制造各种形式的混凝土,钢筋混凝土和预应力混凝土建筑物或 构筑物的基本材料之一,它广泛应用于建筑,道桥,铁路,水利和国防等工程中。 5.水泥砂浆:水泥砂浆是以砂为主体材料,加入一定量的水泥或其他掺和料和 水经拌和均匀而得到的稠状材料。根据用途可分为:砌筑砂浆,抹灰砂浆,锚固砂浆,补修砂浆,保温砂浆等。 6.水泥混凝土:它是以水泥为胶凝材料,由粗细集料,水混合而成,必要时也 可以加入适量的外加剂,掺和料以及其他改性材料改变其性能。 7.防水材料:是指能够防止雨水,地下水,工业污水,湿气等渗透的材料。应 具有防潮,防渗,防漏的功能,以及良好的变形性能与耐老化性能。分为刚性防水(混凝土,防水砂浆),柔性防水防水卷材,防水涂料,密封材料等) 8.绝热材料:是用于减少建筑结构物与环境热交换的一种功能材料。按化学成 分分为有机和无机两类。按材料构造分为纤维状,松散粒状,多孔组织等。 9.装饰材料:装饰材料不但应具有良好的装饰性能外,还应具有良好的物理学 性能,施工与加工性能以及房屋建筑所需的绿色环保特色。装饰材料包括木,石,砖,石膏,石棉玻璃,陶瓷,金属等。 10.土木工程材料发展趋势:土木工程自身发展与其材料之间存在着相互依赖和 相互促进的关系。随着社会对工程安全,低碳,可持续额发展的需要,土木工程材料需向高强,轻质,耐久以及节能,环保,生态等方向发展。 11.地基:承受建筑物荷载的那一部分土层成为地基,建筑物向地基传递荷载的 下部结结构称为基础。地基与基础是保证建筑物安全和满足使用要求的关键之一。12.基础:基础形式多样,设计时应该选择能适应上部结构和场地工程地质条件, 符合使用要求,满足地基基础设计基本要求以及技术上合理的基础结构方案。 13.地基勘察报告书的编制:勘察工作结束后,把取得的野外工作和室内试验的 记录和数据,以及搜集到的各种直接和间接的资料进行分析整理、检查校对、归纳总结后作出建筑场地的工程地质评价,最终要以简明扼要的文字和图表变成报告书。 14.浅基础:天然地基上的浅基础埋置深度较浅,用料较省,无需复杂的施工设 备,在开挖基坑,必要时支护坑壁和排水疏干后对地基不加处理即可修建,工期短,造价低,因而设计时宜优先选用天然地基。 15.浅基础的结构形式:扩展基础,条形基础,伐形基础,箱型基础。 16.箱型基础:为了使基础具有更大的刚度,大大减少建筑物的相对弯曲,可将基础做成由 顶板,底板及若干纵横隔墙组成的箱型基础。他是伐片基础的进一步发展,一般都是用钢筋混凝土建造,基础顶板和底板之间的空间可以作为地下室。 17.桩基础:桩基础是一种古老的基础形式。桩基础具有承载力高,稳定性好,沉降量小而 均匀的特点。 18.采用桩基础的条件:一般对采用天然地基而使地基承载力不足或沉降量过大时,宜考虑 桩基础,比如高层建筑物,纪念性或永久性建筑,设有大吨位的重级工作制吊车的重型单层工业房,高耸建筑物等。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

第一章-建筑材料的基本性质(附答案)

第一章 建筑材料的基本性质 一、填空题 1.材料的实际密度是指材料在( 绝对密实 )状态下( 单位体积的质量 )。用公式表示为( ρ=m/V )。 2.材料的体积密度是指材料在( 自然 )状态下( 单位体积的质量 )。用公式表示为(ρ0=m/V0 )。 3.材料的外观体积包括(固体物质)和( 孔隙 )两部分。 4.材料的堆积密度是指(散粒状、纤维状)材料在堆积状态下( 单位体积 )的质量,其大小与堆积的( 紧密程度 )有关。 5.材料孔隙率的计算公式是( 01 ),式中ρ为材料的( 实际密度 ),ρ0为材料的( 体积密度 )。 6.材料内部的孔隙分为( 开口 )孔和( 闭口 )孔。一般情况下,材料的孔隙率越大,且连通孔隙越多的材料,则其强度越(低),吸水性、吸湿性越(大)。导热性越(差)保温隔热性能越(好)。 7.材料空隙率的计算公式为( ''001 )。式中0为材料的(体积)密度,0ρ'为材料的( 堆积 )密度。 8.材料的耐水性用( 软化系数)表示,其值越大,则耐水性越( 好 )。一般认为,( 软化系数 )大于( 0.80 )的材料称为耐水材料。 9.材料的抗冻性用( 抗冻等级 )表示,抗渗性一般用( 抗渗等级)表示,材料的导热性用( 热导率 )表示。 10.材料的导热系数越小,则材料的导热性越( 差 ),保温隔热性能越( 好)。常将导热系数(k m w *175.0≤)的材料称为绝热材料。

二、名词解释 1.软化系数:材料吸水饱和时的抗压强度与其干燥状态下抗压强度的比值。 2.材料的吸湿性:材料在潮湿的空气中吸收水分的能力。 3.材料的强度:材料抵抗外力作用而不破坏的能力。 4.材料的耐久性:材料在使用过程中能长期抵抗周围各种介质的侵蚀而不破坏,也不易失去其 原有性能的性质。 5.材料的弹性和塑性:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完 全恢复原来形状的性质称为弹性; 材料在外力作用下产生变形,当外力取消后,仍保持变形后的形状尺寸, 并且不产生裂缝的性质称为塑性。 三、简述题 1.材料的质量吸水率和体积吸水率有何不同?什么情况下采用体积吸水率来反映材料的吸水性? 答:质量吸水率是材料吸收水的质量与材料干燥状态下质量的比值; 体积吸水率是材料吸收水的体积与材料自然状态下体积的比值。 一般轻质、多孔材料常用体积吸水率来反映其吸水性。 2.什么是材料的导热性?材料导热系数的大小与哪些因素有关? 答:材料的导热性是指材料传导热量的能力。 材料导热系数的大小与材料的化学成分、组成结构、密实程度、含水状态等因素有关。 3.材料的抗渗性好坏主要与哪些因素有关?怎样提高材料的抗渗性? 答:材料的抗渗性好坏主要与材料的亲水性、憎水性、材料的孔隙率、孔隙特征等因素有关。 提高材料的抗渗性主要应提高材料的密实度、减少材料内部的开口孔和毛细孔的数量。 4.材料的强度按通常所受外力作用不同分为哪几个(画出示意图)?分别如何计算?单位如何?

材料基本性质练习题

3-4-1-4 首页及保证声明作业首页(学生填写)

材料基本性质 一、判断题 1、玻璃体材料就是玻璃,并具有良好的化学稳定性。() 2、多孔材料吸水后,其保温隔热效果变差。() 3、材料的吸水率就是材料内含有的水的质量与材料干燥时质量之比。() 4、材料的孔隙率越大,其抗渗性就越差。() 5、耐久性好的材料,其强度必定高。() 6、凡是含孔材料,其干表观密度均比其密度小。() 7、无论在什么条件下,木材的平衡含水率始终为一定值。() 8、材料受冻破坏,主要是材料粗大孔隙中的水分结冰所引起的。() 9、承受冲击与振动荷载作用的结构需选择脆性材料。() 10、新建的房屋感觉会冷些,尤其是在冬天。() 二、名词解释 1、吸水性与吸湿性 2、强度 3、亲水性与憎水性 4、脆性材料与韧性材料 5、耐水性及软化系数 6、耐久性 7、比强度 8、孔隙特征 三、填空题 1、材料吸水后其性质会发生一系列变化,如使材料强度,保温性,体积。

2、在水中或长期处于潮湿状态下使用的材料,应考虑材料的。 3、材料的吸水性大小用表示,吸湿性大小用表示。 4、脆性材料的抗压强度抗拉强度。 5、材料的组成包括、和;材料的结构包括、和等三个层次。 6、材料的微观结构包括、和等三种形式。 四、选择题 1、同一种材料的密度与表观密度差值较小,这种材料的()。 A.孔隙率较大 B.保温隔热性较好 C.吸音能力强 D.强度高 2、为了达到保温隔热的目的,在选择墙体材料时,要求()。 A. 导热系数小,热容量小 B. 导热系数小,热容量大 C. 导热系数大,热容量小 D. 导热系数大,热容量大 3、测定材料强度时,若加荷速度过()时,或试件尺寸偏小时,测得值比标准条件下测得结果偏()。 A.快,低 B. 快,高 C. 慢,低 D. 慢,高 4、某一材料的下列指标中为固定值的是()。 A.密度 B.表观密度 C.堆积密度 D.导热系数 5、现有甲、乙两种材料,密度和表观密度相同,而甲的质量吸水率大于乙,则甲材料()。A.比较密实 B.抗冻性较差 C.耐水性较好 D.导热性较低 6、某材料100g,含水5g,放入水中又吸水8g后达到饱和状态,则该材料的吸水率可用()计算。 A.8/100 B.8/95 C.13/100 D.13/95 7、评定材料抵抗水的破坏能力的指标是()。 A.抗渗等级 B.渗透系数 C.软化系数 D.抗冻等级 8、孔隙率相等的同种材料,其导热系数在()时变小。 A.孔隙尺寸增大,且孔互相连通 B.孔隙尺寸增大,且孔互相封闭 C.孔隙尺寸减小,且孔互相封闭 D.孔隙尺寸减小,且孔互相连通 9、用于吸声的材料,要求其具有()孔隙。 A.大孔 B.内部连通而表面封死 C.封闭小孔 D.开口连通细孔 10、材料处于()状态时,测得的含水率是平衡含水率。 A.干燥状态 B.饱和面干状态 C.气干状态 D.湿润状态 五、问答题 1、材料的孔隙率及孔隙特征如何影响材料的强度、吸水性、抗渗性、抗冻性、保温性?

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

1.2 常工程材料的基本性质

1.2 常用工程材料的基本性质 1.何谓材料的实际密度,体积密度和堆积密度?如何计算? 答:实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:ρ=m/V 体积密度是指材料在自然状态下(含开口和闭口孔隙),单位体积所具有的质量,按下式计算:ρo=m/Vo 堆积密度是指散粒材料(粉末,粒状或纤维状材料)在自然堆积状态下,单位体积(包含颗粒内部的孔隙及颗粒之间的空隙)所具有的质算,按下式计算:ρo’=m/Vo’ 2.何谓材料的密实度和孔隙率?两者有什么关系? 答:密实度是指材料体积内被固体物质所充实的程度,也就是固体物质的体积占总体积的比例。用D表示。 孔隙率是指材料题体积内,孔隙体积(Vp)占材料总体积(Vo)的百分率,用P表示。 孔隙率与密实度的关系:P+D=1 4.建筑材料的亲水性与憎水性在建筑工程中有什么实际意义? 答:亲水性材料(如石材,砖,混凝土,木材等)表面均能被水润湿,且能通过毛细管作用将水吸入材料的毛细管内部。 憎水性材料(如石蜡,沥青,塑料,油漆等)不仅可用作防水防潮的材料,而且还可以用于亲水性材料的表面处理,以降低其吸水性。 6.何谓材料的吸水性,吸湿性,耐水性,抗渗性和抗冻性?各用什么指标表示? 答:材料在水中吸收水分的性质称为吸水性,其大小用吸水率表示:材料吸水饱和后的水质量占材料干燥质量的百分率称为质量吸水率Wm,材料吸收饱和后的水体积占材料干燥时自然体积的百分率称为体积吸水率Wv。 材料在潮湿空气中吸收水分的性质叫做吸湿性,其大小用含水率Wh表示。 材料在长期饱和水作用下不破坏,其强度也不显著降低的性质称为耐水性,用软化系数K 表示。 材料抵抗有压介质(水,油等液体)渗透的性质称为抗渗性,常用渗透系数Kp表示抗渗性好坏。 材料在水饱和状态下经多次冻融作用而不破坏,同时强度也不严重降低的性质称为抗冻性,用抗冻等级F表示。 8.材料的孔隙率与孔隙特征对材料的体积密度、吸水性、吸湿性、抗渗性、抗冻性、 强度及保温隔热等性能有何影响? 答:孔隙率与密实度有关,而材料的强度,吸水性,耐久性,导热性等均与其密实度有 关,所以孔隙率会影响材料的体积密度、吸水性、吸湿性、抗渗性、抗冻性、强度。 材料内部的孔隙有开口孔隙和闭合孔隙两种,开口孔隙之间可相互贯通且与外界 相通,在一般浸水条件下能水饱和。闭合孔隙彼此不相通且与界隔绝,其能提高材料的 隔热保温性能。 10.何谓材料强度,比强度?两者有什么关系?

第1章 材料的基本性质复习题答案

第一章土木工程材料的基本性质习题参考答案 一名词解释 1.密度:材料在绝对密实状态下单位体积的质量。 2.表观密度:材料在自然状态下,单位体积的质量。 3.软化系数:材料在吸水饱和状态下的抗压强度与材料在干燥状态下的抗压强度之比。 二填空题 1.材料的吸湿性是指材料在_潮湿空气中吸收水分的_的性质。 2.材料的亲水性与憎水性用__润湿边角来表示,材料的吸湿性用_含水率_ 来表示。材料的吸水性用_吸水率_来表示。 3.同种材料的孔隙率越_小_ ,其强度越高。当材料的孔隙一定时,_密闭孔隙越多,材料的保温性能越好。 4.材料的耐水性是指材料在长期_水_ 作用下,_强度_ 不显著降低的性质。材料的耐水性可以用_软化系数表示,该值越大,表示材料的耐水性_越好。 三判断题 1.材料吸水饱和状态时水占的体积可视为开口孔隙体积。(√) 2.在空气中吸收水分的性质称为材料的吸水性。(×) 3.材料比强度越大,越轻质高强。(√) 4.材料的导热系数越大,其保温隔热性能越好。(×) 5.材料的孔隙率越小,密度越大。(×) 6.材料受潮或冰冻后,其导热系数都降低。(×) 7.渗透系数K越大,表示材料的抗渗性越好(×)。 8.软化系数不大于1。(√) 9.具有粗大孔隙的材料,其吸水率较大;具有细微连通孔隙的材料,其吸水率较小。(×) 10.某些材料虽然在受力初期表现为弹性,达到一定程度后表现出塑性特征,这类材料称为塑性材料。(×) 四选择题 (1)孔隙率增大,材料的_ B 降低。 A 密度 B 表观密度 C憎水性 D抗冻性 (2)材料在水中吸收水分的性质称为_ A 。 A 吸水性 B 吸湿性 C耐水性 D渗透性 (3)有一块砖重2625g,其含水率为5% ,该湿砖所含水量为_ D ___。 A 131.25g B 129.76g C 130.34g D 125g (4)通常材料的软化系数为_ B _时。可以认为是耐水的材料。 A > 0.95 B > 0.85 C > 0.75 D >0.65 (5)颗粒材料的密度为ρ,表观密度为ρ0,堆积密度ρ0 ',则存在下列关系__A __。 A. ρ>ρ0>ρ0 ' B. ρ>ρ0'>ρ0 C. ρ0>ρ>ρ0 ' D. ρ0>ρ0 '>ρ (6)材料吸水后,将使材料的_ D ___提高。

材料的基本物理性质 1

项目一建筑材料基本性质 (1)真实密度(密度) 岩石在规定条件(105土5)℃烘干至恒重,温度20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。真实密度用ρ t表示,按下式计算: 式中:ρt——真实密度,g/cm3 或 kg/m3; m s——材料的质量,g 或 kg; Vs——材料的绝对密实体积,cm3或 m3。 因固 测定方法:李氏比重瓶法 将石料磨细至全部过的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。(2)毛体积密度 岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体积)质量。 毛体积密度用ρd表示,按下式计算:

式中:ρd——岩石的毛体积密度, g/cm3或 kg/m3; m s——材料的质量,g 或 kg; Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。(3)孔隙率 岩石的孔隙率是指岩石内部孔隙的体积占其总体积的百分率。孔隙率n按下式计算: 式中:V——岩石的总体积,cm3或 m3; V0——岩石的孔隙体积,cm3或 m3; ρd——岩石的毛体积密度, g/cm3或 kg/m3 ρt——真实密度, g/cm3或 kg/m3。 2、吸水性 、岩石的吸水性是岩石在规定的条件下吸水的能力。 、岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和

孔隙率大小)。为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性(1)吸水率 岩石吸水率是指在室内常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。 吸水率wa的计算公式为: 式中:m h——材料吸水至恒重时的质量(g); m g——材料在干燥状态下的质量(g)。 (2)饱和吸水率 在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。 吸水率wsa 的计算公式为: 式中:m b——材料经强制吸水至饱和时的质量(g); m g——材料在干燥状态下的质量(g)。 饱水率的测定方法(JTG E41—2005): 采用真空抽气法。因为当真空抽气后占据岩石孔隙内部的空气被排出,当恢复常压时,则水即进入具有稀薄残压

材料的磁学性能

材料的磁学性能 (一) 磁性材料包含 金属基材料 无机材料(含铁及其他元素的复合氧化物,通常称为铁氧体) 纳米材料(纳米材料的磁性有其特殊性) 磁性材料的分类 软磁材料 硬磁材料 基本磁学概念 物质的磁性来源:电子的运动以及原子、电子内部的永久磁矩。 磁矩 “磁”来源于“电”。 任何一个封闭的电流都具有磁矩μm 。 磁矩定义为 式中: μ m 为载流线圈的磁矩,n 为线圈平面的法线方向上的单位矢量,S 为线圈的面积,I 为线圈通过的电流。单位为A ·m2 ISn m =μ 磁偶极子产生的偶极矩为jm , ml j m = 单位为Wb ·m 在均匀磁场中,磁矩受到磁场作用的力矩JF B J m F ?=μ

JF 为矢量积,B 为磁感应强度,其单位为Wb/m2 ,Wb (韦伯)是磁通量的单位。 磁矩在磁场中所受的力 ,对于一维为: dx dB m μ=X F 磁矩的意义 表征磁偶极子磁性强弱和方向的一个物理量。 磁矩是表征磁性物体磁性大小的物理量。 磁矩愈大,磁性愈强,即物体在磁场中所受的力也大。 磁矩只与物体本身有关,与外磁场无关。 和磁偶极矩具有相同的物理意义,但μm 和jm 各有自己的单位和数值,有如下关系 m m j μμ0= 磁场强度 磁场强度H 如果磁场是由长度为l ,电流为I 的圆柱状线圈(N 匝)产生的,则 H 的单位为A/m

l NI H 磁感应强度 磁感应强度B 表示材料在外磁场H 的作用下在材料内部的磁通量密度。 B 的单位: T 或 Wb/m2 在许多场合,确定磁场效应的量是磁感应强度B ,而不是磁场强度H 磁场强度和磁感应强度的关系为 式中的 内部的磁通量密度,只和介质有关,表征磁体的磁性、导磁性及磁化难易程度。 的单位为H/m 。

第1章 材料的基本性质复习题答案教学内容

第1章材料的基本性质复习题答案

第一章土木工程材料的基本性质习题参考答案 一名词解释 1.密度:材料在绝对密实状态下单位体积的质量。 2.表观密度:材料在自然状态下,单位体积的质量。 3.软化系数:材料在吸水饱和状态下的抗压强度与材料在干燥状态下的抗压强度之比。 二填空题 1.材料的吸湿性是指材料在_潮湿空气中吸收水分的_的性质。 2.材料的亲水性与憎水性用__润湿边角来表示,材料的吸湿性用_含水率_ 来表示。材料的吸水性用_吸水率_来表示。 3.同种材料的孔隙率越_小_ ,其强度越高。当材料的孔隙一定时,_密闭孔隙越多,材料的保温性能越好。 4.材料的耐水性是指材料在长期_水_ 作用下,_强度_ 不显著降低的性质。材料的耐水性可以用_软化系数表示,该值越大,表示材料的耐水性_越好。 三判断题 1.材料吸水饱和状态时水占的体积可视为开口孔隙体积。(√) 2.在空气中吸收水分的性质称为材料的吸水性。(×) 3.材料比强度越大,越轻质高强。(√) 4.材料的导热系数越大,其保温隔热性能越好。(×) 5.材料的孔隙率越小,密度越大。(×) 6.材料受潮或冰冻后,其导热系数都降低。(×)

7.渗透系数K越大,表示材料的抗渗性越好(×)。 8.软化系数不大于1。(√) 9.具有粗大孔隙的材料,其吸水率较大;具有细微连通孔隙的材料,其吸水率较小。(×) 10.某些材料虽然在受力初期表现为弹性,达到一定程度后表现出塑性特征,这类材料称为塑性材料。(×) 四选择题 (1)孔隙率增大,材料的_ B 降低。 A 密度 B 表观密度 C憎水性 D抗冻性 (2)材料在水中吸收水分的性质称为_ A 。 A 吸水性 B 吸湿性 C耐水性 D渗透性 (3)有一块砖重2625g,其含水率为5% ,该湿砖所含水量为_ D ___。 A 131.25g B 129.76g C 130.34g D 125g (4)通常材料的软化系数为_ B _时。可以认为是耐水的材料。 A > 0.95 B > 0.85 C > 0.75 D >0.65 (5)颗粒材料的密度为ρ,表观密度为ρ0,堆积密度ρ0 ',则存在下列关系__ A __。 A. ρ>ρ0>ρ0 ' B. ρ>ρ0'>ρ0 C. ρ0>ρ>ρ0 ' D. ρ0>ρ0 '>ρ (6)材料吸水后,将使材料的_ D ___提高。 A. 耐久性 B. 强度及导热系数 C. 密度 D. 表观密度和导热系数 (7)选择承受动荷载作用的结构材料时,要选择下述哪一类材料?_ B _ A 具有良好塑性的材料 B 具有良好韧性的材料 C具有良好弹性的材料 D具有良好硬度的材料

第七章 玻璃的电学及磁学性质

第七章玻璃的电学及磁学性质 1、何谓玻璃的电导率?共分几种? (1)固体材料的电导率是表示通过电流的能力,其大小主要有带电粒子的浓度和它们的迁移率所决定。 (2)玻璃的电导率分为体积电导率和表面两种。 2、简述硅酸盐玻璃的导电机理。 玻璃具有离子导电和电子导电的特性。某些过渡元素氧化物玻璃及硫属化合物半导体玻璃具有电子导电的特性,一般的硅酸盐玻璃为离子导电。 离子导电是以离子为载电体,在外电场的作用下,载电体由原先无定向的离子热运动纳入电场方向的概率增加,转为做定向移动而显出导电性。载电体通常是玻璃中的阳离子,尤其以玻璃中所含能动度最大的碱金属离子为主(如Na+、K+等),二价阳离子的能动度要小得多,在能动度相差很大的情况下,全部电流几乎由一种阳离子负载。例如在Na2O-CaO-SiO2玻璃中,可以认为全部电流都由Na+传递,而Ca2+的作用可以忽略不计。在常温下,玻璃中作为硅氧骨架或硼氧骨架的阴离子基团,在外电场作用下几乎没有移动的能力。当温度升高到玻璃软化温度以上时,玻璃中的阴离子开始参与电流的传递,随着温度的升高i,参与传递电流的碱离子和阴离子数也逐渐增多。 3、何谓玻璃的介电强度?何谓玻璃的介电损耗?何谓玻璃的介电常数? (1)介电常数表征在外电场作用下介质极化过程的大小。 (2)在一定频率的交流电压作用下,电介质材料由于极化或吸收现象使部分电能转化为热能而损耗,这种电能损失称为介电损耗。 (3)当施加于电介质的电压超过某一临界值时,介质中的电流突然增大,这这一现象称为电击穿。发生电击穿时的电压,称为电介质的耐击穿强度, 又称介电强度。 4、影响玻璃(体积)电导率的主要因素有哪些? 对体积电导率而言,电导率与材料的截面积成正比,与其长度成反比。电导率的单位为S/m。玻璃的电导率与玻璃的化学组成、温度及热历史有关。 5、何谓玻璃的表面电导率?如何改变玻璃的表面电导率? (1)玻璃的表面电导率,是指边长为1cm的正方形面积,在其相对两边上测得的电导率。单位为?-1. (2)表面电导率主要取决于玻璃的组成、空气的湿度和温度。 玻璃组成对表面电导率地影响如下。 ①玻璃中碱金属氧化物含量较高时,表面电导率增大,且KO较NaO 的作用更为显著。 ②在Na2O-SiO2系统中,以CaO、MgO、BaO、Al2O3等取代SiO2 时,若取代量在10%~12%以下时,玻璃的表面电导率减小;若超过 上述数值时,玻璃的表面电导率反而增大。 ③以B2O3、Fe2O3、取代Na2O-SiO2系统玻璃中的SiO2时,如果取代 量在20%以下,玻璃表面的电导率将显著降低。 空间湿度增加,能明显提高玻璃的表面电导率。 自室温至1000C,玻璃的表面电导率不断增大;当温度高于1000C时,玻璃的表面电导率与体积电导率已无区别。 玻璃表面的状态对表面电导率影响很大。表面经磨光、火抛光及酸处理

第一章材料的基本性质

第一章:材料的基本性质 一、材料的基本组成、结构与构造对性质的影响 (一)、材料的组成.. 材料组成通常用二种表示方法:一是化学组成;二是矿物组成。 1、化学组成无机非金属建筑材料的化学组成以各种氧化物的形式表示。金属材料以元素含量来表示。化学组成决定着材料化学性质,影响着物理性质和力学性质。如碳素钢随含碳量增加,强度、硬度增大,而塑性韧性降低。 2、矿物组成材料中的元素或化合物是以特定的结合形式存在着,并决定着材料的许多重要性质。 矿物组成,是无机非金属建筑材料中化合物存在的基本形式。化学组成不同,有不同的矿物。即使相同的化学组成,在不同的条件下,结合成的矿物往往也是不同的。例如,化学组成为CaO 、SiO2、Al2O3、Fe2O3的水泥,其熟料的矿物组成为3CaO ?SiO2、2 CaO? SiO2、3CaO? Al2O3、4CaO ?Al2O3?Fe2O3,原料的配合比、生产工艺决定了水泥熟料的矿物组成,而矿物组成决定了水泥的主要性能。 所以说,认识各类材料的基本组成,是了解材料本质基础。 (二)、材料的结构 材料的结构决定着材料的许多性质。一般从三个层次来观察材料的结构及其与性质的关系。 1、宏观结构(亦称构造)用肉眼或放大镜即可分辨的毫米级组织称为宏观结构。宏观结构的分类及其相应的主要特性见下表

(2)亚微观结构(显微或细观结构)由光学显微镜所看到的微米级组织结构。该结构主要涉及到材料内部晶粒等的大小和形态、晶界或界面、孔隙、微裂纹等。 一般而言,材料内部的晶粒越细小、分布越均匀,则材料的强度越高、脆性越小、耐久性越好;不同组成间的界面粘结或接触越好,则材料的强度、耐久性等越好。 (3)微观结构利用电子显微镜、x射线、衍射线仪等手段来研究的原子和分子级的结构。该结构可分为晶体与非晶体。 在建筑工程材料中,为使材料达到或具有某些特定的性能,常将熔融物急速冷却,质点来不及按特定规律排列,所形成的内部点无序排列(短

相关文档
最新文档