第五讲-虚拟变量模型

合集下载

管理经济学 虚拟变量模型

管理经济学 虚拟变量模型
1 D2 i = 0 男教师 1 , D3i = 女教师 0 白皮肤 其他
性别和肤色变量分为两类 需要两个虚拟变量。 性别和肤色变量分为两类,需要两个虚拟变量。 分为两类,
东北财经大学数量经济系 16
定量和两个定性变量模型: 定量和两个定性变量模型:例子
假设 E ( ui ) = 0 , 非白色皮肤女教师的平均 则 年薪为: 年薪为:
结构稳定性:例子 结构稳定性:
如果 E ( u t ) = 0 ,则
E (Y t D t = 0 , X E ( Y t D t = 1, X
t t
)= C )= C
t
+ C3X
t
t
+ C 2 + (C 3 + C 4
)Xt
和前面的两阶段方程比较: 和前面的两阶段方程比较:
B1 = (C 1 + C 2 ) , B 2 = (C 3 + C 4 A1 = C 1 , A 2 = C 3
东北财经大学数量经济系 12
多类虚拟变量:例子 多类虚拟变量:
表示假期旅游的年支出; 表示年收入; 设 Yi 表示假期旅游的年支出; X i 表示年收入;令
1 D2i = 0
1 D3i = 0
中学教育 其他
大学教育 其他
建立如下模型 模型: 则建立如下模型:
Yi = B1 + B2 D2i + B3 D3i + B4 X i + u
定量和虚拟变量模型:例子 定量和虚拟变量模型:
表示大学教师年薪, 表示教龄, 令 Yi 表示大学教师年薪, X i 表示教龄,
1 Di = 0
建立模型: 建立模型:
男教师 女教师

计量经济学第5章 虚拟变量模型

计量经济学第5章 虚拟变量模型
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外还有质的因 素,质的因素包括被解释变量为质的因素和解释变量 为质的因素。如果被解释变量为质的因素,主要是逻 辑回归要涉及的内容。本章就解释变量和被解释变量 为质的因素也就是存在虚拟解释变量和虚拟被解释变 量时如何进行参数估计等一系列问题进行讨论。
1
为基础类型截距项。
12
三、虚拟变量的作用 ⑴ 可以描述和测量定性因素的影响。
⑵ 能够正确反映经济变量之间的相互关系,提 高模型的精度。
⑶ 便于处理异常数据。
即将异常数据作为一个特殊的定性因素
1 , 异常时期
D
0
,
正常时期
13
第二节 虚拟解释变量模型
一 、截距变动模型(加法模型)
虚拟变量与其它变量相加,以加法形式引入模
Y i 0 1 D 1 i 2 D 2 i 3 X i u i
Y i ------年支出医疗保健费用支出 X i ------居民年可支配收入
18
1 , 高中
D 1i
0
,
其他
1 , 大学
D 2i
0
,
其他
于是:小学教育程度:
E (Y i X i,D 1 i 0 ,D 2 i 0 )03 X i
7
二、虚拟变量的设置规则
虚拟解释变量模型的设定因为质的因素的多少 和这些因素特征的多少而引入的虚拟变量也会不同。
以一个最简单的虚拟变量模型为例,如果只包 含一个质的因素,而且这个因素仅有两个特征,则 回归模型中只需引入一个虚拟变量。如果是含有多 个质的因素, 自然要引入多个虚拟变量。
8
如果只有一个质的因素,且该质的因素具有 m 个 相互排斥的特征(或类型、属性),那么在含有截距 项的模型中,只能引入 m-1 个虚拟变量,否则会陷入 所谓“虚拟变量陷阱”(dummy variable trap),产 生 完全的多重共线性,会使最小二乘法无解;在不含有 截距项的模型中, 引入 m 个虚拟变量不会导致完全 的多重共线性,不过这时虚拟变量参数的估计结果, 实际上是 D = 1 时的样本均值。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
.
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度 D1 0, 其它季度
1, 二季度
D2
0,
其它季度
• 同样可以写成二个模型:
y ˆi ˆ0(ˆˆ1)x1iˆkxki D1
y ˆi ˆ0ˆ1x1iˆkxki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
y i 0 0 D i (1 D i 1 ) x 1 i k x k iu i (5.
.
.
• 3、虚拟变量用于季节性因素分析。
•取
1, 当样本 i季为 度第 的数据 Di 0,其它季度的, i数 2,3据 ,4
• 工资模型为:
• Ii01 [S 1 (1 D 1 i D 2 i)S ( i S 1 )] 2 [D 2 i(S 2 S 1 ) D 1 i(S i S 1 ) ]3 D 2 i(S i S 2 ) u i (5.7
.
D2=1
S0
D1=1
S1
S2
.
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为: Iˆi ˆ0ˆ1Si, Si S1 Iˆi ˆ0ˆ1S1ˆ2(Si S1), S2Si S1 Iˆi ˆ0ˆ1S1ˆ2(S2S1)ˆ3(Si S2), Si S2
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
精品课件
原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066

3.6 虚拟变量模型

3.6 虚拟变量模型
– 设置多个虚拟变量,理论上正确,带来自由度损失。 – 以定性变量为研究对象,构造多元排序离散选择模型,然后 以模型结果对定性变量的各种状态赋值。但需要更多的信息 支持。
• 赋值的方法等于是对虚变量方法中的各个虚变量的参 数施加了约束,而这种约束经常被检验为错误的。
– 在该模型中,如果仍假定E(i)=0,则企业男、女职 工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i E(Yi | X i , Di 0) 0 1 X i
– 假定2>0,则两个函数有相同的斜率,但有不同的截距。 意即,男女职工平均薪金对工龄的变化率是一样的,但 两者的平均薪金水平相差2。 – 可以通过对2的统计显著性进行检验,以判断企业男女 职工的平均薪金水平是否有显著差异。
三、虚拟变量的设置原则
• 每一定性变量(qualitative variable)所需的虚 拟变量个数要比该定性变量的状态类别数 (categories)少1。即如果有m种状态,只在模 型中引入m-1个虚拟变量。 • 例如,季节定性变量有春、夏、秋、冬4种状 态,只需要设置3个虚变量:
1 D1 0 春季 其它 1 D2 0 夏季 其它 1 D3 0 秋季 其它
男职工本科以下学历的平均薪金:
E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
女职工本科以上学历的平均薪金:
E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
男职工本科以上学历的平均薪金:
1 Di 0 农村居民 城镇居民
Ci 0 1 X i 2 Di X i i
E(Ci | X i , Di 1) 0 (1 2 ) X i E(Ci | X i , Di 0) 0 1 X i

05虚拟变量模型

05虚拟变量模型

ˆ ˆ ) ˆX ˆ ( 秋: Y 0 4 1 ˆ ˆX ˆ 冬: Y
0 1
Y 0 1X 2 D ˆ ˆ ) ˆX ˆ ( 春: Y
0 2 1
ˆ 2 ˆ ) ˆX ˆ ( 夏: Y 0 2 1 ˆ 3 ˆ ) ˆX ˆ ( 秋: Y
男性平均年薪:
表明:当性别变量为常数时,工 龄每增加一年,平均年薪增加 1370 元,当工龄保持不变时,男 性的平均年薪比女性多 1330 元, 性别对薪金的影响是显著的。
ˆ (17.97 1.33) 1.37X 19.30 1.37X Y
二、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定: (1)若定性因素有m个相互排斥的类型或属性,只能引 入(m-1)个虚拟变量,否则会陷入“虚拟变量陷阱”,产 生完全共线性。(当无截距项时,应引入m个虚拟变量) 例:已知冷饮的销售量Y除受k种定量变量Xk的影响外,还受 春、夏、秋、冬四季变化的影响,要考察该四季的影响,只 需引入三个虚拟变量即可:
E(Yi | X i , Di 0) 0 1 X i
企业男职工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i
几何意义: Yi 0 1 X i 2 Di i • 假定2>0,则两个函数有相同的斜率,但有不同 的截距。意即,男女职工平均薪金对工龄的变化 率是一样的,但两者的平均薪金水平相差2。 • 可以通过传统的回归检验,对2的统计显著性进 行检验,以判断企业男女职工的平均薪金水平是 否有显著差异。 • 2称为截距差异系数。
1 政策变动 Dt 0 政策不变
(3)虚拟变量在单一方程中,可以作为解释变量,也 可以作为被解释变量。

虚拟变量模型.最全优质PPT

虚拟变量模型.最全优质PPT
E ( Y i|X i,D 2 i 0 ,D 3 i 1 ) (1 3 ) X i
设 Y i 为消费支出;X i 为收入;D i 为虚拟变量, 即
1,城镇居民
Di 0,农村居民 i1,2,3, ,n
上述表达式的意义在于,在收入不变的条件下,研 究城镇居民和农村居民对消Y i 费的不同影响,即判断 城乡居民在消费上是否存在显著性差异。 农村居民年平均消费:
E (Y i,|X i,D i0)12X i
1.2 二态变量的作用
引入虚拟变量的作用,在于将定性因素或属性因素 对因变量的影响数量化。 1.可以描述和测量定性(或属性)因素的影响。 2.能够正确反映经济变量之间的相互关系,提高模 型的精度;例如在分段回归中的应用。 3.便于处理异常数据。由于某些突发事件的存在, 如战争、自然灾害,使原本比较稳定的经济关系发 生一段时间的混乱,此时可以利用虚拟变量。
设变量D表示某种属性,该属性有两种类型,即当 属性存在时D取值为1;当属性不存在时D取值为0。 记为
1 具有某种属性 D0 不具有该属性
该变量D即为二态变量。二态变量又称虚拟变量、 名义变量或哑变量,是用以反映质的属性的一个人 工变量,是量化了的质变量,通常取值为0或1, 一般“1”代表某一属性存在,“0”代表某一属 性不存在, 即“是”或“否”,“男”或“女”等。
对上述模型进行回归,利用样本统计量对假 设作出判断(t检验)。只有一个定性解释变 量往往可用于检验一个属性因素对被解释变 量的影响是否显著性存在。
2.1.2 模型中有一个定量解释变量和一
个定性解释变量
设模型形式为
Y i12Xi3D iui
式中,X i 为定量变量,D i 为具有两个属性类型 的定性变量。
设模型形式为

第五讲-虚拟变量模型

第五讲-虚拟变量模型

第七讲 经典单方程计量经济学模型:专门问题虚拟变量模型学习目标:1. 了解什么是虚拟变量以及什么是虚拟变量模型;2. 理解虚拟变量的设置原则;3. 掌握虚拟变量模型的两种基本引入方式(加法方式和乘法方式) ;4. 能够自行设计虚拟变量模型,并能够解释其中蕴含的经济意义;教学基本内容一、 虚拟变量 许多经济变量是可以定量度量,例如:商品需求量、价格、收入、产量等; 但有一些影响经济变量的因素是无法定量度量。

例如:职业、性别对收入的影响, 战争、自然灾害对GDP 勺影响,季节对某些产品(如冷饮)销售的影响等。

定性变量:把职业、性别这样无法定量度量的变量称为定性变量。

定量变量:把价格、 收入、销售额这样可以可以定量度量的变量称为定量变 量。

为了能够在模型中能够反映这些因素的影响, 提高模型的精度, 拓展回归模 型的功能,需要将它们“量化”。

这种“量化”通常是通过引入“虚拟变量” 来完成的。

根据这些因素的属性类型, 构造只取“ 0”或“ 1”的人工变量, 通常 称为虚拟变量( dummyvariables ) ,记为 D 。

虚拟变量只作为解释变量。

例如:反映性别的虚拟变量 D1;男0;女般地,基础类型和肯定类型取值为 1;比较类型和否定类型取值为 0虚拟变量的设置原则设置原则:每一定性变量(qualitative variable )所需的虚拟变量个数要比该定性变量的状 态类别数(categories 少1。

即如果有m 种状态,只在模型中引入m-1个虚拟变量例如,冷饮的销售量会受到季节变化的影响。

季节定性变量有春、夏、秋、 冬 4 种状态,只需要设置 3 个虚拟变量:反映文化程度的虚拟变量 D1;本科学历 0;非本科学历E(Y i | X i ,D i 0)1Xi1. 概念虚拟变量模型:同时含有一般解释变量与虚拟变量的模型称为虚拟变量模 型,也称方差分析( 2. 例子(analysis-of varianee: ANOVA )模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲-虚拟变量模型
第七讲 经典单方程计量经济学模型:专门问题
虚拟变量模型
学习目标:
1.了解什么是虚拟变量以及什么是虚拟变量模型;
2.理解虚拟变量的设置原则;
3.掌握虚拟变量模型的两种基本引入方式(加法方式和乘法方式)
4.能够自行设计虚拟变量模型,并能够解释其中蕴含的经济意义;
许多经济变量是可以定量度量,例如:商品需求量、价格、收入、产量等; 但有一些影响经济变量的因素是无法定量度量。例如:职业、性别对收入的影 响,战争、自然灾害对GDP勺影响,季节对某些产品(如冷饮)销售的影响等。
通常称为虚拟变量(dummy variables),记为D。虚拟变量只作为解释变量。
般地,基础类型和肯定类型取值为 1;比较类型和否定类型取则:
每一定性变量(qualitative variable)所需的虚拟变量个数要比该定性变量的 状态类别数(categories)少1。即如果有m种状态,只在模型中引入m-1个虚拟 变量。
例如,冷饮的销售量会受到季节变化的影响。季节定性变量有春、夏、秋、
冬4种状态,只需要设置3个虚拟变量:
定性变量:把职业、性别这样无法定量度量的变量称为定性变量。
定量变量:把价格、收入、销售额这样可以可以定量度量的变量称为定量 变量。
为了能够在模型中能够反映这些因素的影响,提高模型的精度,拓展回归 模型的功能,需要将它们“量化”。这种“量化”通常是通过引入“虚拟变
量”来完成的。根据这些因素的属性类型,构造只取“0”或“ 1”的人工变量,
相关文档
最新文档