最好matlab教程全Matlab程序设计剖析

合集下载

《MATLAB程序设计》课件

《MATLAB程序设计》课件
《MATLAB程序设计》 PPT课件
探索MATLAB程序设计的奇妙世界,为您展示MATLAB的功能和应用。让我 们一起开始这个令人兴奋的旅程吧!
一、介绍
课程简介
概述《MATLAB程序设计》课程的目标和教学内容,让您对该课程有一个全面的了解。
MATLAB概述
介绍MATLAB的基本概念和特点,为您提供一个关于MATLAB的整体认知。
2 学习资源
分享一些有用的学习资源,帮助您继续深入学习MATLAB程序设计。ห้องสมุดไป่ตู้
3 学习建议
提供一些建议和技巧,帮助您更好地学习和应用MATLAB程序设计。
四、应用实例
信号处理
展示如何使用MATLAB进行数字信号处理,如滤波、 频谱分析等。
图像处理
介绍使用MATLAB进行图像处理的技术和方法,如 图像增强、边缘检测等。
数字通信
探索MATLAB在数字通信领域的应用,包括编码解 码、信道建模等。
仿真实验
演示如何使用MATLAB进行仿真实验,模拟各种现 实场景和系统。
环境搭建
指导您如何正确地安装和配置MATLAB环境,确保您能顺利进行程序开发。
二、基础知识
MATLAB命令 行
掌握使用MATLAB命 令行进行交互式编程 的基本技巧和命令。
MATLAB数据 类型
介绍MATLAB支持的 不同数据类型,包括 矩阵、向量、字符串 等。
变量和运算符
学习如何声明和操作 变量,以及MATLAB 中常用的运算符和操 作。
五、高级主题
面向对象编程
介绍MATLAB中面向对象编程的概念和应用,深入了解面向对象编程的优势。
并行计算
探索MATLAB中的并行计算技术,提高程序的执行效率和性能。

2024版matlab教程(全)资料ppt课件

2024版matlab教程(全)资料ppt课件

进行通信系统的建模、仿真和分析。
谢谢聆听
B
C
变量与赋值
在MATLAB中,变量不需要事先声明,可以 直接赋值。变量名以字母开头,可以包含字 母、数字和下划线。
常用函数
MATLAB提供了丰富的内置函数,如sin、 cos、tan等三角函数,以及abs、sqrt等数 学函数。用户可以通过help命令查看函数的
D
使用方法。
02 矩阵运算与数组操作
错误处理
阐述try-catch错误处理机制的语法、 执行流程及应用实例。
04
函数定义与调用
函数概述
阐述函数的概念、作用及分类,包括内置函数和 自定义函数。
函数调用
深入剖析函数的调用方法,包括直接调用、间接 调用及参数传递等技巧。
ABCD
函数定义
详细讲解自定义函数的定义方法,包括函数名、 输入参数、输出参数及函数体等要素。
拟合方法
利用已知数据点构造近似函数,如最小二乘法、多项 式拟合、非线性拟合等。
插值与拟合的比较
插值函数经过所有数据点,而拟合函数则追求整体上 的近似。
数值积分与微分
01
数值积分方法
利用数值技术计算定积分的近似 值,如矩形法、梯形法、辛普森 法等。
02
数值微分方法
通过数值技术求解函数的导数或 微分,如差分法、中心差分法、 五点差分法等。
02
01
矩阵运算
加法与减法
对应元素相加或相减,要求矩阵 大小相同
乘法
使用`*`或`mtimes`函数进行矩阵 乘法,要求内维数相同
点乘与点除
使用`.*`、`./`进行对应元素相乘或 相除,要求矩阵大小相同
特征值与特征向量

(完整word版)含答案《MATLAB实用教程》

(完整word版)含答案《MATLAB实用教程》

第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。

⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。

(2)利用矩阵的基本运算求解矩阵方程。

已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。

其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。

已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。

(4)Page:322利用数学函数进行矩阵运算。

已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。

3.多项式的运算(1)多项式的运算。

已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。

Page 324(2)多项式的拟合与插值。

将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。

对G(x)和y1分别进行插值,计算在5.5处的值。

Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。

Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。

matlab教程ppt(完整版)

matlab教程ppt(完整版)

矩阵的数学运算
总结词
详细描述
总结词
详细描述
掌握矩阵的数学运算,如求逆 、求行列式、求特征值等。
在MATLAB中,可以使用inv() 函数来求矩阵的逆,使用det() 函数来求矩阵的行列式,使用 eig()函数来求矩阵的特征值。 例如,A的逆可以表示为 inv(A),A的行列式可以表示 为det(A),A的特征值可以表 示为eig(A)。
• 总结词:了解特征值和特征向量的概念及其在矩阵分析中的作用。 • 详细描述:特征值和特征向量是矩阵分析中的重要概念。特征值是满足Ax=λx的标量λ和向量x,特征向量是与特征值对
应的非零向量。特征值和特征向量在许多实际问题中都有应用,如振动分析、控制系统等。
04
MATLAB图像处理
图像的读取与显示
变量定义
使用赋值语句定义变量,例如 `x = 5`。
矩阵操作
学习如何创建、访问和操作矩 阵,例如使用方括号 `[]`。
函数编写
学习如何创建自定义函数来执 行特定任务。
02
MATLAB编程
变量与数据类型
01
02
03
变量命名规则
MATLAB中的变量名以字 母开头,可以包含字母、 数字和下划线,但不应与 MATLAB保留字冲突。
了解矩阵的数学运算在实际问 题中的应用。
矩阵的数学运算在许多实际问 题中都有应用,如线性方程组 的求解、矩阵的分解、信号处 理等。通过掌握这些运算,可 以更好地理解和解决这些问题 。
矩阵的分解与特征值
• 总结词:了解矩阵的分解方法,如LU分解、QR分解等。
• 详细描述:在MATLAB中,可以使用lu()函数进行LU分解,使用qr()函数进行QR分解。这些分解方法可以将一个复杂的 矩阵分解为几个简单的部分,便于计算和分析。

MATLAB求解编程

MATLAB求解编程

NIND=200;MAXGEN=2000;NV AR=55;max=5000000;P=0.3;M=3;N=5;L=7;A=[313000000 378000000 465000000] ;M=[20000 10000 30000 40000 40000] ;D=[165 150 200 100 150 300 200] ;f=[6000000;4000000;6000000;700000;5000000] ;V=[80;80;90;955;100] ;a=[15;20;24;20;15;20;20;15;20;24;20;15;24;20;15] ;C=[20;15;15;20;15;20;15;20;25;20;25;15;15;15;15;15;15;20;20;25;20;30;20;20;20;20;25;20;20;1 5;15;15;20;20;20;20] ;P=3;for i=l:NINDwhile 0<1for j=1:5chroml(i,j)=round(rand(i)) ;endif(sum(chroml(i,:),3)>=1)&(sum(chroml(i,:) ,3)<=P)breakendendendsumb=zeros(NIND,5) ;sumd=zeros(NIND,5);for i=l:NINDfor j=l:5if chrom1(i,j)=0chrom3(i,(2*(j-1)+1):(3*j))=0;chrom3(i, (7*(j-l)+1):(8*j))=0;elsewhile chroml(i,j)=l chrom3(i,(3*(j-1)+1):(3*j)=rand(i,3).* min(A[M(j)M(j)]);sumb(i,j)=sum(chrom3(i,(3*(j-l)+1):(3*j)),3);chrom3(j,(7*(j-1)+1):(7*j))=rand(1,7).*(rep([M(j)],[11]));sumd(i,j)=sum(chrom3(i,(7*(j-l)+1):(7*j)),3);chrom3(i,(7*(j-l)+1):(7*j))=(sumb(i,j)/sumd(i,j))*chrom3(i,(7*(j-l)+1):(7*j));if sumb(i,j)<=1.0*M(j)breakendendendendendchrom=[chroml chrorn2 chrom3];%产生初始种群[objvalue]=calobjvaluc(chrom,M,N,L,A,C, V,f);[fitvalue,restriction]=calfitvalue(objvalue,chrom,max,M,N,L,A,M,D,P); [bestindividual,bestfit,bestrestriction,nopos]=best(chrom,fitvalue,restriction);gem=0;while gen<MAXGEN,[objvalue]=calobjvalue(chrom,M,N,L,A,C,V,D);[fitvalue,restriction]=calfitvalue(objvalue,chrom,max,M,N,L,A,M,D,P); [bestindividuall,bestfitl,bestrestrictionl,noposl]=best(chrom,fitvalue,restriction);if bestrestriction>bestrestrictionlbestindividual=bestindividual l;besttit=-bestfitl;bestrestriction=bestrestriction l;endif bestrestriction =bestrcstrictionl)&(bestfit<bestfitl)bestindividual=beStindividual l;besttit=-bestfitl;bestrestriction=bestrestrictionl:endchrom(noposl,:)=bestindividual;[newchrom]=selection(chrom,fitvalue);[newchrom]=crossover(newchrom,M,N,1);[newchrom]=mutation(newchrom,P,M,N,1);[bestindividual2,bestfit2,bestrestrietion2,nopos2]=best(newchrom,fitvalue, restrietion); If bestrestriction>bestrestriction2bestindividual=bestindividual2;bestfit=bestfit2;bestrestriction=bestrestriction2;endif(bestrestriction=bestrestriction2)&(bestfit<bestfit2)bestindividual=bestindividual2;bestfit =-bestfit2;bestrestriction =bestrestriction2;endchrom=newchrom;gen=gen+1;endbestindividual,bestfit,bestrestriction%目标函数Function[objvalue]=ealobjvalue(chrom,M,N,L,A, V,f)Chrom1= chrom(:,1:N);Chrom2=chrom(:,(N+1):(N+M*N));chrom3= chrom (:,(N+M*N+1):(N+M*N+N*L));[NIND,NV AR]=size(chrom);for i=l:NINDfor j=l:Nu(i,j)=7300*sum(chrom2(i,(2*(j-l)+1):(2*j)),2);endendobjvalue=chrom2*a*7300+chrom3*c*3650+sqrt(u).* chroml*V+chroml*f; %适应度计算和约束判断Function[fitvalue restrection]=ealfitvalue(objvalue,chrom, max,M,N,l,A,M,D,P)Global gen;[NIND,NV AR]=size(chrom);Chroml=chrom (:,1:N);chrom2=Chrom(:,(N+1):(N+M*n));chrom3=Chrom(:,(N+M*N*N+1):(N+M*N+N*1));restriction=zeros(NIND,1);r=zeros(NIND,M);s=zeros(NIND,N);t=zeros(NIND,1);u=zeros(NIND,3);p=zeros(NIND,n);for i=l:NINDfor j=l:Mr(i,j)=A(j)-sum((chrom2(i,j:m:m*}n)),2);if r(i,j)<0restriction(i,1)=restriction(i,1)+1;endendfor j=l:lt(i,j)=sum((chrom3(i,j:l:n*1)),2)-D(j);if t(i,j)<0restriction(i,1)=-restriction(i,l)+1;endendfor j=l:ns(i,j)=chroml(i,j)*M(j)-sum(chrom2(i,(M*(j-1)+1):(M*j)),2);p(i,j)=abs(sum(chrom3(i,(1*(j-1)+1):(1*j)),2)-sum(chrom2(i,(M*(j-1)+1):(M*j)),2));if s(i,j)<0restrietion(i,1)=restriction(i,1)+l;endif p(i,j)>=l e-3restriction(i,1)=restriction(i,l)+l;endendu(i,1)=P-sum(chroml(i,:),2);if u(i,1)<0restriction(i,1)=restriction(i,l)+1;endu(i,2)=sum(chroml(i,:),2)-1;if u(i,2)<0restrigtion(i,1)=restriction(i,1)+l;endif(objvalue(i,1)<max)fitvaluc(i,1)=max-objvaluc(i,1);elsefitvalue(i,1)=0.0;endend%找出最优个体和最差个体function[bestindividual,bestfit,bestrestriction,nopos]=best(chrom,fitvalue,restriction); [NIND,NV AR]=size(chrom);pos=l;for i=l:NINDif restriction(pos,1)>restriction(i,1)pos=i;endif(restriction(pos,1)=restriction(i,1))&(fitvalue(pos,1)<fitvalue(i,1)) pos=i;endendbestindividual=chrom(pos,:);bestfit=fitvalue(pos);bestrestriction= restriction (pos,:);nopos=1;for i=l:NINDif restriction(nopos,1)<restriction(i,1)nopos=i;endif(restriction(nopos,1)=restriction(i,1))&(fitvalue(nopos,1)>fitvalue(i,1)) nopos=i;endend%选择Function[newchrom]=selection(chrom,fitvalue)totalfit=sum(fitvalue);fitvalue=:fitvalue/totalfit;fitvalue=cumsum(fitvalue);[NIND,NV AR]=size(chrom);ms=sort(rand(NIND,1));fitin=1;newin=1;while newin<=NINDif(ms(newin))<fitvalue(fitin)temp(newin,:)=chrom(fitin,:);newin=newin+1;elsefitin=fitin+1;endif fitin>=NINDfitin=NIND;endendnewchrom=temp;%交叉Function[newchrom]=crossover(chrom,M,N,1)global gen;[NIND,SVAR]=size(chrom);chrom1=chrom(:,l:n);chrom2=chrom(:, (N+1) : (N+M*N)) ;chrom3=chrom(:, (N+m*n+1) : (N+M*N+N*1)) ; newchrom=zeros(NIND,NV AR) ;P=0.75;for i=l:2:NIND-1if(rand<P)point=ceil(rand*(N-1));ifpoint<5newchrom(i,:)=[chroml(i,l:point)chromI(i+1,point+1:n) ... chrom2(i,l:M*point)chrom2(i+l,M*point+1:M*N) ... chrom3(i,1:l*point)chrom3(i+l,1*point+l:N*1)]; newchrom(i+l,:)=[chroml(i+l,1:point)chroml(i,point+l:n) ... chrom2(i+l,l:m*point)chrom2(i,M*point+l:M*N) ...chrom3(i+1,1:l*point)chrom3(i,1*point+l:N*1)];elsenewchrom(i,:)=chrom(i,:);newchrom(i+1,:)=chrom(i+l,:);endelsenewchrom(i,:)=chromo,:);newchrom(i+l,:)=chrom(i+l,:);endend%变异Function[newchrom]=mutation(chrom,P,M,N,L)global gen;FieldDR=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;20000 20000 10000 10000 30000 30000 40000 40000 40000 40000];RANGE=[0 0 0 0 0 0 0;165 150 200 100 150 300 200];[NIND,NV AR]=size(chrom);chroml=chrom(:,l:N);chrom2=chrom(:, (N+1):(N+M*N));chrom3=chrom(:, (N+M*N+1):(N+M*n+ 1));newchrom=zeros(NIND,NV AR);newchroml=zeros(NIND,N);newchrom2=zeros(NIND,M*N);newchrom3=zeros(NIND,N*1);for i=1:NINDfor j=l:Nif chrom l(i,j)=0newchrom2(i,(M*(j-1)+1):(M*j))=0;newchrom3(i,1*(j-l)+1):(1*j)=0;elseif round(rand)=0newchrom2(i,(M*(j-1)+1):(M*j))=chrom2(i,(M*(j-1)+1):(M*j)+ ...(FieldDR(2,(M*(j-1)+1):(M*j))=chrom2(i,(M*(j-1)+1):(M*j)))*(1-rand^((1-gen/2000)^10));newchrom3(i,(1*(j-1)+1):(1*j)=chrom3(i,(1*(j-1)+1):(1*j) + ...([165 150 200 100 150 300 200]-chrom3(i,(1*(j-1)+1):(1*j)))*(1-rand^((1*gen/2000)^10));elseif round(rand)=lnewChrom2(i,(M*(j-1)+1):(M*j) ) = Chrom2 (i,(M*(j-1)+1):(M*j)) ...(chrom2(i,(M*(j-1)+1):(M*j))-[00])*(1-rand^((1-gen/2000)^10));newchrom3(i,(1*(j-1)+1):(1*j)):chrom3(i,(1*(j-1)+1):(1*j)) ...(chrom3(i,(1*(j-1)+1):(N))-[0 0 0 0 0 0 0 0])*(1-rand^((1*gen/2000)^10));endendendendnewchrom1=chrom1;newchrom=[newchrom1 newchrom2 newchrom3];endendnewchrom1=chrom1;newchrom=[newchrom1 newchrom2 newchrom3];bestindividualbestindividual=columms 1 through 171.0000 1.0000 0 0 1.000 80.3686 20.6636 0 0 23.7458 50.7648 63.57695 0 0 123.6753 39.7648 19.5769 0 0 289.6753 columms 18 through 3419.5849 50.7648 45.7985 64.2875 19.9768 53.6843 135.6752 32.6437 24.5342 27.9485 9.9873 24.7638 125.7958 27.8745 columms 35 through 510 0 0 0 0 0 00 0 0 0 0 0 0columms 52 through 5595.7482 35.9862 83.4768 28.4769 74.5867 113.4786 44.4873。

matlab教程ppt(完整版)

matlab教程ppt(完整版)
转置
可以使用`'`运算符对矩阵进行 转置。
矩阵高级运算
01
逆矩阵
可以使用`inv`函数求矩阵的逆矩阵 。
行列式
可以使用`det`函数求矩阵的行列式 。
03
02
特征值和特征向量
可以使用`eig`函数求矩阵的特征值 和特征向量。

可以使用`rank`函数求矩阵的秩。
04
04
matlab绘图功能
绘图基本命令
控制设计
MATLAB提供了控制系统设计和分析 工具箱,可以方便地进行控制系统的 建模、分析和优化。
03
信号处理
MATLAB提供了丰富的信号处理工具 箱,可以进行信号的时域和频域分析 、滤波器设计等操作。
05
04
图像处理
MATLAB提供了图像处理工具箱,可 以进行图像的增强、分割、特征提取 等操作。
02
matlab程序调试技巧分享
01
调试模式
MATLAB提供了调试模式,可以 逐行执行代码,查看变量值,设 置断点等。
日志输出
02
03
错误处理
通过使用fprintf函数,可以在程 序运行过程中输出日志信息,帮 助定位问题。
MATLAB中的错误处理机制可以 帮助我们捕获和处理运行时错误 。
matlab程序优化方法探讨
显示结果
命令执行后,结果将在命令窗口中显示。
保存结果
可以使用`save`命令将结果保存到文件中。
matlab变量定义与赋值
定义变量
使用`varname = value`格式定义变 量,其中`varname`是变量名, `value`是变量的值。
赋值操作
使用`=`运算符将值赋给变量。例如 ,`a = 10`将值10赋给变量a。

matlab教程ppt(完整版)

matlab教程ppt(完整版)

控制流语句
使用条件语句(如if-else)和 循环语句(如for)来控制程序 流程。
变量定义
使用赋值语句定义变量,例如 `a = 5`。
矩阵运算
使用矩阵进行数学运算,如加 法、减法、乘法和除法等。
函数编写
创建自定义函数来执行特定任 务。
02
MATLAB编程语言基础
变量与数据类型
变量命名规则
数据类型转换
编辑器是一个文本编辑器 ,用于编写和编辑 MATLAB脚本和函数。
工具箱窗口提供了一系列 用于特定任务的工具和功 能,如数据可视化、信号 处理等。
工作空间窗口显示当前工 作区中的变量,可以查看 和修改变量的值。
MATLAB基本操作
数据类型
MATLAB支持多种数据类型, 如数值型、字符型和逻辑型等 。
04
MATLAB数值计算
数值计算基础
01
02
03
数值类型
介绍MATLAB中的数值类 型,包括双精度、单精度 、复数等。
变量赋值
讲解如何给变量赋值,包 括标量、向量和矩阵。
运算符
介绍基本的算术运算符、 关系运算符和逻辑运算符 及其优先级。
数值计算函数
数学函数
列举常用的数学函数,如 三角函数、指数函数、对 数函数等。
矩阵的函数运算
总结词:MATLAB提供了许多内置函 数,可以对矩阵进行各种复杂的运算

详细描述
矩阵求逆:使用 `inv` 函数求矩阵的 逆。
特征值和特征向量:使用 `eig` 函数 计算矩阵的特征值和特征向量。
行列式值:使用 `det` 函数计算矩阵 的行列式值。
矩阵分解:使用 `factor` 和 `expm` 等函数对矩阵进行分解和计算指数。

matlab教程ppt(完整版)

matlab教程ppt(完整版)
matlab教程 PPT(完整版)
汇报人:可编辑
2023-12-24
目录
• MATLAB基础 • MATLAB编程 • MATLAB矩阵运算 • MATLAB数值计算 • MATLAB可视化 • MATLAB应用实例
01
CATALOGUE
MATLAB基础
MATLAB简介
MATLAB定义
MATLAB应用领域
菜单栏
包括文件、编辑、查看、主页 、应用程序等菜单项。
命令窗口
用于输入MATLAB命令并显示 结果。
MATLAB主界面
包括命令窗口、当前目录窗口 、工作空间窗口、历史命令窗 口等。
工具栏
包括常用工具栏和自定义工具 栏。
工作空间窗口
显示当前工作区中的变量。
MATLAB基本操作
变量定义
使用变量名和赋值符号(=)定义变 量。
详细描述
直接输入:在 MATLAB中,可以直 接通过输入矩阵的元 素来创建矩阵。例如 ,`A = [1, 2, 3; 4, 5, 6; 7, 8, 9]`。
使用函数创建: MATLAB提供了多种 函数来创建特殊类型 的矩阵,如`eye(n)`创 建n阶单位矩阵, `diag(v)`创建由向量v 的元素构成的对角矩 阵。
使用bar函数绘制柱状图 ,可以自定义柱子的宽
度、颜色和标签。
使用pie函数绘制饼图, 可以自定义饼块的比例
和颜色。
三维绘图
01
02
03
04
三维线图
使用plot3函数绘制三维线图 ,可以展示三维空间中的数据
点。
三维曲面图
使用surf函数绘制三维曲面图 ,可以展示三维空间中的曲面

三维等高线图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
函数的嵌套调用
在Matlab中,函数可以嵌套调用,即一个函数可以调用别的函数。 一个函数调用自身称为函数的递归调用。 例5.12 利用函数的递归调用,求n!。 n!本身就是以递归的形式定义的:
1,n1 n!n(n1)!,n1
显然,求n!需要求(n-1)!,这时可采用递归调用。 函数如下: function f = factor(n) if n<=1
f = 1; else
f = factor(n-1)*n; %递归调用求(n-1)! end
2020/2/25 星期二
Application of Matlab Language
7
函数的嵌套调用
在命令文件中调用该函数文件,求 s = 1!+2!+3!+4!+5!。 s = 0; for i = 1:5 s = s + factor(i); end s 在命令窗口运行命令文件,结果如下: s= 153
%2006年2月30日编 s = pi*r*r; p = 2*pi*r;
2020/2/25 星期二
Application of Matlab Language
4
说明:
将以上函数文件以文件名fcircle.m保存,然后在命令窗口调用。
[s,p] = fcircle(10) 输出结果是: s=
314.1593 p=
2. 关于注释说明部分 注释说明包括3部分: ① 紧随引导行之后以%开头的第一注释行。 这一行一般包括大写的函数文件名和函数功能简要描述,供lookfor关键词查询和help在线帮 助时使用。 ② 第一注释行及之后连续的注释行。 通常包括函数输入/输出参数的含义及调用格式说明等信息,构成全部在线帮助文本。
examp(x)
examp(x,y’)
examp(x,y,3)
2020/2/25 星期二
Application of Matlab Language
9
5.3.4 全局变量与局部变量
Matlab中,函数文件中的变量是局部变量。 如在若干函数中,都把某一变量定义为全局变量,那么这些函数将
共用这个变量。
Application of Matlab Language
5
5.3.2 函数调用
函数调用的一般格式是: [输出实参表] = 函数名(输入实参表) 注意:函数调用时,各实参出现的顺序、个数,应与函数定义时相同。 例5.11 利用函数文件,实现直角坐标(x,y)与极坐标(ρ,θ)之间的转换。
函数文件:tran.m: function [rho,theta] = tran(x,y) rho = sqrt(x*x+y*y); theta = atan(y/x);
62.8319 采用help命令或lookfor命令可以显示出注释说明部分的内容。 help fcircle 屏幕显示 FCIRCLE calculate the area and perimeter of a circle of radii r
r 圆半径 s 圆面积 p 圆周长
2020/2/25 星期二
函数文件examp.m:
function fout = charray(a,b,c)
if nargin == 1
fout = a;end
if nargin == 2
fout = a+b;end if nargin == 3
fout = (a*b*c)/2;
命令文件: x = [1:3];
end
y = [1;2;3];
2020/2/25 星期二
Application of Matlab Language
8
5.3.3 函数参数的可调性 Matlab在函数调用上有一个与一般高级语言不同之处:
函数所传递参数数目的可调性,即参数的数量可以改变。
在调用函数时,Matlab用两个预定义变量nargin和nargout分别记录调用该函数时的输入实 参和输出实参的个数。例5.13 nargin用法示例
全局变量的作用域是整个Matlab的工作空间,所有函数都可以对它 进行存取和修改。
全局变量用global命令定义,格式为: global 变量名
例5.13 全局变量应用示例。 先建立函数文件wadd.m,该函数将输入的参数加权相加:
2020/2/25 星期二
Application of Matlab Language
3
说明: ③ 与在线帮助文本相隔一空行的注释行。
包括函数文件编写和修改的信息,如作者和版本等。 3、关于return语句
如果在函数文件中插入了return语句,则执行到该语句就结束函数 的执行,流程转至调用该函数的位置。通常也不使用return语句。 例5.10 编写函数文件,求半径为r的圆的面积和周长。 函数文件如下: function [s,p] = fcircle(r) % FCIRCLE calculate the area and perimeter of a circle of radii r % r 圆半径 % s 圆面积 % p 圆周长
调用tran.m的命令文件main1.m: x = input(‘please input x=:’); y = input(‘please input y=:’); [rho,the] = tran(x,y); rho the
2020/2/25 星期guage
注释说明部分 函数体语句 其中,以function开头的一行为引导行,表示该M文件是一个函数文件。 当输出形参多于一个时,应该用方括号括起来。
2020/2/25 星期二
Application of Matlab Language
2
说明:
1. 关于函数文件名 函数文件名通常由函数名再加上扩展名.m组成。当函数文件名与函数名不同时,Matlab将忽略 函数名而确认文件名。因此调用时使用函数文件名。
最好matlab教程全Matlab程序设计剖析
1
5.3 函数文件
函数文件是另一种形式的M文件,每一个函数文件都定义一个函数。 Matlab提供的标准函数大部分是由函数文件定义的。 5.3.1 函数文件的基本结构
函数文件由function语句引导,其基本结构为: function 输出形参表 = 函数名(输入形参表)
相关文档
最新文档