数据结构作业系统_第九章答案

合集下载

数据结构第九章--查找-习题及答案

数据结构第九章--查找-习题及答案

第九章查找一、选择题1•若查找每个记录的概率均等,则在具有n 个记录的连续顺序文件中采用顺序查找法查找一个记录,其平均查找长度ASL 为()。

A .(n-1)/2B.n/2C.(n+1)/2D.n 2. 下面关于二分查找的叙述正确的是()A. 表必须有序,表可以顺序方式存储,也可以链表方式存储C.表必须有序,而且只能从小到大排列B. 表必须有序且表中数据必须是整型,实型或字符型D.表必须有序,且表只 能以顺序方式存储3. 用二分(对半)查找表的元素的速度比用顺序法() A. 必然快B.必然慢C.相等D.不能确定4. 具有12个关键字的有序表,折半查找的平均查找长度()A.3.1B.4C.2.5D.55.当采用分块查找时,数据的组织方式为()A. 数据分成若干块,每块内数据有序B. 数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组成索引块C. 数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块D. 数据分成若干块,每块(除最后一块外)中数据个数需相同6. 二叉查找树的查找效率与二叉树的((1))有关,在((2))时其查找效率最低(1) :A.高度B.结点的多少C.树型D.结点的位置(2) :A.结点太多B.完全二叉树C.呈单枝树D.结点太复杂。

7. 对大小均为n 的有序表和无序表分别进行顺序查找,在等概率查找的情况下,对于查找失败,它们的平均查找长度是((1)),对于查找成功,他们的平均查找长度是((2))供选择的答案:A.相同的B.不同的9.分别以下列序列构造二叉排序树,与用其它三个序列所构造的结果不同的是()A .(100,80,90,60,120,110,130)B.(100,120,110,130,80,60,90) C. (100,60,80,90,120,110,130)D.(100,80,60,90,120,130,110)10. 在平衡二叉树中插入一个结点后造成了不平衡,设最低的不平衡结点为A,并已知A 的左孩子的平衡因子为0右孩子的平衡因子为1,则应作()型调整以使其平衡。

数据结构第九章排序习题与答案

数据结构第九章排序习题与答案

习题九排序一、单项选择题1.下列内部排序算法中:A.快速排序 B.直接插入排序C. 二路归并排序D.简单选择排序E. 起泡排序F.堆排序(1)其比较次数与序列初态无关的算法是()(2)不稳定的排序算法是()(3)在初始序列已基本有序(除去n 个元素中的某 k 个元素后即呈有序, k<<n)的情况下,排序效率最高的算法是()(4)排序的平均时间复杂度为O(n?logn)的算法是()为 O(n?n) 的算法是()2.比较次数与排序的初始状态无关的排序方法是( )。

A.直接插入排序B.起泡排序C.快速排序D.简单选择排序3.对一组数据( 84, 47, 25, 15, 21)排序,数据的排列次序在排序的过程中的变化为(1) 84 47 25 15 21(2) 15 47 25 84 21(3) 15 21 25 84 47(4) 15 21 25 47 84则采用的排序是 ()。

A. 选择B.冒泡C.快速D.插入4.下列排序算法中 ( )排序在一趟结束后不一定能选出一个元素放在其最终位置上。

A. 选择B.冒泡C.归并D.堆5.一组记录的关键码为(46,79,56, 38,40, 84),则利用快速排序的方法,以第一个记录为基准得到的一次划分结果为()。

A. (38,40,46,56,79,84) B. (40,38,46,79,56,84)C. (40,38,46,56,79,84) D. (40,38,46,84,56,79)6.下列排序算法中,在待排序数据已有序时,花费时间反而最多的是()排序。

A.冒泡 B. 希尔C. 快速D. 堆7.就平均性能而言,目前最好的内排序方法是() 排序法。

A. 冒泡B.希尔插入C.交换D.快速8.下列排序算法中,占用辅助空间最多的是:()A. 归并排序B.快速排序C.希尔排序D.堆排序9.若用冒泡排序方法对序列 {10,14,26,29,41,52}从大到小排序,需进行()次比较。

《数据结构》第九章作业参考答案

《数据结构》第九章作业参考答案

第九章查找9.3 画出对长度为10的有序表进行折半查找的判定树,并求其等概率时查找成功的平均查找长度。

解:判定树应当描述每次查找的位置:9.9已知如下所示长度为12的表:(Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec)(1)试按表中元素的顺序依次插入一棵初始为空的二叉排序树,画出插入完成之后的二叉排序树,并求其在等概率的情况下查找成功的平均查找长度。

(2)若对表中元素先进行排序构成有序表,求在等概率的情况下对此有序表进行折半查找时查找成功的平均查找长度。

(3)按表中元素顺序构造一棵平衡二叉排序树,并求其在等概率的情况下查找成功的平均查找长度。

解:9.19解:H(22)=(3×22) mod 11=0 H(41)=(3×41) mod 11=2 H(53)=(3×53) mod 11=5 H(46)=(3×46) mod 11=6H(30)=(3×30) mod 11=2 冲突d1=(7×30) mod 10+1=1 H1(30)=(2+1)/11=3 H(13)=(3×13) mod 11=6 冲突d1=(7×13) mod 10+1=2 H1(13)=(6+2)/11=8 H(01)=(3×01) mod 11=3冲突d1=(7×1) mod 10+1=8 H1(01)=(3+8)/11=0冲突d2=2*((7×1) mod 10+1)=16 H2(01)=(3+16)/11=8冲突d3=3*((7×1) mod 10+1)=24 H3(01)=(3+24)/11=5冲突d4=4*((7×1) mod 10+1)=32 H4(01)=(3+32)/11=2冲突d5=5*((7×1) mod 10+1)=40 H5(01)=(3+40)/11=10H(67)=(3×67) mod 11=3冲突d1=(7×67) mod 10+1=10 H1(67)=(3+10)/11=2冲突d2=2*((7×67) mod 10+1)=20 H2(67)=(3+20)/11=1哈希表:ASL=(1+1+1+1+2+2+6+3)/8=17/8X。

数据结构作业系统_第九章答案

数据结构作业系统_第九章答案

数据结构作业系统_第九章答案9.26②试将折半查找算法改写成递归算法。

实现下列函数:int BinSearch(SSTable s, int low, int high, KeyType k);/* Index the element which key is k *//* in StaticSearchT able s. *//* Return 0 if x is not found. */静态查找表的类型SSTable定义如下:typedef struct {KeyType key;... ... // 其他数据域} ElemType;typedef struct {ElemType *elem;int length;} SSTable;int BinSearch(SSTable s, int low, int high, KeyType k)/* Index the element which key is k *//* in StaticSearchT able s. *//* Return 0 if x is not found. */{int mid=(low+high)/2;if(low>high)return 0;if(s.elem[mid].key==k)return mid;else if(s.elem[mid].key>k)return BinSearch(s,low,mid-1,k); else return BinSearch(s,mid+1,high,k);}9.31④试写一个判别给定二叉树是否为二叉排序树的算法,设此二叉树以二叉链表作存储结构。

且树中结点的关键字均不同。

实现下列函数:Status IsBSTree(BiTree t);/* 判别给定二叉树t是否为二叉排序树。

*//* 若是,则返回TRUE,否则FALSE */二叉树的类型BiTree定义如下:typedef struct {KeyType key;... ... // 其他数据域} ElemType;typedef struct BiTNode {ElemType data;BiTNode *lchild,*rchild;}BiTNode, *BiTree;Status IsBSTree(BiTree t)/* 判别给定二叉树t是否为二叉排序树。

数据结构(C语言版)9-12章练习 答案 清华大学出版社

数据结构(C语言版)9-12章练习 答案 清华大学出版社

数据结构(C语言版)9-12章练习答案清华大学出版社9-12章数据结构作业答案第九章查找选择题1、对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( A )A.(n+1)/2 B. n/2 C. n D. [(1+n)*n ]/2 2. 下面关于二分查找的叙述正确的是 ( D )A. 表必须有序,表可以顺序方式存储,也可以链表方式存储B. 表必须有序且表中数据必须是整型,实型或字符型 C. 表必须有序,而且只能从小到大排列 D. 表必须有序,且表只能以顺序方式存储3. 二叉查找树的查找效率与二叉树的( (1)C)有关, 在 ((2)C )时其查找效率最低 (1): A. 高度 B. 结点的多少 C. 树型 D. 结点的位置(2): A. 结点太多 B. 完全二叉树 C. 呈单枝树 D. 结点太复杂。

4. 若采用链地址法构造散列表,散列函数为H(key)=key MOD 17,则需 ((1)A)个链表。

这些链的链首指针构成一个指针数组,数组的下标范围为 ((2)C) (1) A.17 B. 13 C. 16 D. 任意(2) A.0至17 B. 1至17 C. 0至16 D. 1至16判断题1.Hash表的平均查找长度与处理冲突的方法无关。

(错) 2. 若散列表的负载因子α<1,则可避免碰撞的产生。

(错)3. 就平均查找长度而言,分块查找最小,折半查找次之,顺序查找最大。

(错)填空题1. 在顺序表(8,11,15,19,25,26,30,33,42,48,50)中,用二分(折半)法查找关键码值20,需做的关键码比较次数为 4 .算法应用题1. 设有一组关键字{9,01,23,14,55,20,84,27},采用哈希函数:H(key)=key mod7 ,表长为10,用开放地址法的二次探测再散列方法Hi=(H(key)+di) mod 10解决冲突。

要求:对该关键字序列构造哈希表,并计算查找成功的平均查找长度。

数据结构第9章作业 查找答案

数据结构第9章作业 查找答案

第9章 查找答案一、填空题1. 在数据的存放无规律而言的线性表中进行检索的最佳方法是 顺序查找(线性查找) 。

2. 线性有序表(a 1,a 2,a 3,…,a 256)是从小到大排列的,对一个给定的值k ,用二分法检索表中与k 相等的元素,在查找不成功的情况下,最多需要检索 9 次。

设有100个结点,用二分法查找时,最大比较次数是 7 。

3. 假设在有序线性表a[20]上进行折半查找,则比较一次查找成功的结点数为1;比较两次查找成功的结点数为 2 ;比较四次查找成功的结点数为 8 ;平均查找长度为 3.7 。

解:显然,平均查找长度=O (log 2n )<5次(25)。

但具体是多少次,则不应当按照公式)1(log 12++=n nn ASL 来计算(即(21×log 221)/20=4.6次并不正确!)。

因为这是在假设n =2m-1的情况下推导出来的公式。

应当用穷举法罗列:全部元素的查找次数为=(1+2×2+4×3+8×4+5×5)=74; ASL =74/20=3.7 !!!4.折半查找有序表(4,6,12,20,28,38,50,70,88,100),若查找表中元素20,它将依次与表中元素 28,6,12,20 比较大小。

5. 在各种查找方法中,平均查找长度与结点个数n 无关的查找方法是 散列查找 。

6. 散列法存储的基本思想是由 关键字的值 决定数据的存储地址。

7. 有一个表长为m 的散列表,初始状态为空,现将n (n<m )个不同的关键码插入到散列表中,解决冲突的方法是用线性探测法。

如果这n 个关键码的散列地址都相同,则探测的总次数是 n(n-1)/2=( 1+2+…+n-1) 。

(而任一元素查找次数 ≤n-1)二、单项选择题( B )1.在表长为n的链表中进行线性查找,它的平均查找长度为A. ASL=n; B. ASL=(n+1)/2;C. ASL=n +1; D. ASL≈log2(n+1)-1( A )2. 折半查找有序表(4,6,10,12,20,30,50,70,88,100)。

数据结构第三版第九章课后习题参考答案

数据结构第三版第九章课后习题参考答案

}
}
设计如下主函数:
void main()
{ BSTNode *bt;
KeyType k=3;
int a[]={5,2,1,6,7,4,8,3,9},n=9;
bt=CreatBST(a,n);
//创建《教程》中图 9.4(a)所示的二叉排序树
printf("BST:");DispBST(bt);printf("\n");
#define M 26 int H(char *s)
//求字符串 s 的哈希函数值
{
return(*s%M);
}
构造哈希表 void Hash(char *s[]) //
{ int i,j;
char HT[M][10]; for (i=0;i<M;i++)
//哈希表置初值
HT[i][0]='\0'; for (i=0;i<N;i++) { j=H(s[i]);
//求每个关键字的位置 求 // s[i]的哈希函数值
while (1)
不冲突时 直接放到该处 { if (HT[j][0]=='\0') //
,
{ strcpy(HT[j],s[i]);
break;
}
else
//冲突时,采用线性线性探测法求下一个地址
j=(j+1)%M;
}
} for (i=0;i<M;i++)
printf("%2d",path[j]);
printf("\n");
}
else { path[i+1]=bt->key;

(完整word版)数据结构第九章查找

(完整word版)数据结构第九章查找

第九章查找:习题习题一、选择题1.散列表查找中k个关键字具有同一散列值,若用线性探测法将这k个关键字对应的记录存入散列表中,至少要进行( )次探测。

A. k B。

k+l C. k(k+l)/2 D. l+k (k+l)/22.下述命题( )是不成立的。

A。

m阶B-树中的每一个结点的子树个数都小于或等于mB。

m阶B-树中的每一个结点的子树个数都大于或等于『m/2-1C。

m阶B-树中的每一个结点的子树高度都相等D。

m阶B—树具有k个子树的非叶子结点含有(k-l)个关键字3.如果要求一个基本线性表既能较快地查找,又能适应动态变化的要求,可以采用( )查找方法.A。

分块 B. 顺序 C. 二分 D.散列4.设有100个元素,用折半查找法进行查找时,最大比较次数是( ),最小比较次数是( ).A。

7,1 B.6,l C.5,1 D. 8,15.散列表长m=15,散列表函数H(key)=key%13。

表中已有4个结点:addr(18)=5;addr(32)=6; addr(59)=7;addr(73)=8;其余地址为空,如果用二次探测再散列处理冲突,关键字为109的结点的地址是( )。

A. 8 B。

3 C. 5 D。

46.用分块查找时,若线性表中共有729个元素,查找每个元素的概率相同,假设采用顺序查找来确定结点所在的块时,每块应分( )个结点最佳。

A。

15 B. 27 C。

25 D。

307.散列函数有一个共同性质,即函数值应当以( )取其值域的每个值。

A.同等概率B。

最大概率C。

最小概率D。

平均概率8.设散列地址空间为O.。

m—1,k为关键字,假定散列函数为h(k)=k%p,为了减少冲突,一般应取p为( )。

A.小于m的最大奇数B. 小于m的最大素数C.小于m的最大偶数D.小于m的最大合数9.当向一棵m阶的B-树做插入操作时,若使一个结点中的关键字个数等于( ),则必须分裂成两个结点。

A。

m B。

m-l C.m+l D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.26②试将折半查找算法改写成递归算法。

实现下列函数:int BinSearch(SSTable s, int low, int high, KeyType k);/* Index the element which key is k *//* in StaticSearchTable s. *//* Return 0 if x is not found. */静态查找表的类型SSTable定义如下:typedef struct {KeyType key;... ... // 其他数据域} ElemType;typedef struct {ElemType *elem;int length;} SSTable;int BinSearch(SSTable s, int low, int high, KeyType k)/* Index the element which key is k *//* in StaticSearchTable s. *//* Return 0 if x is not found. */{int mid=(low+high)/2;if(low>high)return 0;if(s.elem[mid].key==k)return mid;else if(s.elem[mid].key>k)return BinSearch(s,low,mid-1,k);else return BinSearch(s,mid+1,high,k);}9.31④试写一个判别给定二叉树是否为二叉排序树的算法,设此二叉树以二叉链表作存储结构。

且树中结点的关键字均不同。

实现下列函数:Status IsBSTree(BiTree t);/* 判别给定二叉树t是否为二叉排序树。

*//* 若是,则返回TRUE,否则FALSE */二叉树的类型BiTree定义如下:typedef struct {KeyType key;... ... // 其他数据域} ElemType;typedef struct BiTNode {ElemType data;BiTNode *lchild,*rchild;}BiTNode, *BiTree;Status IsBSTree(BiTree t)/* 判别给定二叉树t是否为二叉排序树。

*//* 若是,则返回TRUE,否则FALSE */{KeyType k;if(t==NULL)return TRUE;k=t->data.key;if(t->lchild==NULL&&t->rchild==NULL)return TRUE;if(t->lchild!=NULL&&t->rchild!=NULL){if(k>t->lchild->data.key&&k<t->rchild->data.key)if(IsBSTree(t->lchild)&&IsBSTree(t->rchild))return TRUE;return FALSE;}if(t->lchild!=NULL&&k>t->lchild->data.key)if(IsBSTree(t->lchild))return TRUE;if(t->rchild!=NULL&&k<t->rchild->data.key)if(IsBSTree(t->rchild))return TRUE;return FALSE;}9.33③编写递归算法,从大到小输出给定二叉排序树中所有关键字不小于x的数据元素。

要求你的算法的时间复杂度为O(log2n+m),其中n为排序树中所含结点数,m为输出的关键字个数。

实现下列函数:void OrderOut(BiTree t, KeyType x, void(*visit)(TElemType)); /* Output is to use visit(t->data); */二叉树的类型BiTree定义如下:typedef struct {KeyType key;... ... // 其他数据域} ElemType;typedef struct BiTNode {ElemType data;BiTNode *lchild,*rchild;}BiTNode, *BiTree;void OrderOut(BiTree t, KeyType x, void(*visit)(TElemType)) /* Output is to use visit(t->data); */{if(t==NULL)return;OrderOut(t->rchild,x,visit);if(t->data.key>=x)visit(t->data);OrderOut(t->lchild,x,visit);}9.44④已知某哈希表的装载因子小于1,哈希函数H(key)为关键字(标识符)的第一个字母在字母表中的序号,处理冲突的方法为线性探测开放定址法。

试编写一个按第一个字母的顺序输出哈希表中所有关键字的算法。

实现下列函数:void PrintKeys(HashTable ht, void(*print)(StrKeyType));/* 依题意用print输出关键字*/哈希表的类型HashTable定义如下:#define SUCCESS 1#define UNSUCCESS 0#define DUPLICATE -1typedef char StrKeyType[4];typedef struct {StrKeyType key;void *any;} HElemType;int hashsize[] = { 7,11,17,23,29,37,47 };typedef struct {HElemType elem[MAXLEN];int count;int sizeindex;} HashTable;void PrintKeys(HashTable ht, void(*print)(StrKeyType))/* 依题意用print输出关键字*/{int n,i,size;char c;size=hashsize[ht.sizeindex];for(c='A';c<='Z';c++){n=(c-'A')%size;i=n;while((n+1)%size!=i){if(ht.elem[n].key[0]==c)print(ht.elem[n].key);n=(n+1)%size;}}}9.45③假设哈希表长为m,哈希函数为H(x),用链地址法处理冲突。

试编写输入一组关键字并建造哈希表的算法。

实现下列函数:int BuildHashTab(ChainHashTab &H, int n, HKeyType es[]); /* 直接调用下列函数*/ /* 哈希函数:*/ /* int Hash(ChainHashTab H, HKeyType k); *//* 冲突处理函数:*/ /* int Collision(ChainHashTab H, HLink &p); */哈希表的类型ChainHashTab定义如下:#define NUM 7#define NULLKEY -1#define SUCCESS 1#define UNSUCCESS 0#define DUPLICATE -1typedef char HKeyType;typedef struct HNode {HKeyType data;struct HNode* next;}*HLink;typedef struct {HLink *elem; // 指针存储基址,动态分配数组int count; // 当前表中含有的记录个数int cursize; // 哈希表的当前容量}ChainHashTab; // 链地址哈希表int Hash(ChainHashTab H, HKeyType k) {// 哈希函数return k % H.cursize;}Status Collision(ChainHashTab H, HLink &p) {// 求得下一个探查地址pif (p && p->next) {p = p->next;return SUCCESS;} else return UNSUCCESS;}int BuildHashTab(ChainHashTab &H, int n, HKeyType es[])/* 直接调用下列函数*//* 哈希函数:*//* int Hash(ChainHashTab H, HKeyType k); *//* 冲突处理函数:*//* int Collision(ChainHashTab H, HLink &p); */{int i=0,l,flag;HLink p,node;while(es[i]!='\0'){l=Hash(H,es[i]);node=(HLink)malloc(sizeof(HNode));node->data=es[i];node->next=NULL;i++;if(H.elem[l]==NULL)H.elem[l]=node;else{flag=0;p=H.elem[l];if(p->data==node->data)flag=1;while(Collision(H,p))if(p->data==node->data){flag=1;break;};if(flag==0){p=H.elem[l];node->next=p;H.elem[l]=node;}}}}。

相关文档
最新文档